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Abstract— The authors present an innovative method for the
efficient joint estimation of attitude and position in six degrees
of freedom via sensors such as GPS, inertial measurement
units, and odometry. Traditional methods for attitude estimation
via Kalman filtering are beset by many conceptual problems
relating to the representation of orientations in linear spaces,
leading to difficulties in implementation and the interpretation
of uncertainty estimates, among other issues. These problems
are compounded when it is necessary to jointly estimate position
and attitude. We demonstrate how Rao-Blackwellized particle
filtering provides a framework for approaching this estimation
problem that is both conceptually appealing and practical. Re-
sults are shown that demonstrate the filter’s robustness to sensor
outages and its ability to perform well even in situations with
noisy sensors and high initial uncertainty in all state dimensions;
these situations are precisely those in which traditional Kalman-
filtering approaches are most likely to experience problems.

I. INTRODUCTION

We consider the problem of estimation of the six de-
grees of freedom (three translational and three rotational) that
specify the pose of a vehicle in the world using primarily
GPS, inertial, and odometric sensors. Such applications are
becoming increasingly more common due to the ubiquity
of global positioning system (GPS) receivers and the fairly
recent development of low-cost inertial sensors based on
micro electro-mechanical systems (MEMS) technology. In
conjunction with simple odometry or comparable dynamic
modeling, it is possible to assemble cheap sensor packages
that provide all the information necessary for a vehicle to
robustly localize itself. However, actual implementations of
complete pose estimation systems are seemingly rare outside
the unmanned aerial vehicle, mobile robotics, and aerospace
communities. One possible reason for this is that despite
the availability of suitable sensors, the design of estimators
necessary to integrate sensor information in a probabilistic
framework, is still a problematic task with no universally-
accepted solution. We will discuss in this paper some of the
reasons why the task of 6-DOF vehicle pose estimator design
is challenging, and we will propose a novel approach based
on Rao-Blackwellized particle filtering that eschews some of
the key problems associated with typical estimators while
also admitting a fairly simple implementation that may be
preferable over standard techniques for practitioners of pose
estimator design.

II. PREVIOUS WORK

Attitude estimation in itself is a subject that has been
studied extensively by the aerospace community. State-space
approaches have been employed for satellite applications since
the mid 1960’s [1], with Kalman filtering in its various
incarnations being the preferred method. A typical approach
involves applying an extended Kalman filter (EKF) to linearize
the process and measurement models, which tend to involve
highly nonlinear angular rate integrations in the process model
and nonlinear coordinate frame transformations in the mea-
surement model [2]. Innovations over the years include the use
of quaternions as a nonsingular representation of orientations
of minimal dimension, and the practice of estimating auxiliary
parameters that represent deviations from a reference quater-
nion [3] [4]. More recent work has employed the sigma-point
Kalman filter (SPKF) that removes the need for linearization
while providing estimates that capture the statistics of the
target distribution more accurately than the EKF [4] [5].

Although such approaches have proved adequate in cer-
tain applications, there are certain aspects of Kalman-filter-
based attitude estimation that leave much to be desired in
a theoretical sense. The representational issue is perhaps the
most critical failing. Although some parameterizations of the
three-dimensional group of rotations, SO(3), may superficially
appear vector-like, there is in reality no one-to-one mapping
of rotations to a vector space. The Kalman filter’s assumption
of linearity is thus violated in the most fundamental way.
Not only are the dynamics of orientation estimation nonlinear,
but the space of orientations itself is not a linear space. This
implies that the component-wise addition of the parameters of
two rotations is not a meaningful operation. As an example,
the addition of two unit quaternions yields a quantity that is
no longer a unit quaternion.

A related issue is the representation of attitudinal uncer-
tainty. The most straightforward approach, treating the rota-
tional parameters as random variables and defining an analytic
distribution over them, is problematic due to the fact that the
rotations lie in a nonlinear space. This can be seen in the case
of attempting to define a Gaussian distribution over a one-
dimensional random rotation variable. We cannot restrict the
range of valid angles to [0, 2π), since a Gaussian cannot be



Fig. 1. Illustration depicting the multimodal nature of translational distri-
butions that arise from common situations in vehicle pose estimation. Gray
area represents range of possible vehicle locations. If orientation is unknown,
given only an observation that the vehicle moves forward, the distribution over
positions shifts from a unimodal (left) to a multimodal (right) distribution.

defined over a finite range; nor can we allow the angles to take
on any real value, since this would lead to the assignment
of an infinite number probabilities to each angle. Markley
describes [3] how the use of an auxiliary parameter can be
used to alleviate some of the conceptual problems with the
direct estimation of quaternions by defining a distribution over
a parameter that does lie in a linear space, and defining the true
quaternion estimate as a function of this parameter. However,
it is still not clear how a distribution over such parameters
should map to the space of orientations in practical terms.

Yang and Crassidis have recently demonstrated how particle
filtering may be applied to the problem of spacecraft attitude
estimation [6]. We also employ particle filtering for attitude
estimation in this work. However, we also demonstrate joint
estimation of attitude and position in an efficient, unified
framework.

Integrated state estimation of position and attitude has
recently been examined by a number of researchers in the con-
texts of mobile robotics and especially autonomous helicopter
flight. More often than not, the problem is decomposed into
the two problems of first designing an orientation estimator
and then constructing a separate, straightforward estimator for
position given the best estimate of the orientation estimator.
Such an approach is described by Roumeliotis et. al. [7].
This approach is appealing from an implementation standpoint,
since it avoids some of the difficult issues that arise in attempt-
ing to estimate position and attitude states in a unified filter.
However, it ignores the important structure of the correlation
between attitudinal and positional uncertainty. Fig. (1) illus-
trates a common scenario where the correct understanding of
the correlation between attitudinal and positional uncertainty
is critical to inferences that might arise later.

A more integrated approach to simultaneous attitudinal and
positional estimation is described by van der Merwe and
Wan [8], who apply a SPKF to estimate a jointly Gaussian dis-
tribution over orientation and position for an unmanned aerial
vehicle (UAV). The resulting filter is found to be more accurate
than an EKF used for the same purpose. Unfortunately, the
representation of the state by a single Gaussian is still a
limiting factor. As Fig. (1) demonstrates, when passengers
in a vehicle with unknown absolute orientation observe just

forward motion, their marginal belief of absolute position
becomes multimodal and hence is not adequately described by
a single Gaussian. We would thus expect any estimator based
on a single Gaussian assumption to fail on this example.

Our approach is based on a Rao-Blackwellized particle
filter. The use of Rao-Blackwellized particle filters for in-
tegrated navigation tasks has been proposed independently
by Nordlund [9] and Giremus et. al. [10]. We place specific
emphasis on the advantages gained by sampling orientation,
both theoretically and practically. We additionally demonstrate
how these putative gains translate to practical advantages,
especially robustness in highly uncertain scenarios, via exper-
iments on an actual robotic platform.

III. PRELIMINARIES

It should first be made clear that we are approaching the
problem from a strictly time-domain, state space view. This
is in contrast to more classical frequency-domain approaches
to filter design. Although some success has been achieved
in applying complementary filters to attitude estimation (see
Baerveldt for an example [11]), such approaches have prob-
lems of their own in addition to some of the ones already
mentioned in state-space formulations. We will thus focus on
state-space methods from this point forward.

As already described, standard methods for attitude estima-
tion rely on assumptions of near-linearity and unimodality, and
hence make use of nonlinear variants of the Kalman filter. It
has already been shown that these assumptions are violated
in some important cases that arise in vehicle pose estimation.
Hence we are naturally drawn to particle filtering, a nonlinear
estimation strategy that has experienced much success in the
domain of mobile robot localization [12]. Particle filtering
attempts to approximate the posterior state distribution by a
finite weighted sum of localized delta functions, or “particles,”
as depicted in Eq. (1) [13], where the notation xt denotes the
sequence x1 . . . xt, w

(i)
t denotes the weight of the ith particle,

and x(i) denotes the value of that particle’s state

p(xt|zt) ≈
N∑

i=1

w
(i)
t δ(xt − (x(i))t) (1)

Given this approximate representation it is then straightfor-
ward to calculate an approximation to the expectation of any
function of the state [14]. Crucially, it can be shown that there
exists a recursive method of selecting the weights such that the
approximate expectation converges to the true expectation as
the number of particles goes to infinity. Practically speaking,
many cases require only a small number of particles for a
satisfactory approximation.

The method of selecting the weights relies on a principle
known as importance sampling, whereby we attempt to sample
from a difficult-to-sample target distribution by first sampling
from an easy-to-sample proposal distribution. We then ob-
tain an approximate sampling of the target distribution by
weighting the original samples according to Eq. (2) [15], and
sampling from the discrete distribution of weighted samples.



w(i) =
target distribution probability

proposal distribution probability
(2)

The correct calculation of the weights according to the
principle of importance sampling is a critical step in the
operation of the filter. We will later derive how to correctly
set the weights for our application.

The recursive calculation of weights over time leads to
a problem known as “particle degeneracy,” [13] in which
all but a few particles have habitually insignificant weights,
meaning that they contribute little to the estimate and are a
burden on computational resources. Thus nearly all practical
particle filters implement a technique known as resampling
to address this condition. Resampling consists of periodically
“refreshing” the samples by sampling them from their own
weighted distribution. We will not pay special attention to
resampling here as we use a standard technique for it.

The final prerequisite for our development of the joint
attitude and position estimator is the concept of “Rao-
Blackwellization.” In the context of particle filters, this refers
to the practice of exploiting the structure of certain state-space
models where it is possible to analytically update part of the
state when another part of the state is sampled. Fig. (2) is
a graphical model that depicts the sort of conditional inde-
pendence structure necessary to make Rao-Blackwellization
applicable [16]. Where applicable, Rao-Blackwellization can
often provide a better estimate of part of the state at a fraction
of the computational cost of sampling the entire state. This is
due to the fact that particle filtering becomes increasingly more
difficult in high-dimensional state spaces, since the number of
particles necessary to effectively sample the space grows as
the volume of the sampled space grows.

An especially nice instantiation of the kind of model de-
picted in Fig. (2) arises when the distributions of xt and zt

are Gaussian when conditioned on the sampled part of the
state. This case is known as a conditionally linear-Gaussian
model [16], and it is appealing because it allows us to
optimally compute the posterior distribution over xt given each
sampled rt using the Kalman filter. The joint distribution over
xt and rt is thus represented by a combination of particles
and their corresponding Gaussians, as expressed in Eq. (3)

p(xt, rt|zt) =
∑

i

w(i)δ(rt − r
(i)
t )p(xt|r(i)

t , zt)

=
∑

i

w(i)δ(rt − r
(i)
t )N (xt; x̂t

(i),Σ(i)
t ) (3)

IV. DEVELOPMENT OF THE FILTER

A. Orientation Estimation via Dead Reckoning

We will first discuss what a “dead-reckoning” approach to
attitude estimation would entail in order to develop some of
the details relating to using inertial measurements for this
purpose. Despite the name, we might actually use angular
rate gyroscope measurements in a dead-reckoning approach.
The reason for this is that dynamic modeling for attitude

Fig. 2. A graphical model of the kind of dynamic Bayes network to which
Rao-Blackwellization applies. We assume the state can be partitioned into r(t)
and x(t) and that the conditional independence relations implied by the graph
are present. z(t) is a measurement that may depend on both parts of the state.

estimation is application-specific, often complex, and usually
yields results that are less accurate than those obtained from
angular rate gyros, as described by Roumeliotis in [7]. We
can thus think of angular rate gyros as providing a sort of
control input to a process of integrating angular rates in time.
This notion will be useful in our later development of a proper
attitude estimator.

Another issue in the implementation of a simple dead-
reckoning approach is the choice of attitude representation.
We will use quaternions in this work, though it will become
apparent later that (unlike in traditional methods) our choice of
representation has little impact on the design of the estimator.

The only significant operation in the dead-reckoning method
is the repeated integration of angular rates over distinct time
intervals to yield updated rotations. A closed-form solution of
the appropriate differential equation is provided in [17] and is
summarized in Eqs. (4) and (5), where ωt = (ωx ωy ωz) is
the angular velocity vector relative to the sensor’s body frame,
and qt is a quaternion representing the sensor’s orientation at
time t.

Ω(ωt,∆t) =
∆t

2


0 ωz −ωy ωx

−ωz 0 ωx ωy

ωy −ωx 0 ωz

−ωx −ωy −ωz 0

 (4)

qt+1 = eΩ(ωt,∆t)qt (5)

B. Orientation Estimation via Particle Filtering

As alluded to earlier, we take a particle filtering approach
to attitude estimation. By choosing a particle filter we imme-
diately avoid most of the representational issues that plague
Kalman-filter-based attitude estimators, since there is no need
to define an analytical distribution over orientations. Instead,
we will represent our orientation distribution by a set of
discrete particles. This also has the advantage of providing a
model of attitudinal uncertainty that has an extremely intuitive
meaning compared to the artificial parameterizations present
in some Kalman-filtering strategies. Intuitively, a highly uncer-
tain distribution would be represented by a highly disordered
set of orientations, while a very certain distribution would be
represented by a tight cluster of orientations.



Particle filter design is driven by the determination of the
importance weights, which must be chosen in accordance
with the principle of importance sampling. A straightforward
derivation of the importance weights is given in Eq. (6) [13],
where q(.) represents a yet-undetermined proposal density and
θ represents the attitude.

w
(i)
t =

p(θt|zt)
q(θt|zt)

=
p(zt|θt, zt−1)p(θt|θt−1)p(θt−1|zt−1)

q(θt|θt−1, zt)q(θt−1|zt−1)
(6)

=
p(zt|θt, zt−1)p(θt|θt−1)

q(θt|θt−1, zt)
w

(i)
t−1

In the simplest form of the particle filter, we choose the
state transition distribution p(θt|θt−1) as the proposal density.
The corresponding importance weights w are then given by
Eq. (7) [13]. Thus we only need to specify the state transition
and observation likelihood distributions in order to apply the
particle filter.

w
(i)
t = p(zt|θt, zt−1)w(i)

t−1 (7)

The state update is encapsulated in Eq. (8). Eq. (5) from the
dead-reckoning approach essentially remains the quaternion
update equation. Once again, the angular rate gyro is treated as
a control input to the quaternion update process. ωε

t represents
error (assumed Gaussian) in the measurement from the rate
gyro, ωg

t . Its inclusion ensures that repeated application of the
process model results in an orientation distribution that grows
more uncertain in time, as would be expected.

qt+1 = fq(qt, ω
g
t , ωε

t )

= eΩ(ωg
t +ωε

t ,∆t)qt (8)

Our measurements are given by body-referenced accelera-
tion and possibly magnetic field. Assuming no external accel-
erations besides gravity or magnetic fields besides the earth’s
are present, Eqs. (9) and (10) are valid. They represent simply
the rotation of their respective field vectors in fixed-frame
coordinates (gf and mf ) to the body-relative coordinates of
the sensor frame, plus Gaussian measurement error gε

t and
mε

t . We assume that Rb2f{q} is a function that returns a
matrix transforming vectors in the body frame to the fixed
(or “navigation”) frame, given a quaternion. The precise form
of it is omitted for brevity (see [17]).

gb
t = og(qt,gε

t), gε
t ∼ N (0, Cg)

= [Rf2b{qt}]gf + gε
t (9)

mb
t = om(qt,mε

t), mε
t ∼ N (0, Cm)

= [Rf2b{qt}]mf + mε
t (10)

To calculate the importance weights, we must define the dis-
tribution p(zt|(θ(i))t, zt−1). Given the models just described,

one simple way to accomplish this is to define a Gaussian in
the fixed frame as described in Eq. (11), where vf is either
field vector in the fixed frame, and Rf is the covariance of
the measurement.

p(zt|θ(i)
t ) = N (zt;Rf2b{q(i)

t }vf ,Rf ) (11)

A final important issue in the practical application of
particle filtering to attitude estimation is the matter of how
to calculate an “expected orientation” from a weighted set of
sampled orientations. One procedure for accomplishing this
is described by Morawiec in [18]. Briefly, a useful notion of
mean orientation can be computed as the normalized principal
eigenvector of the matrix P shown in Eq. (12).

P =
N∑

i=1

w(i)(4q(i)(q(i))T − I4x4) (12)

C. Estimating Translation States via Rao-Blackwellization

Our main idea in incorporating translational states into the
filter will be to have particles representing orientations as
before, but to also attach to each particle a Gaussian over
positions. Rao-Blackwellization provides us with a principled
way of accomplishing just that. An important observation is
that most nonlinearities we might think of in the translational
process or measurement models (utilizing sensors such as
GPS and odometry) would tend to arise due to transforma-
tions between inertial and global coordinate systems, which
involve products between translational states (or controls) and
(possibly nonlinear) functions of attitude parameterizations. If
the attitude were not part of the state, we could update the
translational state with a standard Kalman filter.

We can solidify this intuition by using a graphical model.
Looking at Fig. (2), it is apparent that the conditional indepen-
dence structure depicted therein is applicable to our problem,
where the translational state is represented by x(t), and the
sampled orientations are represented by r(t). Furthermore,
due to the observation that it is the orientation that produces
nonlinearities in the translational dynamics, we have a con-
ditionally linear-Gaussian model for the translational state.
Therefore, Rao-Blackwellization is applicable, and we can use
a linear Kalman filter to update the translational distributions
conditioned on sampled orientations.

Knowing this, it now again necessary to examine how the
importance weights should be calculated in the new model.
When body-frame field measurements are observed, the model
is essentially the same as it was in the case of orientation-only
estimation, and hence the same update rules apply. In the case
of GPS and odometric measurements, the model is different
and will require accordingly different importance weights. The
calculation of the weights depends on some features of the
process and measurement models, so they are described in
Eqs. (14)-(17). The state consists of three-dimensional position
and velocity vectors in the fixed frame, as seen in (13).

pt =
(
xt yt zt ẋt ẏt żt

)T
(13)



pt+1 = Fpospt + vt,vt ∼ N (0,Qpos) (14)

Fpos =
(

I3x3 I3x3∆T
03x3 I3x3

)
(15)

Note that here we treat odometry readings as a measurement
on body-relative velocity rather than a control input to update
position. Eq. (16) expresses the GPS measurement as a di-
rect measurement of the fixed-frame translational state, while
Eq. (17) expresses odometry as a measurement of velocity
rotated into the body frame.

zgps
t =

(
I3x3 03x3

03x3 I3x3

)
pt + wgps,wgps ∼ N (0,Rgps) (16)

zod
t =

(
03x3 Rf2b{q(i)

t }
)
pt + wod,wod ∼ N (0,Rod)

(17)
Eq. (17) demonstrates that, as anticipated, the odometry

measurement is a linear function of the state when the ori-
entation is given.

Given the process and measurement models, it is possible
to calculate the importance weights for GPS and odometric
measurements. We can again sample from the attitude update
model to obtain a proposal distribution, so the importance
weights are again as given by Eq. (7), since the same derivation
as in Eq. (6) is applicable.

Though the form of the importance weights appears the
same as the case with only attitudinal measurements, there
are some important distinctions. Namely, the measurement
equations for GPS and odometry are functions of position
as well as attitude. We will therefore have to introduce
the translational state by expressing the density in (7) as a
marginal distribution over the translational state. Also note
that since our conditional independence structure is now as
specified in Fig. (2), zt and zt−1 are no longer d-separated [19]
by θt, so we cannot immediately drop the zt−1 term in the
following derivation.

p(zt|θt, zt−1) =
∫

p(zt|θt,pt, z
t−1)p(pt|θt, zt−1) dpt

p(pt|θt, zt−1) =
∫

p(pt|pt−1)p(pt−1|zt−1, θt) dpt−1

Σ−t = FΣ(i)
t−1F

T + Qpos (18)

p(pt|θt, zt−1) = N (pt;Fp̂(i)
t ,Σ−t ) (19)

p(zt|θt, zt−1) = N (zt;HFp̂(i)
t ,HΣ−t HT + R) (20)

In the above equations, H and R represent the appropriate
measurement and measurement noise matrices obtained from
either the GPS or odometric measurement models. Eqs. (19)
and (20) are obtained by calculating the statistics of the
relevant marginal distributions, which is easily accomplished
given that the variables involved are linear functions of the

translational prior state p(pt−1|zt−1), which is assumed to be
distributed as a Gaussian with mean p̂

(i)
t and covariance Σ(i)

t−1.
A fortunate characteristic of Eq. (20) is that the mean and

covariance of the Gaussian distribution are already calculated
when we use the Kalman filter to update the translational
state distributions; hence, it is quite efficient to calculate
the importance weights. We also note that Eq. (20) has the
intuitive interpretation as being the probability of the actual
measurement under the Gaussian that represents the expected
measurement distribution given the estimated translational
state distribution for each particle.

It is also worth mentioning that practical applications will
usually desire simple one-vector summaries of the distribution.
For this purpose we can easily compute the expected values
for the orientation independent of position and vice-versa
by marginalizing the joint distribution appropriately. It can
be seen from Eq. (3) that this process yields a sum of
weighted delta functions for orientations, and a mixture of
Gaussians model for positions. The mean orientation may then
be computed as already described, while the mean position
is simply the weighted mean of the Gaussians. This was the
technique employed to obtain the estimates used in the results
sections.

The complete algorithm for joint attitude and position
estimation is described in algorithm (1).

V. SIMULATION RESULTS

We implemented the joint attitude and position filter and a
simple simulator in order to test the filter’s output in the case
where the true trajectory was known. The simulations empha-
size performance in scenarios with relatively high sensor noise,
since it is expected that this is the area in which traditional
implementations are most deficient. Gyro measurements, for
example, were assumed to have a 0.1 rad/s Gaussian error
in each dimension. Moreover, different scenarios were tested
in which only certain sets of sensors were enabled in order
to evaluate the filter’s performance in conditions of sensor
unavailability. None of the scenarios featured magnetometer
measurements so as to render the absolute attitude unobserv-
able in the static case. It is also crucially important to note that
the yaw of the initial orientation was assumed to be completely
unknown in each case. The filter was therefore initialized with
a distribution of orientations having yaw angles uniformly
distributed in the interval [0, 2π). The true position and the
filter’s mean position estimate were both initialized to zero
to enable comparisons between cases with and without GPS
position measurements.

We ran the simulation in each scenario for 1000 seconds
and calculated the error between the filter’s output and the
true state. The attitude error was computed as the minimum
angle required to rotate the estimated orientation into the true
orientation by rotating about an appropriate axis. The resulting
plots of error versus time are provided in Fig. (3). A summary
is provided in table (I), where E|x̃| represents mean absolute
error, and

√
E|x̃2| represents the standard deviation of the

absolute error.
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Fig. 3. Plots of simulation errors versus time for several scenarios (note log scale of error axis). A dead reckoning case (left) was provided for comparison. As
expected, the best results were obtained with all sensors enabled. Disabling GPS position caused absolute position to slowly drift, but attitude error remained
small. Disabling GPS velocity caused slower convergence, but both attitude and position error remained comparatively low in the long run.

A “dead-reckoning” case where the filter only employed
rate gyro and odometry was included in the experiment to
serve as a control. As expected, since the filter was given
a uniform prior distribution over yaw angles and thereafter
received nothing but relative measurements, the mean error
in attitude remained very high throughout the simulation. The
position error also remained high as a consequence of the
orientation being unknown.

When all sensors were enabled, the filter was able to infer
the correct orientation (with noisy sensors, from an unknown
initial orientation) to within about five degrees on average. The
absolute position error averaged about one meter. We consider
this to be a good result considering that our simulated GPS
consisted of random draws from a spherical Gaussian centered
at the true position with a standard deviation of five meters,
and obtained only once per second.

We then removed GPS position measurements completely,
forcing the filter to rely on accurate attitude estimates and
the integration of uncertain velocity. Though the attitude and
position errors increased, the attitude and velocity estimates
were good enough to result in a mean position error of 3.42
meters over the course of 1000 seconds.

Finally, we attempted the very difficult scenario of no GPS
velocity or accelerometer measurements. In this case, the only
way to infer the correct orientation is to essentially check
the consistency of trajectories that arise from different initial
orientations against the infrequent, noisy absolute position
measurements provided by GPS. This was intended to be a
test of the filter’s probably unique ability to correctly esti-
mate the complex, long-range correlations that arise between
distributions over position and attitude. Although the mean
orientation error in this case was nearly three times that of
the case employing all sensors, the filter was able to resolve
the orientation well enough to keep the error in the position

estimate comparable to that of the case employing all sensors.

VI. FIELD RESULTS

We tested the filter’s performance in a real-world, outdoor
scenario by running it onboard a small, remote-controlled
ground robot equipped with GPS, odometry, and an inertial
measurement unit (IMU). As in the simulations, the magne-
tometer was not enabled, though this time for a more practical
reason: as is often the case with small robots, local magnetic
fields generated by the robot’s motors make it difficult to sense
the Earth’s magnetic field. For this reason, in this application
and similar ones, it is essential the the filter be able to resolve
global orientation without the aid of a magnetometer. We
therefore again gave the filter no initial knowledge as to the
yaw component of the prior attitude distribution.

The test scenario consisted of driving the robot in a closed-
loop path around a relatively open field. The path was approx-
imately 250 meters long. Reported GPS error averaged about
11 meters. The resulting 2D position tracks are displayed in
Fig. (4). Although complete ground truth was not available for
this experiment, we can make some arguments in favor of the
conclusion that the filter is performing well.

The first observation we might make is that the filter is
indeed successfully integrating low-frequency data from GPS
with high-frequency gyroscope and odometry information to
yield an estimate that is both detailed and driftless. The fact
that absolute corrections are being made can be seen by
observing that the estimate obtained without GPS position
measurements does drift significantly in time compared to the
estimate obtained using GPS position measurements. Closing
the loop without GPS position measurements resulted in a 2.41
meter error at the end of the loop, while closing the loop with
all sensors resulted in a 1.45 meter error. Raw GPS closed the
loop with a 2.33 meter error.



for i = 1 to N do
q(i)

0 ∼ p(q0) // draw attitudes from initial distribution
p̂(i)

0 = p̂0,Σ(i)
0 = Σ0

end
while zt = new measurement do

for i = 1 to N do
Update orientations using rate gyros:
q(i)

t ← eΩ(ωg
t +ωε

t ,∆t)q(i)
t−1

Calculate measurement likelihoods:
switch type of measurement zt do

case accelerometer (gravity) or magnetic field
vf = field vector in fixed frame
Rf = measurement covariance
p(zt|q(i)

t , zt−1) =
N (zt;Rf2b{q(i)

t }vf ,Rf )
end
case GPS or odometry

H = Hgps =
(

I3x3 03x3

03x3 I3x3

)
or

Hod =
(
03x3 Rf2b{q(i)

t }
)

R = Rgps or R = Rod

Kalman update:
begin

Σ−t = FposΣ(i)
t−1(Fpos)T + Qpos

Z = HΣ−t HT + R
ẑ = HFposp̂(i)

t−1

W = Σ−t HTZ−1

Σ(i)
t = Σ−t −WZWT

p̂(i)
t = Fposp̂(i)

t−1 + W(zt − ẑ)
end
p(zt|q(i)

t , zt−1) = N (zt; ẑ,Z)
end

end
w

(i)
t = w

(i)
t−1p(zt|q(i)

t , zt−1)
end
Resample if necessary

end
Algorithm 1: Rao-Blackwellized particle filtering for joint
attitude and position estimation

Attitude error (deg) Position error (m)
Scenario E|x̃|

p
E|x̃2| E|x̃|

p
E|x̃2|

Dead-reckoning 125.39 32.85 32.79 15.94
All sensors (no
magnetometer)

4.86 3.98 1.04 0.39

No GPS position 7.09 4.68 3.42 1.84
No GPS
velocity or
accelerometers

11.82 6.71 1.40 0.70

TABLE I
SUMMARY OF SIMULATION RESULTS

Another important observation is that in all cases, the
orientation was successfully resolved accurately and precisely
from an initially unknown orientation. If this had not been
the case, and the orientations had been inconsistent with
absolute position and velocity measurements, the estimated
tracks would have exhibited sharply jagged artifacts from
constantly being “pushed” in one direction by odometry,
and “pulled” in another via GPS. The degree to which the
orientation was correctly inferred is evident in the loop-closing
performance in the case without GPS position measurements,
which indicated a drift of less than 1% over the length of the
path traveled. Since, this figure is well within the error that
might be expected from wheel slippage alone, we conclude
that attitudinal error must have been fairly small throughout.

A final observation is that, as also demonstrated in sim-
ulation, the filter is able to accomplish the difficult task of
convergence to a correct attitude even with very large initial
uncertainty, using only GPS position measurements. This is
illustrated by the dashed line in Fig. (4). Closing the loop in
this case resulted in a 1.40 meter error. Since this is better
than the loop-closing performance of raw GPS, it must be
concluded that this is the result of the integration of correct
orientation with odometry. However, it should be noted this
result required a significantly greater number of particles for
correct convergence than the other two, due to the initially
larger space of feasible poses induced by this scenario.

Regarding computational efficiency, we should note that this
is one area in which this filter is expected to lag a bit behind
traditional implementations, since measurements on the trans-
lational state require a Kalman update for each particle, instead
of a single Kalman update per measurement. Though this
might seem like a greatly increased computational burden, it is
alleviated by several factors. One very appealing aspect of the
basic particle filtering algorithm is that it is almost completely
parallelizable. Sampling the proposal density and calculating
importance weights usually account for the vast majority of the
computation burden, and both can be accomplished in parallel
for each particle. The algorithm is also “any-time” in that the
accuracy of the approximation is proportional to the number of
particles employed, and techniques exist for adaptively choos-
ing the number of particles such as to minimize computational
cost while keeping approximation error low [20]. Practically
speaking, we have found that even the most straightforward
implementation produces adequate results with 100 particles
and yields an average 20% CPU usage on a 2.0 GHz Pentium
M laptop. As few as 20 particles seems to produce reasonable
results. More difficult cases featuring more complex distribu-
tions may require more. The experiment described above in
which GPS velocity measurements were disabled was carried
out with 300 particles, but still ran much faster than required
for real-time operation on modest hardware. It is expected
that a very good mix of accuracy and performance could be
obtained by using adaptive techniques to effectively increase
the number of particles during convergence and sensor drop-
outs and decrease them otherwise.
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Fig. 4. Position estimates obtained by running pose filter on data obtained
from real sensors. Arrowed line indicates location of GPS measurements.
Line with asterisk markers indicates position estimates obtained by running
filter with all sensors enabled. Line with plus markers indicates estimates
obtained with GPS position measurements disabled shortly after initialization.
Line with circle markers indicates estimates obtained with GPS velocity and
accelerometer measurements completely disabled.

VII. CONCLUSIONS

We have presented a filter for joint attitude and position
estimation of vehicles that combines the best features of
currently-known techniques to yield an estimator that is ef-
ficient, accurate, and (in our opinion) attractive from both
a theoretical and practical viewpoint. We achieved this by
observing that many of the theoretical problems that arise
in the estimation of attitude and joint attitude and position,
can be avoided very simply by sampling orientations in a
particle-filtering framework. We then demonstrated how Rao-
Blackwellization is very nicely applicable in the common case
where nonlinearities in the process and measurement models
arise principally from coordinate transformations mediated
through the attitudinal part of the state. This leads to a filter
that is very efficient, since the translational state distributions
conditioned on the sampled orientations can be updated ana-
lytically using the Kalman filter.

Experiments with the filter in both simulation and real
situations yielded performance that was good in both quanti-
tative and qualitative aspects. Special consideration was given
to cases with very noisy sensors, sensor unavailability, and
highly uncertain initial pose distributions, where assumptions
of linearity and normalcy relied on by standard approaches are
most likely to fail. We demonstrated that the filter excels in all
these cases, even managing to make the complex, long-range
inference of orientation from very uncertain absolute position
measurements.

In light of these results, we conclude that the applications
that would most benefit from adoption of a filter such as

this one would be those in which adequate computational
power is available, sensors are relatively noisy, and a robust
estimator is required. Such is often the case in mobile robotics.
We have yet to study precisely how the filter compares to
traditional approaches in cases where computational power is
modest, sensors are significantly more accurate, uncertainties
are smaller, and assumptions of linearity and normalcy might
hold for practical purposes, such as is often the case in
aerospace applications. However, it is hoped that future study
will lead to applications in this domain as well.
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