
Multi-robot Boundary Coverage with Plan Revision
Kjerstin Williams (kj@robotics.caltech.edu) and Joel Burdick(jwb@robotics.caltech.edu)

Division of Engineering and Applied Science
California Institute of Technology, Pasadena, CA 91125

Abstract—This paper revisits the multi-robot boundary cov-
erage problem in which a group of k robots must inspect every
point on the boundary of a 2-dimensional environment. We focus
on the case in which revision of the original inspection plan
may be necessary due to changes in the robot team size or
the environment. Building upon prior work, which presented
a graph-based approach to path planning for this problem, we
present a graph representation of the task that is greatly reduced
in complexity and a path revision algorithm appropriate for
addressing such changes.

I. INTRODUCTION

In the boundary coverage problem, detailed in Section II,
a group of k robots is required to completely inspect the
boundary of all 2-dimensional objects in a specified envi-
ronment. Additionally, one would practically seek inspection
plans which balance the inspection load, as much as possible,
across the cooperating robots. Though this paper addresses the
boundary coverage problem in the abstract, such tasks have
many practical inspection, surveillance, and security applica-
tions [1]. We introduced the boundary inspection problem and
a graph-based methodology for its solution in recent work
[1]. This paper extends that work and overcomes some of its
limitations. In particular, we introduce three innovations: 1) a
new graph representation of the task that is greatly reduced in
complexity; 2) a modular restructuring of the path planning
algorithm that allows decentralization of much of the path
planning computation; and 3) a path-revision approach which
exploits the reduced complexity of the graph representation
and the modularity of the path planning algorithm to allow for
plan revision in response to mid-task changes in robot team
size and/or changes in the environment.

Such changes can occur in a number of practically important
situations. The number of robots cooperating in the inspection
task might change during the inspection task due to robot
failure, the retasking of robots to another chore, or the addition
of robots to the inspection team. In such cases, the remainder
of the inspection task should be replanned to adapt to the
characteristics of the newly resized inspection team.

This paper introduces an improved graph-based task repre-
sentation and an improved planning algorithm that can handle
such situations requiring task replanning. The replanning capa-
bility is a necessary step in making the approach more robust
to failure and uncertainty and introducing complementary or
collaborative subtasks to the problem.

The boundary coverage problem considered in this paper
and in reference [1] (a deliberative, complete approach) and
the related boundary coverage problems considered in [2], [3],

and [4] (nondeterministic, swarm-based approaches) are dis-
tinct from the large body of literature on freespace coverage,
where one or more robots must inspect or cover the freespace
with a sensor or tool. References [5] and [1] provide a relevant
review of freespace coverage research.

Section II summarizes the boundary coverage problem and
our modeling assumptions. Section III describes a new method
for the construction of an equivalent graph representation
of the multi-robot inspection task. Section IV reviews the
constructive heuristic used to find a solution to the boundary
coverage problem, an NP -hard edge-covering graph problem
called the k-Rural Postman Problem. In Section V, we identify
modularity in the algorithm and propose a method for the
revision of paths mid-task in reaction to changes in team
size or the environment. Simulated examples and discussion
are presented in Section VI and open questions and possible
extensions are summarized in Section VII.

II. THE BOUNDARY COVERAGE PROBLEM

This section reviews the critical aspects of the multi-robot
boundary coverage problem introduced in [1]. The task is to be
carried out in a bounded 2-dimensional environment which is
populated by N objects, O = {O1, . . . ,ON}. We assume that
the boundary of each object is a piecewise smooth, closed,
convex curve. We collectively refer to the boundary of the
union of the objects as the “boundary” of the environment,
∂O. We assume that the location and boundary geometry of
each object to be inspected is known a priori.

We assume the inspection will be carried out by a group
of k identical holonomic point robots, each equipped with
an accurate scheme for localization as well as an omnidirec-
tional “inspection sensor.” The inspection sensor can measure
phenomena of interest from a distance up to rmax from the
boundary. A point p on the boundary is thus considered
inspected when a robot’s path intersects the imaginary line
normal to the boundary at p and the distance from p to that
point of intersection is less than or equal to rmax. The robot
may also have a minimum sensing distance to the boundary,
rmin, in which case we assume all objects in the environment
are spaced at least 2rmin apart, ensuring the entire boundary
is reachable.

The division of the task among the robots is determined
by a centralized, supervisory agent. Once it has received its
assignment, each robot calculates its inspection route, given by
a series of waypoints determined by our constructive heuristic.
We assume that each robot has a limited communication
capability so that it may receive its task assignments and carry

Proceedings of the 2006 IEEE International Conference on Robotics and Automation
Orlando, Florida - May 2006

0-7803-9505-0/06/$20.00 ©2006 IEEE 1716

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on April 14,2010 at 21:03:50 UTC from IEEE Xplore. Restrictions apply.

out a simple leader election protocol for avoiding interference
with other robots, as described in Sections IV-A and IV-B.

All robots involved in the inspection task deploy from a
common “depot” location at the beginning of the inspection
period, though in Section V, we relax this constraint to allow
robots to start from arbitrary locations. At least one robot must
inspect each point of the boundary at least once during the
team’s inspection tour.

To develop a set of paths whose traversal will complete the
inspection task, we take the sensor’s visibility constraints into
account. Object Oj’s visibility region consists of the set of
individual robot poses in freespace for which the distance to
the nearest point on the object boundary is less than rmax.
The outer perimeter of each object’s visibility region is a
curve displaced a distance rmax normal to the object boundary,
generally called an “offset curve.”

The intersection of multiple objects’ visibility regions are
called multiview regions: from every pose within such a region
the robot is a distance less than rmax from more than one point
on ∂O, and thus may inspect these points simultaneously.
Our routing strategy takes advantage of multiview regions
when they arise, as simultaneous sensing of multiple object
boundaries may reduce overall travel. A boundary segment is
an interval of ∂O. A continuous sequence of poses within a
visibility region is a visibility path for a boundary segment if
and only if every point in the boundary segment will have been
viewed when a robot has assumed every pose in the visibility
path. This terminology is illustrated for a sample environment
in Fig. 1(a).

III. CONSTRUCTING A GRAPH REPRESENTATION FOR THE

BOUNDARY COVERAGE PROBLEM

The planning procedure begins with the construction of
a graph representation of the inspection task. The graph
construction procedure introduced in this section is motivated
by the procedure found in [1], but contains a few key dif-
ferences that will provide significant improvements in overall
computational performance of the algorithm.

The graph’s edges come in two varieties: required inspection
edges, ER, and connectivity edges, EC . Each required edge
represents an equivalence class of visibility paths, one of
which the robot must traverse in order to inspect the asso-
ciated boundary segment. This representation allows flexibil-
ity in navigation implementations, as individuals can avoid
one another by taking different paths while “traversing” the
same graph edge. The end-points of each edge are graph
vertices, which physically correspond to terminal points for
the equivalence class of visibility paths where a robot may
transition locally from a path represented in one edge to a
path represented in another. To simplify the construction of
the graph representation, we consider a single, easily defined
“preferred visibility path” for each edge. The cost function
assigns each edge a weight equal to the length of the preferred
path along that edge, though we note that other cost functions
may be used.

The final result of the construction is an undirected, con-
nected graph G = (V,E, c : E → R

+), where V is the
set of the graph’s vertices, E is the set of its edges, and
the cost function c assigns weights to the edges ER ⊆ E.
The remaining edges EC = E\ER represent a collection of
paths that provide paths to the depot location and between
disconnected inspection regions.

A. Determining ER: Edges Required for Inspection

Let Smax denote the set of offset curves that are displaced
a distance rmax normal to each object boundary. Observe that
these curves represent the perimeter of each object’s visibility
space. Let P denote the union of the regions in freespace
that are bounded by these curves. The region P will consist
of one or more disjoint regions, Pi, i ∈ {1, . . . , m}, termed
inspection regions.

Let rmin denote the closest distance to an obstacle that
yields adequate inspection performance (we assume that
rmin < rmax, and rmin may approach 0). Let Smin =
{S1,min, ..., SN,min} denote the offset curves displaced a
distance rmin normal to each object boundary. Thus, for object
Oj , traversal of a visibility path enclosing the entire object and
contained within the region bounded by Smin and Smax will
result in the inspection of every point on ∂Oj .

In choosing paths that meet these constraints, we also wish
to exploit the multiview regions’ potential for reducing the
path length of the robots’ inspection tours, combining visibility
paths for multiple objects. We also note that the length of
the visibility paths for those boundary segments not visible
from a multiview region would be minimized by following
the boundary as closely as possible (i.e., the curve defined by
the local component of Smin). To construct visibility paths
and their corresponding edges which both exploit multiview
regions and follow boundary segments closely outside those
regions, we consider each disjoint inspection region Pi in
turn. First we construct the components of G that lie in the
multiview regions, then we construct edges corresponding to
the inspection of the remaining boundary segments.
1) Edges inside multiview regions: Let Mi denote the union

of the multi-view regions in the inspection region Pi. One
convenient choice for the preferred visibility paths through
Mi is the local components of the Generalized Voronoi Graph
(GVG) [6] of the nearby object boundaries. Using these paths,
robots are routed through multiview regions with a preference
for paths whose constituent poses are equidistant from the
boundaries currently being inspected.

Our construction strategy facilitates a transition between
the exploitation of multiview regions and close boundary-
following along the offset curves Smin. Consider the subset
of these curves contained within an inspection region Pi and
denote the region defined by the convex hull of these curves
Pi,min. The perimeter of Pi,min consists of segments of these
boundary-following curves connected to their neighboring
curves in the inspection region by line segments tangent to
both curves.

1717

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on April 14,2010 at 21:03:50 UTC from IEEE Xplore. Restrictions apply.

(a) Terminology introduced in Section
II

(b) Construction of edges in ER de-
scribed in Section III

(c) Possible final graph G after ad-
dition of vdepot and edges in EC

(colored in green)

Fig. 1. Illustration of terminology introduced in Sections II and III

Next find the truncated multiview region, Mi,min =
Mi

⋂
Pi,min. Edges within these truncated multiview regions

are established by adding to G all edges and vertices of the
GVG contained within Mi,min and assigning to each edge a
weight equal to the length of the corresponding GVG path.
Edges only partially contained in Mi,min are truncated with
a vertex at their intersection with the boundary of Mi,min.
Edges e1, e2, and e3 in Fig. 1(b) are examples of this type of
edge addition.
2) Edges outside the multiview regions: After constructing

the edges in the multiview regions, we must complete the set
of required inspection edges, so that G contains edges repre-
senting visibility paths contained within the region bounded
by Smin and Smax and enclosing each object. Consider every
object Oj whose associated visibility region is partially or
fully contained in Pi. By the construction in Section III-
A.1, each of the objects associated with a multiview region
already has at least one edge associated with its inspection.
We connect the end vertices of these edges such that a cycle
in G corresponding to the inspection of ∂Oj is formed as
follows.

If a straight line between two existing vertices lies in
freespace and contributes to the object’s circumnavigation, an
edge is added representing that direct path as the preferred
visibility path. In Fig. 1(b), edges e4 and e5 illustrate this
type of edge addition.

To complete the cycle for each object, we add edges
connecting the GVG end vertices to exterior tangent points on
the boundary-following curve Sj,min (the offset curve for Oj),
examples of which are seen in edges e6 through e13 in Fig.
1(b). By construction, the remaining single-degree vertices lie
on Sj,min, the preferred visibility path for boundary following.
Edges representing these connecting segments of Sj,min, like
edges e14 through e17 in Fig. 1(b), are added to G.

If Pi incorporates no multiview regions, then Pi contains a
single object, Oj . The preferred visibility path for Oj is the
boundary-following curve Sj,min. In this case, a vertex v is
placed on the preferred visibility path and a single self-looping
required graph edge of weight equal to the length of the curve
Sj,min, originating from and returning to v, is added to G.
The vertex must be placed to specifically guarantee mutual
visibility with at least one other vertex in G. Alternatively,
the edge can be subdivided to guarantee visibility; in our
implementation, we place four vertices at points tangent to
Sj,min from distant points in the four cardinal directions. In
Fig. 1(b), edges e18 to e21 illustrate these types of edges.

These two steps complete the construction of the edges
ER ∈ G whose traversal is required for inspection to be
complete.

1718

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on April 14,2010 at 21:03:50 UTC from IEEE Xplore. Restrictions apply.

B. Determining EC: Edges Providing Connectivity

The group of required edges associated with boundary in-
spection in each inspection region Pi form a distinct connected
subgraph of G. The possibly disjoint components of this
construction must be connected to allow for robot transit to
other parts of the graph.

A vertex, vdepot, is next added at the depot location. We
then induce a complete graph on the vertices of G, adding
edges connecting each vertex in G to every other vertex in G
if such an edge does not already exist. These induced edges are
assigned a weight equal to the distance between those vertices.
If the path associated with an induced edge passes through an
obstacle, it is excluded. The induced edges comprise the set of
edges connecting edges, EC . The graph G is now connected,
i.e, a path exists between every vertex in the graph.

A sample graph representation of our example environment
from Figs. 1(a) and 1(b) is illustrated in Fig. 1(c). The
differences between the graphs resulting from this method of
construction and those constructed using the method in [1] are
discussed in Section VI.

IV. A GRAPH ALGORITHM SOLUTION TO THE BOUNDARY

COVERAGE PROBLEM

As shown in [1], once the graph representation of the task
has been constructed, the k-robot boundary coverage problem
can be posed as the k-Rural Postman Problem (kRPP) graph
problem. This problem is concerned with finding a set of
k ≥ 1 tours T = {T1, ..., Tk} within an undirected, connected
weighted graph G = (V,E, c : E → R

+) such that each edge
in a required subset of edges ER ⊆ E is traversed in at least
one tour and is NP -hard.

We present an extension to the constructive heuristic given
in [1], reformulated in a modular way. This allows for revision
of the planned paths that arise from unforseen incidents, such
as a change in team size or a change in environment. There
is also a clear division between the initial, centralized task
division step and the rest of the path planning process, which
is decentralized, allowing each robot to plan its own route.

A. Modular Constructive Heuristic for solving the kRPP

1) Partition the required edges ER: We begin by partition-
ing the required edges ER into k groups, one for each robot,
F1 ∪ ... ∪ Fk = ER, using a farthest-point clustering method
similar to that used in the “Cluster Algorithm” heuristic for
the min-max k-Chinese postman problem presented by Ahr
and Reinelt [7]. The method is based on an algorithm which
aims to minimize the maximum intra-cluster distance [8].

Given a set of k representative edges (f1, ..., fk), fi is the
first edge assigned to the cluster Fi that will eventually form
the ith robot’s tour. The |ER|−k remaining edges e ∈ ER are
assigned to the group Fi that minimizes the distance through
G between e and fi.

Initially, the k representative edges are chosen such that the
first representative edge, f1, is the edge e ∈ ER farthest from
vdepot. Subsequent representative edges fi are chosen such

that the sum of the minimum distance through G to each of
the existing representative edges f1, ..., fi−1 is maximized.

We note that after this partitioning step, which is carried
out by a centralized, supervisory agent, the remainder of the
planning procedure can take place online, with each robot
calculating its own route.
2) Include edges for connectivity: Edges are added to each

group to create k connected and, thus, traversable subgraphs
of G, each of which must also include the depot vertex. The
minimum spanning tree method described in [1] is used to
select and add edges to those in Fi, yielding a connected
subgraph Gi.
3) Compute a tour of each subgraph Gi: A single-postman

tour Ti is computed on each subgraph Gi, i = {1, ..., k} using
Edmonds’ and Johnson’s Chinese Postman algorithm [9]. Each
tour Ti ∈ {T1, ..., Tk} originates and terminates at vdepot, and
has length C(Ti) =

∑
e∈Ti

c(e).
4) Refine tours: Finally, for each tour Ti, sequences of

edges that are retraced in the course of a tour are replaced
with the shortest path in G, if a shorter path between the end
vertices of the sequence exists. When a robot has traversed
every required edge in its tour, it returns to the depot via the
shortest path through G.

Additional path refinement steps may be added as desired.

B. Path Planning Using the Graph Algorithm

The k robots’ inspection paths are crafted based on the
graph solution to the kRPP. Because edges in G specify paths
through freespace, the tours found by the graph algorithm
each define a series of waypoints. Each robot visits its tour’s
waypoints in sequence. When robots must pass within close
proximity of one another, priority is established through a
simple leader election process, in which priority is given to
the robot with the largest distance left to travel. Other robots
wait until the leader proceeds out of their proximity. See [1]
for more details.

V. PLAN REVISION

Plan revision may become necessary during the course of
task execution due to any number of events: the robot team
size may change as one or more robots may fail or be retasked,
or additional robots may be deployed to assist those already
carrying out the task. Robots may encounter new objects
that must be inspected, or the inspection assignment may be
changed thereby changing the structure of G. The first step in
robustly handling these practical issues is to devise a method
for plan revision in the course of task execution.

To revise the robots’ paths mid-task, we can appeal to the
modular structure of the planning heuristic summarized in
Section IV-A to partially reuse prior calculations with modified
inputs based on the current state of inspection.
1) Repartition the unvisited required edges: Let k′ denote

that number of cooperating robots that remain after one or
more robots has failed, been retasked, or added. Similarly, let
E′

R denote the set of unvisited required edges at the time of
revision. This set of edges includes edges that have not yet

1719

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on April 14,2010 at 21:03:50 UTC from IEEE Xplore. Restrictions apply.

been visited in the original plan at the time of plan revision,
as well as newly required edges that might arise from changes
in the environment’s geometry. The edges in E′

R must be
repartitioned among the k′ robots so that the inspection task
can be completed.

The supervisory agent partitions the edges in E′
R into k′

groups, F ′
1 ∪ ...∪F ′

k = E′
R using the farthest point clustering

algorithm described in Section IV-A.1. The k′ representative
edges used as the basis for partitioning are chosen based on
the robots’ current positions. For robot i already engaged in
the inspection task and currently traversing the jth edge of
its tour, the representative edge f ′

i will be edge j + 1 in the
robot’s current tour. Representative edges for robots new to
the task, which are deployed from the depot, are chosen from
E′

R such that the sum of the minimum distance through G to
the existing representative edges is maximized.

As in the initial planning process, after the robots are as-
signed their respective groups of required edges, the remainder
of the planning procedure can take place online.
2) Include edges for connectivity: At the time of path

revision, because the robots will not necessarily start their
new tours from the depot vertex, a new effective depot vertex
must be specified for each robot. For robot i already engaged
in the inspection task and currently traversing the jth edge,
the end vertex toward which the robot is moving will serve
as the new depot v′depot,i. For robots new to the task, which
are deployed from the depot, v′depot,i = vdepot (this need not
be the original depot, but for simplicity we assume it is). This
step is executed for the groups F ′

1, ..., F
′
k, each connected to its

respective vdepot,i′ , as described for F1, ..., Fk and the single
vdepot in IV-A.2.
3) Compute a tour of each subgraph G′

i: This step is exe-
cuted for the subgraphs G′

1, ..., G
′
k, as described for G1, ..., Gk

in IV-A.3, yielding tours T ′
1, ..., T

′
k.

4) Tour refinement: Because the new tours T ′
i terminate at

vdepot,i, if vdepot,i �= vdepot, once every required edge in a
tour has been visited, the rest of the tour is replaced with the
shortest path to the original point of deployment, vdepot. As in
IV-A.4, for each tour T ′

i , sequences of edges that are retraced
in the course of a tour are replaced with the shortest path in
G, if a shorter path between the end vertices of the sequence
exists.

VI. SIMULATION RESULTS AND DISCUSSION

The simulations presented below are aimed at showing both
improved graph complexity (as compared to [1]) and our
algorithm’s ability to replan after a change to the team or
task.

A. Reduction in Graph Complexity

To generate a typical graph representation with the tech-
nique previously presented in reference [1], the user selects a
subdivision step size parameter directly affecting the number
of vertices |V | in G and an edge-weeding parameter directly
affecting the number of edges |E| in G. In that construction
technique, edges represent straight paths through freespace and

the waypoints in the tours that are calculated all correspond to
vertices. In the construction presented in this paper, waypoints
along the paths represented by graph edges are simply a
parameter associated with each edge. These waypoint lists
contribute only to the storage space required for the graph
and do not add to its complexity. A graph generated using
the method in Section III will have far fewer vertices than
a graph generated with typical values of the user-selected
parameters as presented in [1]. In the example graphs in
Figure 2, generated for typical values of these user-selected
parameters, we observe that the new implementation offers
reduction in |V | by an order of magnitude while offering an
arbitrarily fine spatial resolution of waypoints. Such savings
in |V | were consistently seen in the examples explored.

This reduction of complexity greatly improves the running
time of the constructive heuristic. The most expensive steps in
the algorithm are heavily dependent on the number of vertices
in the graph, especially those incident to the edges in ER:

1) the all pairs shortest path calculation used in the par-
titioning step (Section IV-A.1) has time complexity
O(|VR|3) [7], where VR is the set of vertices incident
to ER.

2) the minimum spanning tree calculation used in the
connectivity step (Section IV-A.2) has time complexity
O(|EFi

|log|VFi
|) [10] for each group Fi.

3) the single postman tour calculation (Section IV-A.3) has
time complexity O(|VGi |3) [9] for each subgraph Gi.

For the values of k used in simulations (k ≤ 10), team
size did not play a large role in the running time. Using the
new graph representation for the example environment shown
in Figure 2(b) and running on a Pentium-4 processor (3GHz
CPU), the constructive heuristic runs to completion in 7.79
seconds for k = 5. Using the implementation in [1] results
in the graph of Figure 2(a), and a time to completion of
39.0 seconds. To further examine the explosion in running
time for relatively small changes in parameters, we tested
the construction presented in [1] with subdivision step size
parameters of 1 and 0.5,which had |V | = 2237 and |V | =
4155, respectively, keeping all other parameters fixed. Their
respective running times were 17 minutes 6.0 seconds and 96
minutes 13.3 seconds. The vast improvement in the running
time offered by use of the new graph representation enables
us to tackle the problem of path revision mid-task.

B. Revision: Change in Robot Team Size

To illustrate the path revision method, consider the case of
robot failure mid-task.

For our first example, the environment shown in 2(b) is
used, again with sensing parameters rmin = 5, rmax = 25. For
k = 3, routes planned and executed successfully are shown
in Figure 3(a). Figure 3(b) illustrates the progress made at
the time the robot carrying out the route shown in blue fails.
The complete post-revision paths are shown in Figure 3(c). A
second example, with sensing parameters rmin = 5, rmax =
50, is shown for k = 3 in Figure 4.

1720

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on April 14,2010 at 21:03:50 UTC from IEEE Xplore. Restrictions apply.

(a) Routes planned and carried out successfully, k = 3 (b) Robot progress at the time of the blue robot’s failure (Section
VI-B) and at the time several edges are removed from ER

(Section VI-C)

(c) Routes carried out after path revision necessitated by change
in k (robot on blue route fails)

(d) Routes carried out after path revision necessitated by change
in ER (several edges are removed from ER)

Fig. 3. Illustration of examples of path revision presented in Sections VI-B and VI-C for a sparse environment with several inspection regions

In the first example, we note that the edges “abandoned” by
the failed robot are reassigned to the robot executing the route
drawn in green, while in the second, the edges are divided
among both remaining robots. This is due to the nature of the
partitioning process and to the structure of the environment: in
the first example, at the time of failure, every required edge in
the blue route is closer to the robot following the green route
than the robot following the red. In contrast, the robots in
the second example are routed through a more closely packed
environment and the remaining robots share the abandoned
edges. The repartitioning results in such cases depend more
heavily on the robots’ positions at the time of failure.

We note that in the example of Fig. 3, the differences in

the pre- and post-revision red route are due to the fact that the
route is replanned from a new “depot” point, even while the
edges yet to be inspected remain the same. This replanning
is not necessary, but is inexpensive when used with the new
graph construction method and, as in this case, can improve
upon the previously planned path. Selecting whether to use
the original tour or the revised tour in cases such as this is a
feature that will be included in a future implementation.

Note that in addition to the path revision method of Section
V, we also explored a method for post-failure path revision
which preserved the partitioning calculated in the initial exe-
cution of the constructive heuristic. This method repartitioned
only the unvisited required edges in Fi initially assigned to

1721

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on April 14,2010 at 21:03:50 UTC from IEEE Xplore. Restrictions apply.

(a) Routes planned and carried out successfully, k = 3 (b) Robot progress at the time of the blue robot’s failure (Section
VI-B) and at the time several edges are removed from ER

(Section VI-C)

(c) Routes carried out after path revision necessitated by change
in k (robot on blue route fails)

(d) Routes carried out after path revision necessitated by change
in ER (several edges are removed from ER)

Fig. 4. Illustration of examples of path revision presented in Sections VI-B and VI-C for a more densely packed environment with a single inspection region

the failed robot i. By reducing the number of edges being
partitioned, the time complexity of the repartitioning step taken
during path revision was significantly reduced. This method
did not lend itself to extensions such as revision after addition
of robots or changes to G, however, and when the savings in
running time this method offered were overwhelmed by the
savings in running time due to the new graph representation,
we pursued the more computationally intensive but more
flexible method presented in Section V instead.

C. Revision: Change in Inspection Task

Path revision can be a useful tool when information is
acquired mid-task. Consider an example where, initially, every
boundary point in our example environment must be inspected.
The examples illustrated in Figures 3(a) and 4(a) are used
again. Mid-task, again at the point illustrated in Figures 3(b)
and 4(b), the planning system receives a command to ignore
some of the boundary segments (for example, information
about these segments comes from other sources, and thus
they no longer need to be inspected). Fig. 3 illustrates an
example in which, mid-task, the supervisory agent instructs

the team to ignore the boundary segments in the centermost
inspection region. Fig. 4 illustrates a case in which, mid-
task, the supervisory agent instructs the team to ignore three
rightmost objects. The edges associated with these objects are
thus removed from ER, and the traversal of the remaining
unvisited edges in ER is divided among the k robots by the
path revision algorithm.

The complete post-revision paths, no longer incorporating
inspection of these objects, are shown in Figures 3(d) and 4(d).
In such cases, the revision of the robots’ paths allows them
to bypass now-unnecessary inspection and complete the task
more quickly.

In future work, we will explore how new or unexpected en-
vironmental information obtained by a robot may be integrated
into the global graph representation; combined with our plan
revision method, this will be a step toward a more sensor-
based approach, relaxing our perfect localization assumption
and allowing us to consider undertaking tasks with incomplete
environmental information.

1722

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on April 14,2010 at 21:03:50 UTC from IEEE Xplore. Restrictions apply.

(a) Graph generated with technique presented in [1] for r =
25, subdivision step size= 5, weeding parameter = 50; |V | =
582, |E| = 1044

(b) Graph generated using method in Section III with rmin =
5, rmax = 25; |V | = 57, |E| = 648

Fig. 2. Comparison of graph construction methods

VII. CONCLUSIONS

This paper introduced an improved graph-based representa-
tion of the boundary coverage problem and utilized the consid-
erable computational savings offered by the new representation
to explore plan revision. We see the path revision capability
presented here as a step towards making the graph-based
approach more robust to failure and open to the addition of
complementary or collaborative subtasks. The use of multiple
robots offers the opportunity for transient, but potentially
unplanned, collaborations between teammates, a task extension
we intend to explore in future work. For example, a robot

with a complementary sensory suite might detour from its
assigned task to aid another robot that has found an interesting
target. Plan revision will be a necessary component in the
implementation of such extensions. Plan revision necessitated
by changes in the underlying graph representation will also
be a necessary component in future work addressing changes
to the known environment as unexpected features are detected
during an inspection tour. With the ability to replan taking into
account changes to the team and to the task itself with only
a minor delay in task execution, we move a significant step
closer to online planning. We intend to develop this application
of graph methods to multi-robot tasks further, continuing to
move towards online planning, exploring the opportunity for
robot collaboration, and pursuing practical implementation of
these methods.

ACKNOWLEDGMENTS

The authors would like thank Elon Rimon for valuable
discussions regarding graph-based approaches to multi-robot
coverage.

REFERENCES

[1] K. Easton and J. Burdick, “A coverage algorithm for multi-robot
boundary inspection,” Proc. 2005 IEEE International Conference on
Robotics and Automation, 2005.

[2] N. Correll and A. Martinoli, “Modeling and analysis of beaconless and
beacon-based policies for a swarm-intelligent inspection system,” Proc.
2005 IEEE International Conference on Robotics and Automation, 2005.

[3] ——, “Collective inspection of regular structures using a swarm of
miniature robots,” Proc. of the Ninth Int. Symp. on Experimental
Robotics ISER-04, 2004.

[4] Y. Zhang, E. K. Antonsson, and A. Martinoli, “Evolving neural con-
trollers for collective robotic inspection,” Proc. of the 9th Online World
Conf. on Soft Computing in Industrial Applications, 2004.

[5] H. Choset, “Coverage for robotics - a survey of recent results,” Annals
of Mathematics and Artificial Intelligence, vol. 31, pp. 113–126, 2001.

[6] H. Choset and J. Burdick, “Sensor-based exploration: The hierarchical
generalized voronoi graph,” The International Journal of Robotics
Research, vol. 19, no. 2, pp. 96–125, 2000.

[7] D. Ahr and G. Reinelt, “New heuristics and lower bounds for the min-
max k-chinese postman problem,” in Algorithms-Esa 2002, Proceedings,
ser. Lecture Notes in Computer Science, 2002, vol. 2461, pp. 64–74.

[8] T. F. Gonzalez, “Clustering to minimize the maximum intercluster
distance,” Theoretical Computer Science, vol. 38, no. 2-3, pp. 293–306,
1985.

[9] J. Edmonds and E. L. Johnson, “Matching, euler tours, and the chinese
postman,” Mathematical Programming, vol. 5, pp. 88–124, 1973.

[10] J. Kruskal, “On the shortest spanning subtree of a graph and the
travelling salesman problem,” Proc. American Math. Society 7, pp. 48–
50, 1956.

1723

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on April 14,2010 at 21:03:50 UTC from IEEE Xplore. Restrictions apply.

