
Oriented Visibility Graphs: Low-Complexity Planning in
Real-Time Environments

David Wooden & Magnus Egerstedt
School of Electrical and Computer Engineering

Georgia Institute of Technology, Atlanta, Georgia 30332–0250

{wooden,magnus}@ece.gatech.edu

Abstract— We show how the introduction of a fixed goal loca-
tion allows us to lower complexity compared to reduced visibility
graphs. The number of inter-polygonal edges is decreased from
as much as square to not more than simply twice the number
of polygons. By virtue of this restriction, we demonstrate how to
deploy plan-based navigation strategies in highly unstructured,
dynamic environments. This approach has been exercised exten-
sively through numerous outdoor experiments. The vehicle used
was the DARPA LAGR robot, and the various test environments
included trees, ditches, bushes, tall and short grass, closed canopy,
and varyingly-sloped terrain.

I. INTRODUCTION

As autonomous robots are increasingly transitioning from

structured man-made environments to highly unstructured en-

vironments a number of new challenges present themselves

[7], [12], [15]. In this paper we focus on the problem of

navigating a mobile robot through terrain populated by a

number of obstacle types: low vegetation, trees, and negative

obstacles such as ditches. Information about the environment

will be obtained through stereo-based descriptions of elevation

and the main contribution is the production of low-complexity

graphs for the purpose of path-planning over the elevation

maps. In particular, we will revisit the classic visibility graph

concept and reduce the size of these graphs in such a way

that the interconnectivity is substantially smaller. As a result,

the roadmaps may no longer be optimal (except for in special

circumstances) but they will still produce solutions that are

more effective than purely reactive navigation strategies.

The problem of planning efficient routes for mobile robots

through dynamic environments is as old as the field of au-

tonomous robotics itself. Two main camps have been estab-

lished that can be roughly classified as reactive and deliber-
ative (following the notation in [1]). In a reactive navigation

system, the robot reacts to environmental changes in a purely

local manner, i.e. not taking into account memory-based

descriptions of the already-encountered environment outside

the current field-of-view. This strategy enjoys wide-spread use,

and its application is successful due to its inherent robustness

and suitability for time-critical real-time applications. (See, for

example, [2].) On the other hand, the deliberative approach can

address optimality questions directly, but the computational

price one is forced to pay may be too great. As a consequence,

deliberate approaches have found most of their successful

applications in static or slowly varying environments [10],

[14].

The task which motivates this paper is that of enabling an

autonomous ground robot to operate in an unknown outdoor

environment in the presence of non-convex obstacles. That

the robot should demonstrate improved performance upon

returning to explored locations, inevitably forces the system to

store and later recall information, e.g. through the generation

of a map.
In fact, this work was motivated by the DARPA Learning

Applied to Ground Robots (LAGR) project in which the

environment is completely unknown. Moreover, not only must

the robot be able to behave in a satisfactory manner, it must

reach a specified goal point as quickly as possible. The robot is

run through the same course multiple times, driving the need

for terrain memory to improve performance.
Given that the system should be map-based, a number

of existing planning solutions present themselves, including

the classic visibility graphs [8], [9], cell decomposition [10],

and Voronoi diagrams [11], [16]. What we require is an

incremental algorithm, capable of quickly incorporating new

and revised information about the environment as the robot

makes its exploration. The most popular algorithm of this type

is D∗, which operates on maps composed of either fixed grids

[17], or more complicated space-saving structures like framed-

quadtrees [18]. However, there is no visibility graph algorithm

that incrementally updates connectivity and path costs between

non-convex obstacles in the plane. The authors of [3] come

closest, describing an algorithm for a simple polygon with a

moving point (i.e. robot) on its interior, but the polygon may

have no holes (i.e. obstacles) and its geometry is fixed. We

present here a new algorithm adaptive to a changing set of

polygonal obstacles using a modified version of the reduced

visibility graph.
Since the graph is built up incrementally, the desire for

optimality is outweighed by the immediate need for a feasible

plan that may be only approximate. Due to the strict real-time

aspect of the outdoor navigation system under consideration,

complexity management is a key consideration. As such, we

want to produce a path planner that exhibits the following

properties:

1) The planner should always return a feasible path to the

goal when one exists, given the available information;

2) The space complexity associated with the graph structure

on which the planner operates should grow linearly in

the problem size;

Proceedings of the 2006 IEEE International Conference on Robotics and Automation
Orlando, Florida - May 2006

0-7803-9505-0/06/$20.00 ©2006 IEEE 2354

3) The running time should be kept as low as possible; and

4) The graph structure should be such that it facilitates easy

human understanding.

Satisfaction of Item 2 would tend to distinguish such a

planner from grid-based D∗. Where as D∗would need to store

information about all areas the robot has travelled, we desire

a planner that only stores information where the boundary

of obstacles exists. Item 4 is important because the planner

must exist within a greater system, including potentially a

hierarchical control system and adaptive perception processes.

Inasmuch as the planner depends on or informs with these

other components, understanding how the pieces interact with

each other is essential to making the system overall work

as effectively as possible. In other words, the path planner

does not exist in a vacuum, but must ease the interpretation

of interaction amongst the other components of the robot.

The outline of this paper is as follows: In Section II the basic

ideas behind the visibility graphs are recalled and an informal

discussion about the possible improvements is presented. Fol-

lowing this, Section III describes algorithms from constructing

and maintaining our novel graph structure. A brief discussion

of complexity follows in Section IV. The paper concludes in

Section V with elaborate, real-world experiments, including a

discussion of how to transform elevation maps into polygonal

obstacles.

II. VISIBILITY GRAPHS

The well-known reduced visibility graph (RVG) has long

been used to provide shortest-path roadmaps through a known

polygonal environment [10], [13], yet, they is not typically im-

plemented in real-time applications due to complexity issues.

It takes too long to create and maintain, and consequently,

quick re-planning of the graph as the environment changes

is prohibitive. For convex polygons, each pair of polygons

shares four edges (assuming mutual visibility), and thus the

number of edges in the graph increases quadratically. Such

a high number of edges negatively effects computation time

(which is required for edge assignment), as well as human

readability.

A. Standard Visibility Connectivity

Consider Figure 1, which illustrates the drawback of ex-

tensive connectivity in a standard reduced visibility graph.

This ”spaghetti connectivity” is generated in order to provide

optimal paths between any two points in the free space of the

graph. Navigation between any two points is, however, not

the task which we are interested in addressing in this paper.

Instead, we focus on finding a good path to the known fixed

goal point (i.e. we address the single-source problem). Hence,

by orienting our approach based on this a priori information,

the graph structure can be dramatically simplified.

B. Incremental Polygon Updates

We expect that, as the robot explores its environment,

it discovers the terrain in its immediate surrounding. As it

p4

p3

p2

p1

p5

p6

p8

p9

p10

p11

p12

p7

Goal

Fig. 1. Reduced Visibility Graph.

progresses, it continually updates its knowledge about the ob-

stacles encoded in the graph by the polygons. Consider again

Figure 1. If the geometry of polygon 3 (p3) changes, should

we spend our time updating edge and path costs between it

and polygon 9? Given our task and limited resources, we claim

the answer is no.

Alternatively, consider Figure 2. As the robot passes poly-

gon 1 and changes its geometry and vertexes’ path costs, it

propagates a change in the polygons which are ”upstream”

from it. That is, polygons 9, 10, 11, and 12 all depend on

polygon 1 for their eventual connectivity to the goal and their

path costs relative to it. This clear chain of dependency in

the graph restricts any incremental terrain updates only to

the subgraph which explicitly requires it. With this oriented

perspective, there is no need to reconsider the edges of e.g.

polygons 3 or 8 after modifying polygon 1. In a standard

visibility graph, this limited propagation is not allowed and

computation is therefore misallocated.

Note that the environment (and its polygonal representation)

is constantly being adjusted by the perceptual process of

our mobile robot. It is continually discovering new pieces

of terrain, and revising its estimates of previously explored

regions.

C. Polygon Shadows

In a planar model of the world, it is not difficult to show

that polygonal obstacles cast a cone-shaped ”shadow” behind

themselves, relative to a single point. In the simple example

of Figure 3, an optimal path starting from a point in the

shadow of polygon 1 passes by either vertex vc+
1 or vc−

1 , and

optimal paths which never enter this shadow will not intersect

the boundary of polygon 1. (Note that the shadows cast by

polygons are not necessarily as simple as a cone based on the

goal point, as illustrated by p4 and p5 in Figure 3.)

2355

p4

p3

p2

p1

p5

p6

p8

p9

p10

p11

p12

p7

Goal

Fig. 2. Oriented Visibility Graph.

p1

p2

p3

p4
p5

Shadow of p1

Shadow of p4

Shadow of p3

vc+
1

Goal

Shadow of p5

Shadow
of p2

vc−
1

Fig. 3. Polygon Shadows.

D. Oriented Visibility Graphs

So, by leveraging our fore-knowledge of the goal location

and our insight into polygon shadows, we can build our so-

called Oriented Visibility Graph (OVG). By considering only

the task of producing roadmaps from free-space to a goal

location (i.e. not between any two points in free-space), we

have reduced the number of edges in the graph from approx-

imately square to not more than simply twice the number of

polygons. In doing so, incremental changes in the polygonal

geometry (as the robot explores the world) are localized

to a subgraph, based directly on polygonal ”dependencies”.

Hence, we expect on average less computational burden due

to incremental perceptual updates about the environment, and

find the readability of the graph much improved.

As illustrated by Figure 3, two edges are all that is necessary

to establish the shortest path between a goal point and an

point ”behind” a polygon. In the applications described below,

we apply this principle to non-convex polygons as well,

recognizing that the resulting paths may not be optimal (as

two edges are not always sufficient for shortest-paths in non-

convex graphs), but accept this deficiency; the desire for

optimality is outweighed by the need for a fast algorithm.

And in all cases, a feasible path is always produced (when

one is available).

The set of edges interconnecting polygons, Ev , grows at a

much lower rate for our OVG compared to the older RVG. As

stated in [9], four edges connect every pair of mutually visible

convex polygons in an RVG. Hence, the cardinality of Ev for

an RVG grows quadratically with the number of polygons. For

an OVG, we fix the set of edges in Ev to exactly twice the

number of polygons.

The main effect of the reduced size of Ev is that polygon

interconnectivity is established only where necessary. When

geometric changes occur in one polygon, their affect is limited

to those polygons which explicitly depend on it. This is the

primary complexity reduction of this approach.

III. GENERAL POLYGONAL ENVIRONMENTS

In this section we present an algorithm for maintaining the

oriented visibility graph.

First, we establish some notation. The graph G is assumed

to contain a set of polygons P and a set of edges E which

interconnect elements of P . Included in P is pg, the goal poly-

gon. The total set of vertexes in G is V . Let poly(v) denote the

polygon to which vertex v belongs, and let vert(p) denote the

set of vertexes of p. The source vertex and destination vertex

of an edge e are denoted src(e) and dest(e) respectively. The

robot vertex is vr, and the goal vertex is vg .

A. General Algorithm

The algorithm we present accepts as input an unordered list

of polygon updates Pu. That is, an element of the input list

is either

1) a new polygon to be added to P ,

2) an existing polygon to be removed from P , or

3) an existing p ∈ P with modified structure (i.e. its vertex

list has changed).

Note that the algorithm in Table III-A is presented to illustrate

how an OVG can be generated, and not as an example of

optimally efficient implementation.

The operation blocks(p, e) returns true if the boundary

of p intersects e. During the last step, only those polygons

whose vertexes fall within the circle centered on the goal with

radius ‖vr − vg‖ or within a user-defined locus of the robot

are actually considered. The reason for this is that polygons

outside this set are unlikely to be encountered by the robot on

its quest to the goal, and are probably not worth our effort.

B. Edge Assignment

By far, the final step carries the most computational burden,

but before jumping into the details, we must introduce even

more notation. The function angle(v, g, p) returns the angle

between the vector g to v and the vector g to the center

of mass of p. The visibility between points s from x is

returned by visible(x, s,Pk), considering only polygons in

Pk. Polygons which block the visibility of two points is

returned by blockers(s, g) = {p ∈ P | p blocks line(s, g)}.

2356

For the sake of brevity and clarity, the algorithm in Table III-

B is not quite complete. For example, it relies on path

costs having already been computed for any polygon polled

from Pupstream. In the case that this assumption is violated

(perhaps due to mutual path cost dependency between two

1) Find polygons ”upstream” of Pu:
· Initialize a list of polygons Pupstream to Pu.
· for each p ∈ Pupstream, for each e ∈ E , if the
dest(e) ∈ vert(p), add poly(src(e)) to Pupstream.

2) Prune edges that will be modified:
· for each e ∈ E , if poly(src(e)) ∈ Pupstream,
remove e from E .

3) Remove all updated polygons:
· for p ∈ Pu, remove p from P .

4) Recreate new/modified polygons:
· for nonempty p ∈ Pu, create vertexes vert(p), add
to V , and add p to P .

5) Remove blocked edges of unmodified polygons:
· for p ∈ Pu, for each e ∈ E , remove e if blocks(p, e).

6) Sort the modified polygons and reset each the path cost
of each vertex in these polygons:
· sort Pupstream by dg(p), ∀p ∈ Pupstream.

7) Add edges and calculate path costs for all upstream
polygons.

TABLE I

ORIENTED VISIBILITY GRAPH ALGORITHM.

forall p ∈ Pupstream

set g = vg

find the shadow casting vertexes:
v

c+
p = arg maxv∈p(angle(v, g, p))

v
c−
p = arg minv∈p(angle(v, g, p))

forall s ∈ {v
c+
p , v

c−
p }

Pb = blockers(s, g)
do

forall q ∈ Pb

w = {x ∈ q | visible(x, s,Pb)}
vq = arg minx∈w(C(s) + W(x, s))
append vq to Vq

end
g = arg minv∈Vq

(C(v))
recompute the shadow caster s

recompute Pb = Pb ∪ blockers(s, g)
until s and Pb stabilize
add the edge between s and g

end
assign path costs for v ∈ Vp

end

TABLE II

OVG EDGE ADDITION ALGORITHM.

non-convex polygons), polygons polled from Pupstream can

be re-appended to the list and re-processed.

IV. COMPLEXITY

The worst-case running time for this algorithm is O(|V|3).
The average complexity (based on experiments described

below), however, is much lower. Moreover, this algorithm

does make use of any known advanced methods for sorting

and searching vertexes and detecting collisions (e.g. the kd-
tree, the radial sweep principle [4], or the funnels of [5]).

Both algorithms are presented as they are to be clear though

inefficient approaches to producing Oriented Visibility Graphs.

The benefit that the OVG offers is that incremental changes in

the graph polygons propagate edge and path cost modifications

to a confined subgraph. Hence, while average running time as

a function of input size for our approach may not be better

than of some RVG implementations, the average input size to

the OVG is much much lower.

The edges of the OVG are a subset of the RVG edges.

As discussed above, space requirements for an OVG’s edges

grow only linearly in the number of polygons. While algo-

rithmic complexity reduction is not the focus of this paper,

the OVG can be considered low-complexity by virtue of the

small number of polygonal interdependencies. Our use of this

graph approach on DARPA’s LAGR project bears out that the

complexity of the graph is well managed.

V. APPLICATION - PROOF OF THE PUDDING

In this section, we describe in brief how we have applied

our Oriented Visibility Graph to the navigation of a ground

robot that is given a fixed goal point in GPS coordinates,

and through a GPS receiver knows approximately its own

location. It is expected to traverse the outdoor environment

and reach the goal in as little time as possible. Information

about its surroundings is gathered through only four small

cameras (two stereo pairs) and a bump sensor. These cameras

produce stereo maps of 4-6 meters in maximum depth, which

are used in turn to accumulate an elevation map of the terrain.

Also, a traversability map is produced from the raw images

and combined with elevation to determine where the robot

may travel to reach the goal.

Navigation commands are provided to the robot through

a planner based on an OVG. This planner listens to the

elevation and traversability map datastreams, and updates its

graph accordingly.

The two stereo pairs generate stereo disparity maps at 4Hz

each. This information runs through the process described in

Section V-A and polygon updates are handed to the planner.

The planner directly produces motor commands for the robot,

and runs between 4 and 20 Hz. (The robot must receive motor

commands at above 2Hz or otherwise behaves undesirably.)

Our planner’s average cycle time is above 5Hz.

The robot has been tested in outdoor courses with total

distances over 100 meters, in open terrain, on paths through

woods, and under tree canopy without trails. It is given three

runs to attempt the same course, starting from about the same

2357

location. At the end of the first and second run, the robot saves

its graph so that it may be re-loaded at the initiation of the

second and third runs. It is the planner’s job to find its way out

of cul-de-sacs as it discovers them, and avoid them all together

if it returns to them. The outdoor environment contains both

natural and man-made cul-de-sacs and non-convex polygons

to challenge the robot.

A. Generating Polygons from Sensor Data

We consider only data streams that correspond to Cartesian

image maps, inasmuch as our visibility graph is presented here

as strictly 2-D. With each stream, the graph is informed about

the likely presence of some object type at a specific location,

and the variance estimate of that likelihood. These multiple

likelihood and variance maps are subsequently combined via

a function c(...) into a single likelihood-of-obstacle image L.

An example of c, appropriate for the block diagram in Figure

4, is

c(s, vs, t, vt) =
{

s, if vs < θvs , t < θt, vt < θvt

0, otherwise,

where s refers to a sort of first derivative of elevation, t is the

computed traversability computed for a pixel location, and vs

and vt refer to the variance of measurements of s and t. The

various θi refer to user-defined threshold parameters for t, vt,

and vt. We compute s at a pixel location by the well-known

sobel operator [6].

Now, L must be transformed via a binary decision-making

function d(L(i, j)), identifying which pixels the robot can

traverse. The simplest non-trivial decision function is naturally

d(L(i, j)) =
{

obstacle, if L(i, j) > θl

not obstacle, otherwise

where θl is some threshold on L.

Hence, let T be the mapping from the real-valued map L
to the binary obstacle map M ,

T : �nxm → B
nxm. (1)

By applying d at each location of L, we transform L into M .

Obstacle points in M are segregated and labelled based on

any typical segmentation technique.

Of course, all the operations in Figure 4 are incremental.

So, updates are passed in the form of individual pixel modifi-

cations, and operations like segmentation are performed on a

pixel-by-pixel basis.

B. Polygonization

The labelled obstacle map of Figure 4 is polygonized for

input to the OVG-based planner. Polygonization is performed

according to the following steps:

1) A mathematical-morphology dilation operation with a

circular structuring element is applied to the labelled

obstacle points for each obstacle (e.g. Figure 5). This

Elevation
Stream
(x, y, z)

Terrain Map Estimate

(x, y, z, vz)

sobel(z)

Terrain Slope

(x, y, s, vs)

Traversability
Stream
(x, y, t)

Traversable Likelihood

(x, y, t, vt)

Obstacle Likelihood

(x, y, l)

c(s, vs, t, vt)

Obstacle Map

(x, y, b ∈ {0, 1})

d(l)

Labelled Obstacle Map

(x, y,m ∈ N)

Segementation

Polygons

Polygonization

Fig. 4. Traversability Streams to Polygons.

dilation accommodates the physical geometry of the

robot, allowing it to maintain an appropriate distance

between it and obstacles.

2) By starting at any point on the boundary of the dilation

from Step 1, the closed-contour set of pixels can be

generated by iteratively stepping from one pixel to the

next.

3) The boundary walk of Step 2 produces more pixels

than necessary to accurately represent the obstacle; a

reduction of these vertexes can be performed. Let δi

be distance from a vertex vi to the line formed by its

two neighbors along the boundary. By removing those

vertexes with δ less than some threshold, a representa-

tion of the obstacle is found which has fewer vertexes.

Of course, fewer vertexes per polygon implies decreased

running time, but tends to misrepresent the obstacles that

the robot is to avoid.

C. Samples from Application

Images such as in Figure 6 are used to form stereo disparity

maps and the elevation stream for Figure 4. Figure 7 illustrates

the graph structure overlaid on the elevation map of a test

run. Polygons are shown in white, and edges are black.

Here, each pixel represents a 0.1m × 0.1m square. Graphs

typically contain as many as 100 polygons of various sizes,

are composed of thousands of vertexes, and cover more than

100 meters from start to finish. Even with the naive Algorithms

presented above, the planner still operates fast enough for our

real-time system.

VI. CONCLUSIONS

In this paper, we derive a significantly reduced roadmap

for unstructured polygonal environments compared to the

reduced visibility graph. This construction stems from the

2358

Structuring Element

Dilated Polygon Boundary

Obstacle Points

Polygon Boundary

Polygon Interior

Fig. 5. Sample Polygonization with Circular Structuring Element.

Fig. 6. Sample Stereo Images.

Goal

Robot

Elevation

Poygons
Edges

Fig. 7. Sample Terrain and Graph.

fact that we insist on a given, fixed goal point. Real-world

experiments illustrate the usefulness of the proposed method

in time-critical outdoor applications where the perception is

based solely on stereo-based elevation maps. These maps are

polygonized in order to support the use of the planner. By

saving the graph between runs, dynamic update rules (for

adding, removing, or changing polygons) enable the robot to

improve its performance over runs.

Acknowledgements

The authors would like to thank Tucker Balch for his

insightful discussions on the planner, and the Georgia Tech

LAGR team for providing a research platform on which this

work was implemented and tested.

REFERENCES

[1] Arkin R.C., Behavior-Based Robotics, The MIT Press, Boston, MA,
1998.

[2] -, Navigational path planning for a vision-based mobile robot, Robotica,
v 7, pt 1, p 49-63, Jan. 1989.

[3] B. Aronov, L. J. Guibas, M. Teichmann, and L. Zhang. Visibility
queries in simple polygons and applications. International Symposium
on Algorithms and Computation, pp. 357-366, 1998.

[4] de Berg M., M. van Kreveld, M. Overmars, and O. Schwarzkopf, Com-
putational Geometry: Algorithms and Applications, Springer, Berlin,
1997.

[5] Ghosh S.K., D. M. Mount, An output sensitive algorithm for computing
visibility graphs, SIAM J. Comput., v 20, p 888-910, 1991.

[6] Gonzalez R.C., R.E. Woods, Digital Image Processing, Addison-Wesley,
1992.

[7] Hebert M., A. Stentz, C. Thorpe, Mobility Planning for Autonomoun
Navigation Multiple Robots in Unstructured Environments, IEEE Inter-
national Symposium on Intelligent Control - Proceedings, p 652-657,
1998.

[8] Huang H.-P., S.-Y. Chung, Dynamic Visibility Graph for Path Plan-
ning, Proceedings 2004 IEEE/RSJ International Conference on Itelligent
Robots and Systems, pt 3, v 3, pp 2813-18, 2004.

[9] Latombe J.-C., Robot Motion Planning, Kluwer Academic Publishers,
Boston, MA, 1991.

[10] LaValle S.M., Planning Algorithms, Cambridge University Press, To be
published 2006.

[11] Lee D.T., R. L. Drysdale, Generalization of Voronoi diagrams in the
plane, SIAM J. Computing, v 10, pp 73-87, 1981.

[12] Nieto J., J. Guivant, E. Nebot, S. Thrun, Real time data association for
FastSLAM, IEEE International Conference on Robotics and Automation,
pt 1, pp 412-18, v 1, 2003.

[13] Nilsson N.J., A mobile automaton: An application of artificial intelli-
gence techniques, 1st International Conference on Artificial Intelligence,
pp 509-520, 1969.

[14] Oommen B.J., S.S. Iyengar, N.S.V. Rao, R.L. Kashyap, Robot navigation
in unknown terrains using learned visibility graphs. Part I: The disjoint
convex obstacle case, IEEE Journal of Robotics and Automation, v RA-
3, n 6, pp 672-81, Dec. 1987.

[15] Rezaei S., J. Guivant, E.M. Nebot, Car-like robot path following in large
unstructured environments, Proceedings 2003 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pt 3, pp 2468-73, v 3,
2003.

[16] Sharir M., Algorithmic motion planning, In J. E. Goodman and J.
O’Rourke, editors, Handbook of Discrete and Computational Geometry,
2nd Ed., pages 1037-1064. Chapman and Hall/CRC Press, New York,
2004.

[17] A. Stentz. Optimal and efficient path planning for partially-known
environments. Proc. IEEE Int. Conf. Robot. & Autom., pages 3310-3317,
1994.

[18] A. Yahja, A. Stentz, S. Singh, B. Brumitt, Framed-Quadtree Path
Planning for Mobile Robots Operating in Sparse Environments. Proc.
IEEE Int’l Conf. on Robotics and Automation, pp. 650-655, 1998.

2359

