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Abstract— This paper presents a decentralized motion plan-
ning algorithm for the distributed sensing of a noisy dynamical
process by multiple cooperating mobile sensor agents. This
problem is motivated by localization and tracking tasks of
dynamic targets. Our gradient-descent method is based on a
cost function that measures the overall quality of sensing. We
also investigate the role of imperfect communication between
sensor agents in this framework, and examine the trade-offs in
performance between sensing and communication. Simulations
illustrate the basic characteristics of the algorithms.

I. INTRODUCTION

This paper considers the problem of decentralized mobile

multi-agent motion control in the context of dynamic process

estimation. We present a decentralized control law that is

based on the local minimization of a cost function that

assesses the quality of the sensing and estimation process.

With this method, a team of mobile sensing agents can

position themselves to provide the best overall estimation

of a dynamical process. We also investigate how imperfect

communication affects the coordination process. Practically,

the goal of this work is to understand how sensing agent

mobility can be used to improve the quality of sensing and

estimation.
The work presented in this paper lies at the intersection

of three fields: multi-robot coordination, sensor networks,

and target tracking and estimation. In large part because of

its relevance to military and civilian aeronautics, extensive

work has already been done on the subjects of tracking

targets with fixed sensors [1] or the optimal placement of

fixed sensors [2]. However, sensor mobility has not been

exploited in the classical literature on these subjects in order

to improve estimation performance.
The study of multi-robot cooperation has recently received

considerable attention. While many different approaches for

cooperative motion-planning in a decentralized architecture

have been developed, they are often tailored to specific ap-

plications, such as formation control for vehicle coordination

using game-theoretic notions [3], cooperative object reloca-

tion via potential functions [4], mapping and exploration [5],

search-and-rescue, and coverage and coordination tasks [6].
More recently, estimation techniques (see [7] for a survey)

implementing distributed versions or approximations of the

Kalman filter have been proposed. However, when control

of the multiple sensor trajectories is considered, the motion

control is computed using numerical techniques, whereas the

decentralized motion control law presented in this paper is a

closed-form, analytic solution governed by the structure of

the distributed sensing problem.

The main contributions of this paper include the general

formulation and closed-form analytical expressions for a

decentralized motion control law for distributed sensing

systems. In particular, each sensing agent governs its own

motion while cooperating with other agents to reduce their

combined uncertainty. We also provide preliminary results

on how communication constraints can be incorporated into

this framework.

The paper is organized as follows. Section II formulates

the problem in which a team of sensing agents must estimate

a dynamical system’s state under uncertainty. We motivate

the formulation with the task of dynamic target tracking.

However, the methodology is not restricted to tracking

applications. Section III investigates a decentralized motion

control law that seeks to reduce the sensing team’s collective

estimate uncertainty via the use of mobility. We then develop

an analogous decentralized control law in the presence of

imperfect communication between the mobile agents in

Section IV. Section V concludes the paper with a discussion

of results and future work. Simulations illustrate the basic

characteristics of our approach.

II. PROBLEM FORMULATION

We are concerned with the problem of estimating the state

x[k] ∈ R
n of a general dynamical process:

x[k + 1] = Fx[k] + w[k],

where F ∈ R
n×n represents a linearized model of the

dynamics and k is the discrete time index. The process noise

is denoted w[k] ∈ R
n with the standard assumptions of w[k]

being zero-mean, white and Gaussian, with process noise

covariance matrix Q[k].
Suppose M cooperating mobile sensors take measure-

ments of this system. The observation made by the ith

mobile sensor, denoted yi[k] ∈ R
m, is assumed to be given

by the measurement model:

yi[k] = Hix[k] + vi[k],

where H ∈ R
m×n is the measurement matrix, and the

measurement noise vi[k] ∈ R
m for the ith sensor is also

assumed zero-mean, white and Gaussian, with covariance

Ri[k] ∈ R
m×m. Further, we assume that the measurement

noise processes of the different sensors are independent.

The objective for the team of M sensors is to configure

themselves spatially in order to attain the best estimate of

the process state from their combined observations.
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A. Measurement Uncertainty Model

The uncertainty in the ith sensor’s measurement is rep-

resented by the covariance matrix Ri. For illustration, we

assume the mobile agents can sense the range and bearing

to the object being tracked. However, note that more general

state-sensing paradigms can be used in this approach. In

keeping with standard range-finding sensor models [8], the

covariance matrix in this case has the following diagonal

structure:

Ri ∼
⎡
⎣

(
σi

range

)2 0

0
(
σi

bearing

)2

⎤
⎦ .

The variance of the range measurement noise is denoted by(
σi

range

)2
. The spatial dependence of the range uncertainty

is represented by a function fr(ri) of the distance ri from

sensor i to the target. The bearing noise variance
(
σj

bearing

)2

can also be modeled as dependent on the range, given by

the function fb(ri). Denoting the rotation matrix needed

to transform the measurement noise covariance matrix, R̄i,

from local (i.e. range and bearing) coordinates to the global

(Cartesian) reference frame as

Ti =
[

cos(θi) − sin(θi)
sin(θi) cos(θi)

]
,

we obtain the measurement covariance model in global

coordinates:

Ri[k]
�
= TiR̄i[k]TT

i = Ti

[
fr(ri) 0
0 fb(ri)

]
TT

i . (1)

B. Sensor Fusion

The question of combining measurements from a team of

mobile sensors is that of sensor fusion. Using a centralized

method, such as a Kalman filter, with all observations would

be computationally expensive, and would also counter our

desire to have a decentralized solution. Instead, individual

estimates of the target state and their covariances are ex-

changed and combined to yield a global estimate of the

state in question. The measurements are combined using the

following simple but general fusion relations [9]

P−1
fusedx̂ =

M∑
i

P−1
i x̂i, P−1

fused =
M∑
i

P−1
i ,

where x̂i and Pi, i = 1, . . . ,M are the local estimate

and estimate error covariance matrices, Pfused is the fused

estimate error covariance matrix, and x̂ is the fused estimate

of the target position. Note that the time index k is implied.

We propose that the cost function J to be minimized

(by the motions of the mobile agents) is the determinant

of the fused uncertainty matrix, Pfused. Known as D-

optimal design [10], the determinant is chosen (instead of

the trace, maximum eigenvalue, etc.) to facilitate the analysis

presented in Section III.

We investigate two methods to produce fused estimates: a

simple scheme based on the fusion of local observations, and

a scheme that combines local Kalman filter estimates. The

first scheme requires minimal computation on-board each

agent, while the local Kalman filter scheme takes advantage

of the memory and predictive qualities of the Kalman filter,

at the expense of greater complexity in computation.

Fusion of Local Observations: The fusion equation

for the estimate error covariance in the case of shared

observations becomes:

P−1
fused =

M∑
i

R−1
i =

M∑
i

(
TiR̄iTT

i

)−1

and hence, the cost function of interest is given by:

J1 = detPfused = det

(
M∑
i

R−1
i

)−1

. (2)

Fusion of Locally Filtered Estimates: Alternatively,

sensor observations can be processed locally by each mo-

bile sensor using a Kalman filter to reduce the effect of

uncertainty in measurements. The filtered result (i.e. the state

estimate and estimate error covariance) is then shared and

fused with those of other sensor nodes.

Recall the general Kalman filter equations,

x̂[k]− = Fx̂[k − 1],
P[k]− = FP[k − 1]FT + Q,

K[k] = P[k]−HT
(
HP[k]−HT + R

)−1
,

x̂[k] = x̂−
k + K[k]

(
y[k] − Hx̂[k]−

)
,

P[k] = (I − K[k]H)P[k]−,

where K is the Kalman estimator gain.

Thus, the ith sensor generates its local estimate, x̂i, and

estimate error covariance,

Pi[k] = Δi − KiHiΔi,

where Δi
�
= Pi[k]− = FPi[k − 1]FT +Q, and exchanges

these quantities with the other sensing agents. Note that Δ is

independent of current sensor locations, whereas the Kalman

gain Ki depends upon the observation location through the

dependence of the measurement noise covariance matrix Ri

on range to the target.

The cost function, J2, to be minimized in this case is

again the determinant of Pfused:

J2 =detPfused =det

(
M∑
i

(Δi−KiHiΔi)
−1

)−1

. (3)

Note that J1 and J2 are functions of the target and

sensor positions due to the spatial dependence intrinsic in

the measurement noise covariance. Thus by varying the

positions of the sensors, we can influence the estimate error

covariance. The problem we pose is how to do so in a

decentralized way.

III. GRADIENT ANALYSIS

This section presents an approach to minimize the cost

in a gradient-descent-based manner. In essence, we seek to

answer to the question, Where should the lth sensor move
in order to reduce sensing uncertainty? The motivation for

using the gradient is its decentralizing effect on functions

that can be represented as sums, which are of similar form

as (2) and (3). Proofs of convergence to local minima for

gradient-based methods can be found in [11].

To compute the gradients of J1 and J2, we employ the

following standard matrix calculus identities for the chain
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rule, derivative of the determinant, and derivative of the

inverse [12], respectively:
∂

∂z
h(A(z)) = tr

[
∂h

∂A
∂A
∂z

]
, (4)

∂

∂A
det (A) = |A| A−T = |A| A−1, (5)

∂

∂z
A−1 = −A−1

(
∂A
∂z

)
A−1, (6)

where A ∈ R
n×n is a symmetric, positive-definite matrix,

h : R
n×n → R is a real-valued matrix function, and z ∈ R

n

is a scalar variable.

The cost functions can be represented as a function of

polar variables, where the gradient in polar coordinates is:

∇J(r1, θ1, . . . , rM , θM ) =
M∑
i

(
∂J

∂ri
eri

+
1
ri

∂J

∂θi
eθi

)
,

where er and eθ are the radial and tangential unit vectors.

Accordingly, we seek to compute the derivatives of the

cost function with respect to the lth sensor’s state in order

to determine the locally cost-minimizing path for sensor l.

Proposition 1: The gradient of J1 and J2 with respect to

the lth sensor’s coordinate zl (where zl represents either rl

or θl) relative to the target has the general form:
∂J

∂zl
= |Pfused| tr

[
Π

∂Rl

∂zl
ΠT Pfused

]
, (7)

where Π =
{

R−1
l , for J1,

P−1
l Kl, for J2.

In terms of range and bearing coordinates, rl and θl,

respectively, we have

∂Rl

∂rl
=

∂

∂rl
TlR̄lTT

l = Tl

[
∂fr

∂rl
0

0 ∂fb

∂rl

]
TT

l , and

∂Rl

∂θl
=

∂

∂θl
TlR̄lTT

l = ΨTlR̄lTT
l + TlR̄lTT

l ΨT

where Ψ =
[

0 −1
1 0

]
.

Proof: Proof is realized by application of (4)-(6) to

either (2) or (3).

A. Gradient-descent Control Law

The gradient formulas can be used to define a control law,

ul(rl, θl), for the motion of each sensor. The direction that

the lth sensor should move to achieve the steepest descent

of the cost function is given by the gradient:

∇rl,θl
J(r1, θ1, . . . , rM , θM ) =

∂J

∂rl
erl

+
1
rl

∂J

∂θl
eθl

.

Hence, the gradient-based control law for the cost function

given by either (2) or (3) is

ul(rl, θl) =
[ (

∂J
∂rl

)
1
rl

(
∂J
∂θl

) ]T

, (8)

and due to the decentralizing effect of the gradient on the

cost function, ul(rl, θl) is an explicit function of only the

lth sensor’s position. In other words, the lth sensor’s motion

control law can be computed from its current state, its sensor

model and the fused estimate covariance. The remaining task

is to convert the control signal from polar coordinates to

Cartesian coordinates,

ul(rl, θl) = Tl ul(xl, yl) ⇒ ul(xl, yl) = TT
l ul(rl, θl).

Using this decentralized control law, the sensors maneu-

ver themselves into a local configuration which yields the

highest sensing quality, given their particular sensor models.

As an illustrative example, consider a measurement un-

certainty model where the measurement noise in range is

quadratic in the distance to target j. In other words, let

frj
(rj) = a2(rj − a1)2 + a0, where a0, a1, a2 are constant

coefficients. This model corresponds to the notion of a

“sweet spot” in sensing, located at a distance a1 from the

target, where uncertainty in measurements is minimal [13].

Furthermore, let the measurement noise in bearing simply

be a fixed multiple α of the range noise variance, such that

fbj
(rj) = αfrj

(rj).
The resulting configuration, for the case of a team of

homogeneous sensors (i.e. frj
= fr, ∀j), with a0 =

0.1528, a1 = 15.625, a2 = 0.0008, is depicted in Fig. 1,

where the motion of the agents are governed by cost func-

tions J1 and J2 (shown in (a) and (b), respectively).
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Fig. 1. Three Sensors Track a (Biased) Randomly-Walking Target using
the Proposed Gradient-Descent Control Law Using Costs (a) J1, (b) J2.

The sensors converge to an intuitively symmetric con-

figuration, where the three similar sensors are uniformly

distributed at the optimal sensing distance from the target.

A comparison of the performance under the two cost

functions is shown in Fig. 2, and is contrasted to the scenario

where fixed sensors are tracking the same moving target.

Clearly, mobility aids in reducing the uncertainty in the

state estimate. Further, as expected, the local processing of

measurements provides significant improvement over simply

sharing observations, due to the filter’s ability to incorporate

previous measurements and predict target motion. However,

if on-board computation is limited, motion control based on
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Fig. 2. Comparison of the algorithms: Evolution of the cost

simple observation fusion may serve as a less computation-

ally intensive alternative.

We can further compare the performance of the proposed

scheme with the approach presented in [13]. In that previous

work, the authors approximate the gradient of the cost

expression with a search over a discrete set of local motions.

The discrete search methodology requires each sensor to

predict future estimates of the target location for all sensors,

propagate the effect of movement on the predicted global

performance, and then choose the cost-minimizing action.

Fig. 3 illustrates the trajectories of three homogeneous

sensors using the approach presented in [13], given the same

initial conditions as shown in Fig. 1.
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Fig. 3. Three Sensors Track a (Biased) Randomly-Walking Target using
the Discrete-Search Method in [13].

The discrete-search method results in jittery trajectories,

partly due to the fixed step size and partly due to the algo-

rithm’s sensitivity to noise in the target motion. More specifi-

cally, the optimality of each sensor’s actions is limited by the

resolution of the discrete search space. In contrast, our pro-

posed control law is the best instantaneous cost-minimizing

action. Prediction of other sensors’ estimates/covariances

is no longer necessary, as only local information for each

sensor is required to generate the control signal. Efficient

matrix manipulation algorithms and closed-form gradient

formulae further improve the computational efficiency of

this gradient-based approach. Also, while gradient-based

methods only guarantee convergence to local minima, we

find that the sensing performance of the mobile sensing

At each instant k

% —– Local Observation —–
Take local measurement;
Update local estimate x̂i and error covariance matrix Pi;

% —– Sensor Fusion —–
Transmit local information to other sensors;
Receive information from other sensors;
Fuse all local estimates to get global estimate x̂ and

global covariance P;

% — Optimize Sensor Position —
Use gradient of cost function (Prop. 1) to generate

the optimal next location;

% —– Update Position —–
Move to desired location;

TABLE I

PSEUDO-CODE OF MOTION CONTROL STRATEGY

team, even at local minima of the cost function, is generally

greater than the case of fixed sensors. The proposed motion-

control algorithm is summarized in Table I.

B. Heterogeneous Sensing Uncertainty Models

This section considers a more general situation where the

team comprises heterogeneous sensors. As a simple example,

assume that the sensors have a quadratic uncertainty model,

but with different coefficients (i.e. “different sweet spots”).

Hence, let the jth sensor’s uncertainty model be

frj
(rj) = aj

2(rj − aj
1)

2 + aj
0, fbj

(rj) = αjfrj
(rj),

The resulting configuration of three sensors with varying

sensor models is shown in Fig. 4.
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Fig. 4. Decentralized Motion Control with Heterogeneous Sensor Uncer-
tainty Models

The generalization of the motion control law to varying

sensor types is straightforward, and is a direct consequence

of the structure of the cost function and its gradient-based

decentralization. As can be expected, symmetries in the

resulting sensor configuration are broken due to the sensors’

heterogeneity. However, the sensors still achieve a cost-

minimizing configuration without requiring explicit knowl-

edge of other sensors’ measurement models.

C. Observations of Multiple Targets

The gradient formulation readily extends to the case where

multiple targets are observed simultaneously. By augmenting

the multiple observation vectors and assuming that measure-

ments of distinct targets are independent and appropriately
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associated, similar expressions for the gradient as (7) can be

produced, redefining R̄, T, and P as the following block

matrices:
R̄i → diag

(
R̄1

i , . . . , R̄
N
i

)
,Ti → diag

(
T1

i , . . . ,T
N
i

)
,

P → diag
(
P1, . . . ,PN

)
,

for N simultaneously-observed targets, such that

R̄i,Ti,P ∈ R
nN×nN . The specifics of data and track

association are beyond the scope of this paper. See [9] for

relevant methods.

Proposition 2: The gradient of J1 and J2 with respect to

the lth sensor’s coordinate zj
l relative to the jth target has

the general form given by:

∂J

∂zj
l

= |Pfused| tr

[
Π

∂Rj
l

∂zj
l

ΠT Pfused

]
, (9)

where Π =

⎧⎪⎨
⎪⎩

(
Rj

l

)−1

, for J1,(
Pj

l

)−1

Kj
l , for J2.

Since the cost is now a function of additional variables,

its gradient is given by:

∇J(·) =
N∑
j

M∑
i

(
∂J

∂rj
i

erj
i

+
1
rj
i

∂J

∂θj
i

eθj
i

)
.

The modified control law for the lth sensor observing N
targets is given by:

ul(rl, θl) =
N∑
j

uj
l (r

j
l , θ

j
l ), (10)

where uj
l =

[(
∂J

∂rj
l

)
, 1

rj
l

(
∂J

∂θj
l

)]T

, j = 1, . . . , N . An

example of the resulting multi-target tracking performance

is illustrated in Fig. 5.
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Fig. 5. Three Sensors Track Two Targets

Sensor Teams: It is often likely that all targets cannot

be simultaneously observed by each sensor. Known as the

sensor assignment problem, the difficult task of assigning

particular sensors to specific targets is an active area of

research. As simply a means of demonstrating the feasibility

of integrating sensor assignment tasks with the proposed

tracking algorithm, we employ a simple round-robin strat-

egy [14]. An incomplete, but illustrative, list of references

on the assignment problem is [15], [16], [17].

Round-robin assignment is done by arbitrarily ordering

the sensing agents. Sensor 1 (S1) first computes the target

with the largest estimate uncertainty. S1 selects this target

(T1, as depicted in Fig 6), announces its assignment, and

employs the local gradient-based control law to optimize

sensing performance. Sensor 2 (S2) chooses its assignment

from the remaining targets (namely, T2), and so on. If

sensors outnumber targets (M > N ), remaining sensors

are iteratively assigned to targets with greatest uncertainty.

If M < N , the sensors will make their assignments to

minimize the effect of the unobserved targets. Further, each

sensor stores its previous assignments so as to prevent erratic

assignment switching between targets.
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Fig. 6. Simulation of sensor assignment implementation: (a) Three sensors
observe T1, (b) Once T2 crosses threshold, S1 and S3 maneuver to observe
T2, and (c) Three sensors regroup (after T2 leaves region) to observe T1.

IV. IMPERFECT COMMUNICATION

When the communication channel between sensing agents

is imperfect, where the noise in communication depends

on transmission distances, there exists a tradeoff between

motion to improve sensing performance and motion to

improve communication quality.

The homogeneous sensor observation model can be easily

modified to include the effects of noisy communication links,

such as fading wireless channels. The transmission of the ith

sensor’s observation yi received at sensor j is:

ŷj,i[k] = yi[k] + vc
j,i[k] = Hx[k] + vi[k] + vc

j,i[k],
where vc

j,i[k] ∈ R
m is the communication noise in the

received observation. We assume that the communication

noise across links is symmetric, i.e. vc
j,i = vc

i,j , and that

there is no noise for self-transmissions.
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Denote the covariance of the communication noise vector,

vc
j,i as Cj,i ∈ R

m×m. The spatial dependence of this

noise is often related to issues such as transmission power

or environmental effects. Letting di,j denote the distance

between sensor agents i and j, we pose a general model for

the covariance of the communication noise:

Cj,i =
[

gj,i(dj,i) 0
0 gj,i(dj,i)

]
,

where gj,i(dj,i) represents the communication noise uncer-

tainty’s dependence on the inter-agent distance di,j .

Given the measurement and communication channel mod-

els, the modified fusion equation for the covariance of the

estimate error is [18]:

P−1
j,fused =

M∑
i

(Pi + Cj,i)
−1

,

where Pj,fused is the jth sensor’s fused estimate error

covariance matrix. Note that due to the communication

noise, Pj,fused will likely differ between sensors.

In this case, the cost function J3,j to be minimized is the

determinant of the fused uncertainty matrix, given as:

J3,j = detPj,fused = det

(
M∑
i

(Pi + Cj,i)
−1

)−1

. (11)

Similar to J1 and J2, this cost function is also dependent

on the (relative) positions of the sensors with respect to the

target and one another, noting that the inter-sensor distance

dj,i is implicitly a function of (ri, θi, rj , θj).
Following the techniques of the previous section yields

the following results:

Proposition 3: The gradient of J3,l with respect to the lth

sensor’s coordinate zl relative to the target is given by:

∂J3,l

∂zl
= |Pl,fused|tr

[
Π

∂Rl

∂zl
ΠT Pl,fused

]

+
M∑
i �=l

|Pl,fused|tr
[
Φl,i

∂Cl,i

∂zl
Φl,i Pl,fused

]
,

where Φl,i
�
= (Pi + Cl,i), Π is chosen according to whether

simple observations (i.e. Pl = Rl) or locally-filtered mea-

surements (i.e. Pl = Δl − KlHlΔl) are fused, and

∂Cl,i

∂zl
=

[
∂gl,i

∂zl
0

0 ∂gl,i

∂zl

]
.

The sensors’ motions are governed by two influences,

namely that of moving to improve sensing quality combined

with moving to improve communication performance. Note

that these effects, in the context of the motion control signal,

are decoupled. This point is examined more closely in the

following section.

Many different models exist for the inter-nodal communi-

cation noise, which may include the effects of transmission

distance and power, frequency, quantization sizes, and num-

ber of bits per transmission over the channel (see [18] and

references therein). We choose a simple illustrative noise

model, where the signal-to-noise ratio (SNR) obeys an

inverse-square law [19]:

σ2
i,j =

1
SNR

, SNR =
κ

d2
i,j

,

where κ > 0 is a constant and di,j is the distance between

sensor i and sensor j. For this model, the performance

of the modified gradient-based control law for the task of

target tracking is depicted in Fig. 7, with κ = 1000. The

resulting configuration of the sensors under communication

constraints is shown overlaying the outcome under the same

initial conditions without communication noise.
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Fig. 7. Two Sensors Track Randomly-Walking Target: With Imperfect
Communication (black), or With Perfect Communication (gray)

Clearly, the communication constraint biases the mobile

agents to remain closer to one another. This behavior results

in a compromise of sensing performance. Note that the

sensing agents maintain their relative bearing for optimal

sensing, given the above sensing and communication models.

Different communication models may yield configurations

where the agents maintain their optimal sensing distances

and instead reduce their relative bearing to the target [18].

A. Relationship between Sensing and Communication Per-
formance Objectives

Next we can examine how performance, measured by

the cost function (11), is related to communication and

sensing parameters. Varying the parameter κ (which is an

aggregate measure of communication characteristics) results

in Fig. 8(a) for the case where multiple sensors observe a

single target. As κ becomes small (communication noise be-

comes large) no useful information is exchanged amongst the

sensing agents. Thus, each agent tends to act independently,

and none of the benefits of cooperative sensing is realized.

For high values of κ (the communication link quality is very

good), overall cost is reduced by the use of an increasing

number of sensors. Interesting behavior appears to occur in

the intermediate range, where there is a tradeoff between the

sensing and communication objectives.

Next we vary the optimal sensing distance (a.k.a. “sweet

spot), a1. As shown in Fig. 8(b), reducing the optimal

range to a target has the effect of improving the overall

system performance–the smaller this distance is, the closer

the cooperating sensors can operate while maintaining a

wide-enough perspective. Conversely, while large separa-

tions between sensors provide sufficiently different views of

the target, communication noise increases commensurately.
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Clearly, the choice or design of sensors plays a role in the

overall performance of the mobile sensing network.

V. DISCUSSION AND FUTURE WORK

We proposed a gradient-based decentralized motion con-

trol law for a team of mobile agents, equipped with (pos-

sibly heterogeneous) sensors and taking measurements of

(possibly multiple) dynamical processes, embodied in this

work as moving targets. Sensor mobility is used to improve

estimates, as measurement noise is spatially-dependent on

sensor positions. The specific formulae for the gradients

results in an efficient implementation. Using a simple sensor

assignment rule, we also examined the formation of sub-

groups of sensors to manage the distributed task. We then in-

vestigated the effect of a noisy communication environment,

where disturbances also depend on inter-agent distances, and

developed a modified motion control law. Further, motivated

by the decoupling nature of this decentralized control law,

we examined the tradeoffs between sensing and communi-

cation and their dependence on sensing and communication

parameters.

Immediate future work includes a thorough analysis of the

computational complexity of this framework as a function of

the number of sensors and/or targets. Similarly, we seek con-

vergence properties of the motion control strategy in terms

of estimation error bounds, and understanding the resulting

steady-state sensor configurations for different classes of

target motions.

Additionally, we can examine the proposed strategy under

relaxations of the assumptions made. For example, the

uncertainty profile of the sensor model or the communication

link may not be known a priori, and hence collected and

shared data can be used to determine these profiles in real-

time. Further, fully-connected communication networks, in

practice, are impractical; an additional area of future research

is how different network topologies can be addressed.

Also, the use of more complex models for both the target

and sensor agents is relatively straightforward and should be

investigated. Other target-tracking methods, such as pursuit-

evasion concepts, offer approaches where targets actively

try to confound the mobile sensors. This scenario requires

that the sensor agents consider the target behavior beyond

simply a dynamical motion model. Incorporation of these

types of ideas may offer new perspectives on target-tracking

and other distributed sensing applications.
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