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Abstract

In this paper, we describe a new error-driven active learning approach to self-growing radial basis function networks for early robot

learning. There are several mappings that need to be set up for an autonomous robot system for sensorimotor coordination and

transformation of sensory information from one modality to another, and these mappings are usually highly nonlinear. Traditional

passive learning approaches usually cause both large mapping errors and nonuniform mapping error distribution compared to active

learning. A hierarchical clustering technique is introduced to group large mapping errors and these error clusters drive the system to

actively explore details of these clusters. Higher level local growing radial basis function subnetworks are used to approximate the

residual errors from previous mapping levels. Plastic radial basis function networks construct the substrate of the learning system and a

simplified node-decoupled extended Kalman filter algorithm is presented to train these radial basis function networks. Experimental

results are given to compare the performance among active learning with hierarchical adaptive RBF networks, passive learning with

adaptive RBF networks and hierarchical mixtures of experts, as well as their robustness under noise conditions.

r 2007 Elsevier B.V. All rights reserved.

Keywords: Biologically inspired robotics; Active learning; Hierarchical adaptive radial basis function networks
1. Introduction

In many situations, artificial systems need to work in
unstructured and unpredicted environments with uncer-
tainties, such as dangerous, hostile or inaccessible environ-
ments. Autonomy, self-learning and self-organizing are
crucial for these systems as we cannot program them to
cope with all situations. In spite of recent advances in this
area, the systems implemented are far from achieving high
level performance and task flexibility, and the studies are
still in their infancies. On the other hand, humans, even
infants, can gradually adapt to different tasks and
environments without too much effort by learning and
re-organizing the cognitive mappings, etc. in their brains.
This mechanism is just what artificial autonomous systems
e front matter r 2007 Elsevier B.V. All rights reserved.
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need. Therefore, great research effort has been made in
recent years to develop biologically inspired artificial
systems [1,8,35,59], in order to build the links among
neuroscience, psychology and intelligent systems, and
allow such systems to have human-like intelligence in some
degrees. These studies can also provide a testbed for
biology and psychology researchers to verify their ideas.
Developmental robotics [32] is one of such research areas,
aims to investigate how an autonomous robot system
incrementally builds its sensorimotor coordination abilities
from the very beginning, which is greatly inspired by
developmental psychology and neuroscience.
In early robot learning, several mappings need to be set

up for sensorimotor coordinations which build the links
between sensory information and motor values such as eye/
head/hand coordination, and transformation of sensory
information from one modality to another and from
one frame of reference to another, such as arm forward/
inverse kinematics and information transformation among
owing radial basis function networks for early robot..., Neurocomputing
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eye-centered, head-centered, body-centered and hand-
centered representations [4,18] for a humanoid robot
system. Generally, these mappings build the links between
a m-dimension space to another n-dimension space. These
two spaces may or may not have the same number of
dimensions, but the mappings, which links the two spaces,
are usually nonlinear. Automatically building these map-
pings involves growing, shrinking and adjustments of
neurons in the mapping network, similar to infant brain
growth during cognitive development [53].

Traditional sensorimotor mapping learning algorithms
treat the learning system as a passive recipient of training
data and use these training data to build the mapping;
while human beings adapt to different ways of learning by
actively interacting with their environment, and by obser-
ving the consequences of such actions. This is called active
learning, and it has been proven to be more efficient
compared to passive learning [9,36]. Active learning
optimizes the learning process by selecting properly the
next actions or next queries [9,56]. We use active learning
very often in our life, from basic skill learning of infants to
more specific skill training of athletes, and from curiosity-
driven active exploration and learning [47] to student active
learning in groups by raising questions and then discussing
rather than just listening to their teachers in class.

In this paper, we are interested in biologically inspired
sensorimotor mapping algorithms for robot learning at a
very early stage, specifically, we investigate an error-driven
active learning method in growing radial basis function
networks for robot sensorimotor coordination learning.
We use arm inverse kinematics, i.e. learn to predict the
joint values from a given arm endpoint, as a testbed for our
algorithm as it is a typical nonlinear mapping problem, and
the idea discussed here can be applied to other robot
sensorimotor mappings and coordination transformation
problems such as eye/head/hand coordination control.
Also arm control and learning is an important research
topic in neuroscience and other areas [4]. In this paper, a
plastic radial basis function (RBF) network is used as the
computational substrate for automatically constructing a
sensorimotor mapping network. We refer to plasticity in
the mapping network as the result of two forms of change:
an increase or decrease in the number of neurons or nodes
in the network; or a change in an existing node’s
parameters, either as a shift of location of the covering
field or a change in size of that coverage. These two kinds
of change in the network have different mechanisms but
both represent plasticity for growth and development,
similar to that reported in neuroscience [53]. This plastic
RBF network differs from the traditional self-organizing
map (SOM) of Kohonen [26] and similar artificial neural
networks [58] which need to predefine the network
structure and the number of nodes in the network. The
learning error distribution over the input space is an
important resource indicating the difficulty of learning at
each point in the working space and can be used to guide
active learning. In this paper, an error-driven active
Please cite this article as: Q. Meng, M. Lee, Error-driven active learning in gr
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learning approach is introduced to explore these large
error clusters further, and local growing RBF subnetworks
are used to cover the related subdivisions of input space in
a hierarchical way.
In the following, Section 2 overviews the whole learning

system architecture and its main components. Section 3
describes the plastic RBF and its simplified node-decoupled
extended Kalman filter (EKF) learning algorithm. Section
4 introduces an error-driven active learning approach, and
applies a hierarchical clustering technique for dividing the
input space and a local learning approach for approximat-
ing the large error clusters. Section 5 details the experi-
ments and results. Section 6 extends the algorithm to 3D
space. Section 7 discusses the related work. Finally, we
conclude this paper in Section 8.
2. The architecture of the learning system

Fig. 1 shows the flowchart of the learning system. The
learning system has two parts: one is learning process and
another is reconstruction process. The learning process
builds the base layer and subnetworks of the higher level
layers; while the reconstruction process combines these
learned networks to predict the output for a given input. It
should be noted that these two processes work simulta-
neously rather than separately. The learned subnetworks of
previous layers are immediately used to do the construction
during the learning process of the subnetworks of the
current layer, as shown in Fig. 1a.
The whole learning system is based on a hierarchical

structure of growing radial basis function networks
(GRBF). The system firstly uses a GRBF to cover the
whole work space. When the mapping error from this
network does not change significantly, the residual error
from the network drives active learning to explore detailed
information in some areas with large errors, and local
subnetworks are used to approximate these residual errors
in each large error cluster separately. Similarly for the next
higher level of subnetworks, i.e. in some areas with large
mapping errors, the higher subnetworks approximate the
residual error of the previous layers of network/subnet-
works. Automatic growing radial basis function networks
are utilized as the main components for different scales of
mapping network or subnetworks. The GRBFs are trained
by a simplified decoupled extended Kalman filter (SDEKF)
algorithm [33], which will be discussed in Section 3.
We applied a hierarchical clustering technique to group

and locate the large mapping error clusters for active
learning. The hierarchical clustering technique groups the
two most similar error clusters each time and forms a new
error cluster, until one final single cluster remains. It keeps
the records of clustering in a binary tree structure so we can
cut off the tree at different levels to obtain different scales
of clusters with different cluster sizes. The higher cutoff
value we use, the bigger size each cluster is, and therefore
the less similarity among the elements in each cluster.
owing radial basis function networks for early robot..., Neurocomputing
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Fig. 1. Error-driven active learning system flowchart. Based on hierarch-

ical error clustering, the system locates the areas with large learning errors

in the current layer, and this information drives the robot system to

explore these areas actively and separately, and build local mapping

subnetworks to approximate the residual ðrðxÞÞ of the current layer at these

significant areas. Each subnetwork is constructed by a growing radial basis

function network. Different subnetworks have different number of nodes

and different node locations and coverages. (a) Learning process. At the

beginning of each layer, the residuals from previous layers are analyzed

and grouped into clusters by using hierarchical error clustering technique

(HEC). After the HEC analysis, the switch of the current layer in the

figure is switched to the branch of constructing the subnetworks. Only the

first three layers are shown in this figure. (b) Reconstruction process. The

outputs from all the layers are summed up to generate the output. In each

layer, for a given input, either one subnetwork or none is selected

according to the coverages of the subnetworks of this layer.
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During learning process, a module ‘‘learning phase’’ (not
shown in the figure) monitors the change of the mapping
errors, and determines when the error changes have
Please cite this article as: Q. Meng, M. Lee, Error-driven active learning in gr
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effectively ceased and the map has become saturated. This
module triggers the active learning process to build next
level of subnetworks if the map becomes saturated. A long-
term memory (LTM) stores training data of the most
recent trials for later use in the hierarchical error cluster
module for analyzing the mapping error distribution. The
module ‘‘Sig. clusters’’ selects the large error clusters from
the cluster tree generated by the module hierarchical error
clustering (HEC). For each large error cluster, the system
generates an active learning position at each learning step,
sends this location to the robot and gets information back
from the robot’s action. The residual error from previous
layers which cover this location is then used to train a local
subnetwork. Such process continues until the mapping
error changes from this cluster cease. The system then
conducts the active learning in another area of large error
clusters selected by the module HEC and the module ‘‘Sig.
clusters’’. After finishing construction of all the subnet-
works in the current layer, the system will continue to
generate another level if the mapping error is still larger
than a threshold.

3. A plastic RBF network and the simplified node-decoupled

EKF learning algorithm

We need a nonlinear mapping algorithm to implement
the base network (layer 0) and subnetworks of each layer in
Fig. 1. Radial basis function networks not only have good
global generalization abilities in function approximation
[28,23], and have simple topological structure, but also
have explicit structure that reveals how learning proceeds
and allows us to interpret the learned network [52]. Pouget
and Snyder [41] have shown that there is strong evidence
that basis functions may exist in the human brain to
support sensorimotor learning. In this section, we investi-
gate a plastic radial basis function network to support
error-driven active learning and present the SDEKF
algorithm for learning and updating of RBF network
parameters.

3.1. Radial basis function networks as a computational

substrate for error-driven active learning

A RBF network is expressed as

fðxÞ ¼ a0 þ
XN

k¼1

akfkðxÞ, (1)

fkðxÞ ¼ exp �
1

s2k
kx� lkk

2

� �
, (2)

where fðxÞ ¼ ðf 1ðxÞ; f 2ðxÞ; . . . ; f N0
ðxÞÞT is the vector of

system outputs, N0 is the number of outputs and X is the
system input. ak is the weight vector from the hidden unit
fkðxÞ to the output, N is the number of radial basis
function units, and lk and sk are the kth hidden unit’s
center and width, respectively. The size of the receptive
owing radial basis function networks for early robot..., Neurocomputing
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field of each neuron varies and the overlaps between fields
are different. Each neuron has its own center and coverage.
The output is the linear combination of the hidden
neurons.

3.2. Growing and pruning strategies of the RBF network

The growing RBF network starts with no hidden units,
and with each learning step, i.e., after the system observes
the consequence after an action, the network grows or
shrinks when necessary or adjusts the network parameters
accordingly.

The network growth criteria are based on the novelty of
the observations [40,31], which are: whether the current
network prediction error for the current learning observa-
tion is bigger than a threshold, and whether the node to be
added is far enough from the existing nodes in the network,
as shown in Eqs. (3) and (4). The criterion in Eq. (5) is to
check the prediction error within a sliding window to
ensure that growth is smooth.

keðtÞk ¼ kyðtÞ � fðxðtÞÞk4e1, (3)

kxðtÞ � lrðtÞk4e3, (4)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXt

j¼t�ðm�1Þ

keðjÞk2

m

vuut 4e2, (5)

where ðxðtÞ; yðtÞÞ is the learning data at tth step, and lrðtÞ is
the center vector of the nearest node to the current input
xðtÞ. m is the length of the observation window.

If the above three conditions are met, then a new node is
inserted into the network with the following parameters:
aNþ1 ¼ eðtÞ, lNþ1 ¼ xðtÞ, sNþ1 ¼ kkxðtÞ � lrðtÞk, where, k

is the overlap factor between hidden units.
The above network growth strategy does not include any

network pruning, which means the network size will
become large, some of the hidden nodes may not
contribute much to the outputs and the network may
become overfit. In order to overcome this problem, we use
a pruning strategy as in [31,30], over a period of learning
steps, to remove those hidden units with insignificant
contribution to the network outputs.

Let onj be the jth output component of the nth hidden
neuron,

onj ¼ anj exp �
kxðtÞ � lnk

2

s2n

� �
; rnj ¼

onj

maxðo1j ; o2j ; . . . ; oNjÞ
.

If rnjod for M consecutive learning steps, then the nth
node is removed. d is a threshold.

3.3. GRBF network learning based on simplified node-

decoupled EKF

Section 3.2 gives the network growing and pruning
algorithm. At each step, however, if no new hidden node is
added, a learning algorithm is needed to adjust the
Please cite this article as: Q. Meng, M. Lee, Error-driven active learning in gr
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parameters of the existing nodes. There are two groups
of parameters that need to be updated, one is the weights
between the hidden units to the outputs, another is the
centers and the widths of hidden units in the network. By
adjusting the centers, the widths, and the weights, the
network optimizes the output according to the current
learning data.
The extended Kalman filter is widely used for updating

RBF network parameters and has been proven to be able
to achieve better performance than using gradient descent
[31,20,49]. However, the traditional global extended Kal-
man filter approach updates all the above parameters of the
RBF network at each learning step, and its computational
complexity is OðN0ðNiN þNÞ2Þ per learning step, where
Ni is number of input components, i.e. the dimension of
input vector X in Eq. (1). Also, the matrix inverse
operation is involved in calculating the Kalman gain at
each step. As the size of the network grows large, the
computation cost gets very high.
In this section, we derive the node-decoupled EKF (ND-

EKF) algorithm for training the RBF network, and further
present its simplified formulae. We use the terms of
standard EKF which can be found in [20]. In ND-EKF,
during learning, instead of updating all the network
parameters once at each learning step, we update the
parameters of each node independently. The parameters of
the network are grouped into N0 þN components. The
first N0 groups are the weights, wk ¼ ½a0k; a1k; . . . ; aNk�

T,
k ¼ 1; 2; . . . ;N0 (aij is the weight from ith hidden node to
jth output); and the rest N groups are the parameters of
hidden units’ parameters: wk ¼ ½l

T
k ;sk�

T; k ¼ 1; 2; . . . ;N.
The superscript T stands for transpose of a matrix.
Hence for kth parameter group at tth learning step,

ND-EKF is given by

wkðtÞ ¼ wkðt� 1Þ þ KkðtÞekðtÞ, (6)

where

ekðtÞ ¼
ykðtÞ � f kðxðtÞÞ; k ¼ 0; 1; 2; . . . ;N0;

yðtÞ � fðxðtÞÞ; k ¼ N0 þ 1; . . . ;N0 þN

(
(7)

and KkðtÞ is the Kalman gain, which is given by

KkðtÞ ¼ Pkðt� 1ÞBT
k ðtÞ½RkðtÞ þ BkðtÞPkðt� 1ÞBT

k ðtÞ�
�1 (8)

PkðtÞ is the error covariance matrix, and is updated by

PkðtÞ ¼ ½I� KkðtÞBkðtÞ�Pkðt� 1Þ þ qI, (9)

where ykðtÞ is the kth component of yðtÞ in training data
ðxðtÞ; yðtÞÞ, BkðtÞ is the submatrix of derivatives of network
outputs with respect to the kth group’s parameters at tth
learning step. RkðtÞ is the variance of the measurement
noise, and is set to be diagðlÞ (l is a constant) in this paper.
q is a scalar that determines the allowed random step in the
direction of the gradient vector.
The computational complexity of the node-decoupled

EKF is OðN0ðN þ 1Þ2 þNðNi þ 1Þ2Þ, which is much lower
than the global EKF: OðN0ðNiN þNÞ2Þ.
owing radial basis function networks for early robot..., Neurocomputing
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In the Kalman gain calculation, matrix inversion is
involved. This is further simplified by applying the matrix
inversion lemma. In the following, we present the simplified
formulae of Kalman gain in (8) and error covariance
matrix in (9) for network weight parameters and hidden
unit parameters separately [34].
3.3.1. For the weight parameters

For the weight parameters, wk ¼ ½a0k; a1k; . . . ; aNk�

ðk ¼ 1; 2; . . . ;N0Þ, as the weights for each output are
completely independent of those of other outputs; hence,
the system learns the weights for each individual output
separately. Therefore we have

BkðtÞ ¼ ½1;f1;f2; . . . ;fN � (10)

and the Kalman gain is

KkðtÞ ¼
Pkðt� 1ÞBT

k ðtÞ

Zk þ l
, (11)

where Zk ¼ BkðtÞPkðt� 1ÞBT
k ðtÞ, it is a scalar.

The error covariance matrix becomes

PkðtÞ ¼ Pkðt� 1Þ �
Pkðt� 1ÞBT

k ðtÞBkðtÞPkðt� 1Þ

Zk þ l
þ qI.

(12)

3.3.2. For the hidden units

For the parameters of wk ¼ ½l
T
k ;sk�

T ¼

½mk1
; mk2

; . . . ;mkNi
;sk�

T, the gradient matrix Bk becomes

BkðtÞ ¼ DkðtÞWkðtÞ, (13)

where

DkðtÞ ¼

2ak1
fk

s2k
2ak2

fk

s2k

..

.

2akN0
fk

s2k

2
666666666664

3
777777777775
, (14)

WkðtÞ ¼ ðx1 � mk1
Þ; . . . ; ðxNi � mkNi

Þ;
x� lk

�� ��2
sk

" #
, (15)

where x1;x2; . . . ; xNi are the components of input signal x.
The Kalman filter in (8) can be rewritten as

KkðtÞ ¼
Pkðt� 1ÞWT

k ðtÞD
T
k ðtÞ

l
I�

akðtÞDkðtÞDT
k ðtÞ

lþ akðtÞbkðtÞ

� �

¼
Pkðt� 1ÞWT

k ðtÞD
T
k ðtÞ

lþ akðtÞbkðtÞ
ð16Þ
Please cite this article as: Q. Meng, M. Lee, Error-driven active learning in gr
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and therefore PkðtÞ can be written as

PkðtÞ ¼ Pkðt� 1Þ �
bkðtÞPkðt� 1ÞWT

k ðtÞWkðtÞPkðt� 1Þ

lþ akðtÞbkðtÞ
þ qI,

(17)

where akðtÞ ¼ WkðtÞPkðt� 1ÞWT
k ðtÞ, and this is a scalar.

RkðtÞ ¼ diagðlÞ. bkðtÞ ¼ DT
k ðtÞDkðtÞ.

So by using Eqs. (6), (11), (12), (16), and (17), the matrix
inversion operations in ND-EKF are avoided, this forms
the SDEKF algorithm which was used to train GRBF of
layer 0 and the subnetworks of higher layers in our learning
system shown in Fig. 1.

4. Error-driven active local learning

At the first stage of robot mapping learning such as arm
kinematics learning and eye/hand coordination learning,
the robot acts randomly. On each step, the network is
trained using the data from the robot action. However, the
training error in the workspace is not uniform, i.e. some
areas have larger training errors than others. This is
because the mapping is nonlinear, and the mapping
difficulties are different over the workspace.
To reduce the large mapping error clusters, an error-

driven active learning approach is presented. We see
examples of active learning in human beings such as
infants repeating a pattern of actions to gain skills, and
athlete training specific actions to gain certain skills in
order to overcome a bottleneck of performance. Error
clustering and local learning are two key components in
active learning. We applied hierarchical error clustering to
locate the large error clusters at different levels and used
local subnetworks to approximate the residual mapping
errors of these clusters, as shown in Fig. 1.

4.1. Hierarchical error clustering

Based on error locations and their amplitudes, hierarch-
ical error clustering groups the mapping errors simulta-
neously over a variety of scales by creating a cluster tree.
At each step of the hierarchical clustering, only two
mapping errors with the nearest distance are joined. The
distance between two mapping errors is defined as

drs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

ðxri � xsiÞ
2wi

s
, (18)

where r and s are two error indexes, n is the number of
components of each error (location components ðx; yÞ and
error amplitude in our application). xri and xsi are error
components. wi is the weight for the ith component.
The hierarchical clustering algorithm has the following

steps:
owing radia
Algorithm: hierarchical clustering
Initialize: assign each mapping error to
its own cluster and ID.
l basis function networks for early robot..., Neurocomputing
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Fig. 2. Mapping error without active learning for the robot arm inverse

kinematic problem. The mapping error does not change significantly after

a certain number of training steps.
Until there is only one cluster left.

The cluster tree stores multilevel set of clusters, where two
closest clusters at one level are joined as a cluster of the
next higher level. The hierarchical structure allows us to
choose what scale of clusters to use according to at which
size the local error clusters are chosen and approximated
by local subnetworks.

4.2. Local learning

Once the hierarchical error cluster tree is generated, the
robot is driven to move to the areas with large average errors,
and capture the data relevant to the learning task, for example,
the arm endpoint coordinates and the arm joint values for the
task of learning arm kinematics. As shown in Fig. 1, the
obtained data are firstly compared with the predicted value
from the lower mapping network(s), and then the residual
mapping errors are used to train local subnetworks. Local
subnetworks are also built by growing radial basis function
networks trained by SDEKF. Although global growing radial
basis function networks, which cover the whole work space,
can adjust the number of neurons, and the location and size of
the receptive field of each neuron, these adjustments are usually
affected by the distribution of the training data, i.e. the
network attempts to insert new neurons, or attracts more
neurons/adjusts existing neurons to satisfy the area with
density data. If a global network is used in active learning, the
active learning data, which is usually from some local areas,
will affect the network mapping in other areas. Therefore in
this paper, we used a multilevel network structure to learn the
rough mapping at the base layer and to approximate the large
error clusters by local subnetworks at higher levels. For a
training sample ðxðtÞ; yðtÞÞ at time t, the residual error rj for the
input of the subnetwork at the jth layer is computed

rjðxðtÞÞ ¼ yðtÞ �
Xj�1
l¼0

XNm
l

i¼1

am
li
fm

li ðxðtÞÞ, (19)

where am
li
is the weights from the ith neuro to the output of

the mth subnetwork which covers the current input point
xðtÞ at the lth layer (l ¼ 0; 1; . . . ; j � 1), while fm

li ðxðtÞÞ is ith
neuron of the mth subnetwork. Nm

l is the number of the
neurons in the mth subnetwork at the lth layer. So given
the training example ðxðtÞ; yðtÞÞ, the training pair for the
mth subnetwork at jth layer is ðxðtÞ; rjðxðtÞÞÞ.

5. Experimental results

To test the proposed error-driven active learning in
growing radial basis function networks for early robot
e this article as: Q. Meng, M. Lee, Error-driven active learning in gr

oi:10.1016/j.neucom.2007.05.012
learning, the nonlinear robot arm inverse kinematic
problem was used as a testbed, in particular, we used a
two-link arm which consists of forearm and upper-arm.
The system attempts to predict the joint angles ðj1; j2Þ given
an arm end position ðp; yÞ in polar coordinates, where j1 is
the angle between the upper-arm and the body baseline, j2
is the angle between the upper-arm and the axis of the
forearm, p is the effective length of the arm axis from
shoulder (arm base point) to the arm end position and y is
the angle the axis makes at the shoulder. The following
formulae models the arm:

p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l21 þ l22 þ 2l1l2 cos j2

q
and y ¼ j1 þ arctan

l2 sin j2
l1 þ l2 cos j2

,

where l1 and l2 are the lengths of the upper-arm and
forearm, respectively. This is also referred as a shoulder
encoding scheme. In the following experiments, l1 ¼ 15,
and l2 ¼ 17 was used.
The system started to build the mapping by random

movements in the whole work space and utilized a growing
RBF network as a base layer to support the first stage
learning. The following parameters were used for the based
layer and subnetworks of higher layers: e1 ¼ 0:05,
e2 ¼ 0:005, e3 ¼ maxf0:4 � 0:999i; 0:07g (i is the learning
step); field overlap factor k ¼ 1:0, size of sliding window in
equation (5) m ¼ 150, size of sliding window in pruning
node M ¼ 100, pruning threshold d ¼ 0:001. During the
learning process, neurons were added to or removed from
the mapping network, and the position and width of each
neuron in the network were adjusted to reflect the training
data, therefore the mapping error was reduced. However,
after a period of training, the mapping error changes
effectively cease, i.e. produce no further significant error
reduction, as shown in Fig. 2. There are two main reasons
for this problem: (a) Although each neuron in RBF
networks only covers a local area, its width and position
are adjusted in the learning process, therefore the adjust-
ments may affect the mapping network(s) already set up
before this trial; and (b) The training is driven by random
movements of the robot arm, and the robot arm inverse
kinematic problem is highly nonlinear which is mainly
caused by the geometry of the robot arm. The random
training samples and the global mapping network cause the
owing radial basis function networks for early robot..., Neurocomputing
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mapping error of the workspace to be nonuniform, as
shown in Fig. 3 for the 2-link arm inverse kinematics
problem.

To overcome the above problems, an error-driven active
learning approach with local mapping subnetworks was
used. Fig. 4 gives the dendrogram of the error clusters of
the first layer after 2000 trials of training. It is a
hierarchical tree structure showing the links of two nearest
error clusters with relevant distance on y axis. From this
figure, different scales of clustering can be obtained by
cutting off clusters with small distance, which produce
different size of error clusters. The selection of the cutoff
point depends on the requirements of how big the cluster is
or how big the difference is within a cluster. Generally, the
higher the value of the cutoff point, the bigger the size of
Fig. 3. Error distribution before active learning. The mapping error is

large and nonuniform.
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1
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Mapping error dendrogram

Fig. 4. Mapping error dendrogram. The horizontal axis is the error cluster

index, and the vertical axis is the distance between the two error clusters it

links. Large values on y axis indicate that the two linked clusters are quite

different; while small values mean that the two linked clusters are similar.
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each cluster/subnetwork generated from the hierarchical
tree. Fig. 5 shows the eight clusters with large average error
of the first layer. A threshold was used to remove clusters
with small number of error points, i.e. the system ignores
the error clusters with the number of error locations
less than this threshold. In this paper, we set this threshold
to 10.
Fig. 6 shows the error distribution after active learning in

each of the eight cluster areas in Fig. 5, 400 trials for each
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Fig. 5. Large error clusters located by the hierarchical clustering

technique. The large error clusters are displayed in two figures of mapping

errors, each for one output component. The small errors are plotted in

gray, while the large error clusters are plotted in other colors.

Fig. 6. Error distribution after active learning. The overall mapping errors

are reduced greatly, and become uniform.

owing radial basis function networks for early robot..., Neurocomputing

dx.doi.org/10.1016/j.neucom.2007.05.012


ARTICLE IN PRESS

0

0.004

0.008

0.012

0.016

0 1000 2000 3000

Number of trials

E
rr

o
r

Fig. 7. Comparison between mapping errors with passive and active

learning. The upper curve is the error with passive learning while the

bottom one is for active learning. The figure only shows the results from

the beginning of active learning and ignores the training of the first layer

of the mapping network.

5.00E-05

0 1000 2000 3000

E
rr

o
r 

v
a

ri
a

n
c
e

1.50E-04

1.00E-04

0.00E+00

Number of trials

Fig. 8. Comparison between error variances with passive and active

learning. The upper curve is passive learning while the bottom one is for

active learning.

0

5 8

A
v
e
ra

g
e
 e

rr
o
r

0.02

0.015

0.01

0.005

1 2 3 4 6 7

Cluster ID

After active learning

Before active learning

Fig. 9. Comparison between mapping errors before and after active

learning for each large mapping error cluster.

1

V
a
ri
a
n
c
e

1.00E-04

8.00E-05

6.00E-05

4.00E-05

2.00E-05

0.00E+00

2 3 4 5 6 7 8

Cluster ID

After active learning

Before active learning

Fig. 10. Comparison between error variances before and after active

learning for each large mapping error cluster.

Q. Meng, M. Lee / Neurocomputing ] (]]]]) ]]]–]]]8
cluster. From Figs. 3 and 6, we see that the error after
active learning becomes more uniform and smaller.

Fig. 7 shows a comparison of mapping errors against the
number of trials with passive and active learning, and
Fig. 8 gives their error variance comparison results. At
each trial, the error and error variance in the figure are the
average mapping error over the whole working space (1000
points across the workspace) and the variance of these
mapping errors, respectively. From these two figures, we
see that the system reduced the error and its variance
significantly by using active learning and local RBF
subnetworks at different levels. During active learning,
the robot explored one large error cluster and set up the
local subnetwork before turning to another. At the
beginning of training each subnetwork for a cluster, the
mapping error for the local subnetwork was large due to
lack of experience and neurons in the subnetwork. This is
demonstrated by the transitions between each local subnet-
work in the active learning curves in Figs. 7 and 8. For the
eight subnetworks, the following numbers of neurons were
achieved automatically by growing RBF network algo-
rithm: 10, 13, 14, 14, 13, 9, 7, and 12. Figs. 9 and 10
demonstrate the average error and error variance changes
for each large mapping error cluster by using active
learning with local subnetworks. The average error was
reduced greatly for each cluster and the error variance was
also improved. The error reductions in these large error
Please cite this article as: Q. Meng, M. Lee, Error-driven active learning in gr
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clusters make the mapping error to be more uniform across
the whole workspace as shown in Fig. 6 and the overall
error to become smaller as shown in Fig. 7. It should be
noted that in this paper, only two layers of network are
used, but it is straightforward to add more layers of
subnetworks to reduce any large error clusters using the
same mechanism.

5.1. Under noise condition

In order to test the algorithm’s robustness under noise,
we applied zero-mean gaussian noise to the polar
coordinates ðp; yÞ of the robot arm endpoint and the two
joints. The noise is controlled by the standard deviation of
the gaussian noise function, which is scaled by the noise
level c, and sensory data range R of each joint, p or y,
respectively, as shown in (20).

Njj1;j2;p;y ¼ Nð0;cRjj1;j2;p;yÞ. (20)

It should be noted that for the gaussian noise, if we add,
say, 10% noise level to a joint, then the probability of the
noise between 10% and 20% of the related joint range is
about 27%, and there is about 5% probability of the noise
owing radial basis function networks for early robot..., Neurocomputing
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data being larger than 20% of the joint range. Another
issue is that we applied gaussian noise to the two joints and
polar coordinates ðp; yÞ simultaneously, and this greatly
increases the overall noise level compared to each
individual modality noise level. The active learning method
reduced the mapping errors and their variance under noise
conditions. Fig. 11 shows a comparison result between
mapping errors with passive learning and active learning
under noise level c ¼ 2%.

Table 1 summarizes the comparison results of the
average mapping error and the variance over the whole
workspace after the training process, among passive
learning with adaptive RBF networks, active learning with
hierarchical adaptive RBF networks, and hierarchical
0
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E
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o
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Fig. 11. Comparison between mapping errors with passive learning and

active learning under noise. The error is the average across the whole

workspace using 1000 test points.

Table 1

Comparison of average errors and variances among active learning, passive le

Average errorb Vari

Passive 0.0074 3.29

No noise Active 0.0031 1.67

HME 0.0186 2.52

0.0196 2.61

Passive 0.0345 6.12

2% noised Active 0.0250 4.74

HME 0.0403 6.58

0.0412 6.61

aThe system tried the same total number of learning steps for passive learni

2000 learning steps to reach a stage of steady mapping error. Then local active l

trained 400 steps.
bThe average error across the whole workspace and the variance of the mapp

the workspace were used.
cThe number of nodes with active learning has the format: (the number of n
dThe number is the noise level in (20). We added gaussian noise to polar co
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mixtures of experts (HME) [25] under different noise
levels: c ¼ 0% and 2%. In the comparison, the system
tried the same total number of learning steps for passive
learning, active learning and HME training. We see that at
each noise level, local active learning achieved smaller
mapping errors than passive learning, and the variances
were improved too. Two HME structures have been tested
under each above noise level, 36 experts and 121 experts for
noiseless condition, 100 experts and 365 experts under 2%
noise level. All of these four HME structures used 2 levels,
and expectation–maximization (EM) algorithm was used
as the learning algorithm for the HME architecture. The
experiments show that active learning with hierarchical
RBF network structure in this paper performs better than
HME in both noise levels.
From Table 1, we noticed that under noise condition,

active learning did not reduce mapping errors so signifi-
cantly as noiseless situation. This is because active learning
is mainly to reduce the nonuniformity of sensorimotor
mapping errors due to the nonlinear of the mapping, i.e. to
actively explore the areas with large mapping errors. While
the noise is evenly distributed over the whole work space,
and these noise may contribute to the mapping error,
therefore active learning with local subnetworks may not
reduce the error so significantly under noise condition.

6. Extension to 3D space

In this section, the algorithm is applied to inverse
kinematic problem of an industrial robot (PUMA 560) in
3D space. Fig. 12 and Table 2 show the robot and its
Denavit–Hartenberg (D–H) parameters, respectively. The
link frame assignment of PUMA 560 for D–H parameters
and the definition of the parameters are the same as those
in [10].
In this paper, we consider the PUMA robot inverse

kinematic problem, i.e. converting the end effector position
in 3D into joint values (the orientation of the end effector
arning, and HMEa

anceb Number of nodesc

E�05 30

E�05 29,10,13,14,14,13,9,7,12

E�04 36 experts

E�04 121 experts

E�04 103

E�04 100,22,35,27,45,33,50,44

E�04 100 experts

E�04 365 experts

ng as for active learning approach. In active learning, the base layer tried

earning starts, each local subnetwork covers one large error cluster and was

ing errors over the workspace after learning process. 1000 test points over

odes in base layer, and number of nodes of each cluster in second layer).

ordinates ðp; yÞ of the robot arm endpoint and the two joints.
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Fig. 12. PUMA 560 industrial robot.

Table 2

D–H Parameters of PUMA 560

i ai�1 ai�1 di yi

1 0 0 0 y1
2 �90� 0 0 y2
3 0 a2 d3 y3
4 �90� a3 d4 y4
5 90� 0 0 y5
6 �90� 0 0 y6

0

0 500 2000 2500 3000
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350015001000
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Fig. 13. Comparison between mapping errors with passive learning and

active learning for PUMA robot.

Table 3

Error comparison of each cluster before active learning and after active learn

e1 e2 e3

Before active learning 0.0274 0.0288 0.0335

After active learning 0.0052 0.0047 0.0062

Number of nodes 83 91 86
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are not considered). Spherical polar coordinates are used to
represent a position in 3D space. In this study, the first
three joints are limited to: ½�180; 0�, ½�86; 86� and
½�180; 86�. Fig. 13 illustrates the comparison between
mapping errors with passive learning and active learning
for PUMA 560 robot. The active learning with local
networks overcomes the instability of the passive learning
and reduces the overall mapping errors.
Table 3 gives the error comparison of each large error

cluster before active learning and after active learning,
together with the number of nodes for each cluster. The
error of each cluster was reduced significantly and reached
the error level of other areas in the workspace, and hence
the non-uniform error distribution was improved.

7. Related work

7.1. Biological plausibility

Our long goal is to investigate biologically inspired
learning algorithms for robots at their early stages in order
to not only control artificial machines, but also verify and
help us further understand some models and theories of
biology and psychology [59,35]. In this paper, we focus on
error-driven active learning based on an adaptive and self-
growing neural network with hierarchical structure and
local subnetworks. Recent neurophysiological, psychologi-
cal and neuropsychological research provides strong
evidence to support the key components in the approach
present in this paper.
Evidence reveals that humans use basis functions to

perform sensorimotor transformations [41]; the plasticity
of the network in this paper in terms of growing/shrinking
is similar to that reported in neuroscience [16]. An extended
Kalman filter was used to update the system parameters
during learning. Recent research findings provide evidence
that Kalman filtering occurs in human visual information
processing [43,44], motor coordination control [55], and
spatial learning and localization in the hippocampus [7,51].
In hippocampus studies, a Kalman filtering framework has
been mapped to the entorhinal-hippocampal loop in a
biologically plausible way [7,51]. According to the map-
ping, region CA1 in the hippocampus holds the system
reconstruction error signal, and the internal representation
is maintained by Entorhinal Cortex (EC) V–VI. The output
of CA1 corrects the internal representation, which in turn
corrects the reconstruction of the input at EC layers II–III.
We used matrix inversion lemma to simplify the EKF
ing

e4 e5 e6 e7 e8

0.0212 0.0141 0.0147 0.0170 0.0166

0.0045 0.0043 0.0044 0.0039 0.0056

93 62 88 68 82
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calculations, and this has been widely used in computa-
tional neuroscience [24]. O’Keefe also provided a biologi-
cally plausible mechanism by which matrix inversions
might be performed by the CA1 layer through an iterated
update scheme and in conjunction with the subiculum [39].

Subnetworks were used to learn sensorimotor mapping
locally, similar modular decomposition of sensorimotor
learning exists in human beings to learn visuomotor maps
[17], and other kinematic and dynamic transformations
[13]. These evidence suggest that the brain/CNS may use
multiple local internal modules or experts for different
context, and integrate these local modules by learning.

7.2. Hierarchical neural networks and active learning

The network grows and shrinks according to the novelty
of each example the robot receives, and the algorithm is
based on the RAN [40] and MRAN [30,31] algorithms.
MRAN greatly improved its performance by introducing
network pruning into RAN and utilizing EKF to adjust
network parameters. In this paper, we simplify the EKF
algorithm by decoupling the parameters into two parts:
weights and hidden units, and therefore reduce the
computational cost for real-time applications with reason-
able good accuracy [34]. Similar decoupled EKF technique
was also recently applied to FGAP-RBF algorithm for
classification problems [60]. In our paper, the node-
decoupled EKF for RBF networks is further simplified
by applying the matrix inversion lemma, and new formulae
are derived for the simplified node-decoupled EKF.
Nishida et al. used similar localized extended Kalman
filter to train hyper basis function networks [37]. In order
to increase the learning speed in incremental construction
of feedforward neural networks, Huang et al. [29,22,21]
proposed a novel online sequential extreme learning
algorithm which all the parameters of new added hidden
nodes can be chosen randomly and the learning is only
used to adjust the output weights linking the hidden layer
and the output layer.

Regarding hierarchical neural network structure with
local subnetworks, Jordan and Jacobs presented hierarch-
ical mixtures of experts (HME) [25]. HME uses a tree-
structure architecture for supervising learning, in which the
gating networks sit at the nonterminals of the tree. The
input space is divided into a nested set of regions and each
region is represented by an expert. The main differences
between HME and the approach presented in this paper
are: HME uses a fixed tree branching factor for the whole
space (for example, binary tree structure), the sub-regions
in the whole workspace are determined by the tree
branching factor, and are not actively selected based on
the training error feedback. Another similar hierarchical
RBF network was presented in [12]. However, there are
two main differences: the first is that we use a local
subnetwork for each large error cluster, while [12] used one
network for each layer; the second difference is that we use
an automatic growing RBF network for each subnetwork,
Please cite this article as: Q. Meng, M. Lee, Error-driven active learning in gr
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while [12] used a fixed network structure for each layer: the
number of neurons in each layer, and the position and the
coverage of each neuron were all fixed and predefined.
In terms of active learning, most of the approaches are

based on complicated statistical analysis [9,57,15], which
are usually not applicable to on-line applications. In
robotic learning, the majority of active learning research
comes from the reinforcement learning community [45,27].
The approach of combining interval estimation [27]
exploration heuristic with the ID-3 inductive learning
algorithm [42] was investigated in [45]. The actions were
selected by choosing the leaves on the ID-3 tree that had a
high expected probability of success (reward) conditioned
on the current perceived attributes. Some researchers have
also developed a variety of active exploration heuristics
that tradeoff exploration and exploitation during adaption
[54,5]. The prediction error was used as curiosity rewards in
reinforcement learning in [50]. In this paper, we use the
largest predictor error clusters to drive active learning to
build a hierarchical mapping structure for sensorimotor
learning. Active learning was also integrated into self-
organizing maps (SOM) for classification [19], the sample
query criterion is based on Bayesian decision theory and
aims at selecting the data items of maximum expected
sample value, a quantity that is measured by the expected
change in the clustering cost function. Another technique
related to active learning is Boosting [3,48,46]. Boosting
algorithms produce an accurate prediction rule by combin-
ing rough and moderately inaccurate rules [46]. These
inaccurate prediction rules or weak rules are created by
repeatedly calling the base learning algorithm, but each
time with different subsets of the training examples
which most often misclassified by preceding weak rules
(i.e. generate largest prediction errors). The principle of
placing the most weight on the samples with large
prediction error is similar to our error-driven active
learning, however, the learning structure and algorithm
are different. Here we use a hierarchical and adaptive RBF
structure, each subnetwork in this structure only approx-
imates the residual errors. Furthermore, we use prediction
error information to actively drive robots to explore and
gain more data from areas with large errors, while basic
Boosting algorithms repeatedly reuse sub-sets of the
training examples.
The error-driven learning approach in this paper is

closely related to the divide-and-conquer principle [6]. The
divide-and-conquer methods divide the input domain into
subdivisions in order to simplify the learning problem.
However, traditional divide-and-conquer methods suffer
from the fact that either the division has to be given in
advance or are restricted to a predefined method such as
iteratively splitting the input domain by octrees [38].
Regarding the network structure of active learning, we
see that a local subnetwork for each subdivision of the
input domain has been widely used [9,14,2]. Solving
problems locally using local models is an application of
the general divide-and-conquer principle, and has been
owing radial basis function networks for early robot..., Neurocomputing
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extensively investigated and accepted in numerical mathe-
matics [11] and geometric modeling [38].

8. Conclusion

Self-growing and shrinking neuronal mapping networks
exist in our human brains especially during early infant
cognitive development. Error-driven active learning is used
very often in our daily life. In this paper, we describe a
biologically inspired error-driven active learning approach
in hierarchical adaptive RBF networks for early robot
learning. The biological evidence was revealed to support
the main mechanisms in our approach. A hierarchical
clustering technique is introduced to group mapping errors
and generate large error clusters to drive the active
learning. Local subnetworks are used for active learning
to approximate the residual errors from previous mapping
network levels. Plastic radial basis function networks
construct the substrate of the learning system and a
simplified node-decoupled EKF algorithm is presented to
train these radial basis function networks. Experimental
results demonstrate that our approach of error-driven
active learning with growing RBF networks significantly
reduces mapping errors and improves the nonuniformity of
the mapping errors across the whole working space.
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