
Quasi-Online Reinforcement Learning for Robots
Bram Bakker∗, Viktor Zhumatiy†, Gabriel Gruener‡, and Jürgen Schmidhuber†§
∗Informatics Institute, University of Amsterdam, the Netherlands, bram@science.uva.nl

†IDSIA, Manno-Lugano, Switzerland, {viktor, juergen}@idsia.ch
‡CSEM, Alpnach, Switzerland, gabriel.gruener@csem.ch
§TU Munich, Germany, juergen.schmidhuber@in.tum.de

Abstract— This paper describes quasi-online reinforcement
learning: while a robot is exploring its environment, in the back-
ground a probabilistic model of the environment is built on the
fly as new experiences arrive; the policy is trained concurrently
based on this model using an anytime algorithm. Prioritized
sweeping, directed exploration, and transformed reward func-
tions provide additional speed-ups. The robot quickly learns goal-
directed policies from scratch, requiring few interactions with the
environment and making efficient use of available computation
time. From an outside perspective it learns the behavior online
and in real time. We describe comparisons with standard methods
and show the individual utility of each of the proposed techniques.

I. INTRODUCTION

Reinforcement learning (RL) [11] is an attractive technique
for robots, because it allows them to autonomously learn a
great variety of tasks based on a straightforward trial and error
process and simple scalar reward signals. However, one of the
main problems is that standard RL techniques require many
learning iterations, i.e. many state-action-reward-next state
interactions with the environment. In the case of robots, each
interaction with the environment is typically very expensive (in
terms of time), making standard RL techniques impractical.

This paper reports on work on accelerating RL using
an innovative combination of the following techniques and
applying them to a real robot:

• Dyna-like online model learning [10], [8]
• Prioritized Sweeping (PS) [4], [7]
• Directed exploration [10], [4], [8]
• Transformed reward functions [5]

In a sense, we investigate how well reinforcement learning
from scratch can work for robotics, using these techniques,
without resorting to extensive a priori learning or program-
ming.

One contribution of this paper lies in the novel combination
of techniques. Secondly, these techniques have, by themselves,
rarely or never been investigated on real robots, and we
describe adaptations to make them applicable and particularly
well-suited to real robots. Thirdly, we provide a systematic
evaluation of their individual contributions, and compare them
to standard techniques.

The investigated combination of techniques allows for
quasi-online reinforcement learning: as the robot is exploring
its environment, in the background (in the control computer’s
idle time) a model of the environment is built on the fly as
new experiences arrive, and the policy is trained concurrently

based on this model. Directed exploration based on the model
and policy learned so far, and a reward function transformed
in a principled way, provide additional speed-ups. The result
is that the robot learns very quickly, both in terms of required
environment interactions and in terms of computation, and
from an outside perspective learns the behavior online and
in real time.

In this work we formalize the robot task as a Markov Deci-
sion Process (MDP). The next section briefly reviews MDPs
and corresponding standard solution methods, value iteration
and Q-learning. Section III describes, in turn, each of the
investigated techniques to accelerate RL. Section IV describes
the robot and its task. Section V describes experiments done in
simulation and with a real robot. Section VI, finally, presents
a general discussion of the results and possible future work.

II. MDPS AND STANDARD SOLUTION TECHNIQUES

A. MDPs

The robot task is formalized as a Markov Decision Process
(MDP). An MDP M is a tuple 〈S,A, T ,R〉. S is a finite set
of states s, some of which may be terminal states. A is a finite
set of actions a, whose availability may depend on the state.
T : S × A × S → [0, 1] defines the state transition function
that describes the probability p(s′|s, a) that the system will
move from state s to s′ after performing the action a ∈ A.
R : S × A × S → IR defines the expected immediate real-
valued reward r(s, a, s′) when action a is taken in state s and
the transition to s′ is made.

The objective is to determine a policy π : S → A which at
discrete time step t selects an action at given the state st and
which maximizes the expected discounted future cumulative
reward, or return: rt+γrt+1+γ2rt+2+... =

∑
i
γirt+i, where

γ ∈ [0, 1] is a factor which discounts future rewards.

B. Value iteration

MDPs with known state transition functions and reward
functions can be solved optimally using dynamic programming
methods. Because it uses a model, this approach may be called
model-based RL.

Dynamic programming iteratively computes the value func-
tion Q(s, a), which represents the estimate of the expected
return attainable from each state. It is guaranteed to converge
to the optimal value function Q∗

(s, a), which represents the
maximum attainable expected return. One well-known method,

Proceedings of the 2006 IEEE International Conference on Robotics and Automation
Orlando, Florida - May 2006

0-7803-9505-0/06/$20.00 ©2006 IEEE 2997

value iteration, repeatedly sweeps through the state-action set
of the MDP and updates each state-action value according to

Q(s, a) ←
∑
s′

p(s′|s, a)[r(s, a, s′) + γ max
a′

Q(s′, a′
)] (1)

until the largest change in value of any of the state-action
pairs, Δ, is smaller than a small constant threshold. After
convergence, the optimal policy is followed by simply taking
the greedy action in each state s: a∗

= arg maxa Q∗
(s, a).

With n states and a maximum of m admissible actions for
any state, value iteration requires for each sweep through the
state space at most O(mn) operations in the deterministic case
and O(mn2

) operations in the stochastic case. Because of this,
it can become very slow with large numbers of states.

C. Q-learning

When a model of the environment is not available, one may
learn value functions and/or policies directly from experience,
without using a model. This is called direct or model-free RL.

The most widely used model-free RL algorithm is Q-
learning [12]. The basic idea is to incrementally estimate
values of state-action pairs, Q-values, based on experienced
rewards in the environment and the currently estimated Q-
values. When an action a is taken in state s, next state s′ is
observed, and reward r is received, the corresponding Q-value
is updated by

Q(s, a) ← Q(s, a) + α[r + γ max
a′

Q(s′, a′
) − Q(s, a)] (2)

where α is a learning rate parameter. Convergence to the
optimal values is guaranteed under certain standard conditions
[12], [11]. However, typically many interactions with the
environment are required for convergence to a good or optimal
value function and policy.

III. TECHNIQUES FOR ACCELERATING RL

A. Dyna

Dyna-like frameworks [10], [8] assume, like Q-learning, that
no model of the environment is available a priori, and learns
from experience. However, unlike Q-learning, it uses each
state-action-reward-next state experience to not only update
the policy, but also to simultaneously learn a predictive model
of the environment; and this model is used concurrently to
train the policy. In Sutton’s [10] simple Dyna version, each
real experience leads to one value update (eq. 2), as it does in
standard Q-learning, but now each real experience is followed
by n simulated experiences produced by the model, all leading
to additional standard Q-learning updates.

A related, standard approach in applying RL and other
learning techniques to robots [6] is to build or learn a model
of the environment in an initial system identification phase.
In the next phase, model-based learning techniques are used
to learn the policy offline. Finally, the resulting policy is
transferred to the robot. In contrast to that approach, Dyna
allows the RL method to explore and learn truly autonomously
and online, without different phases assigned by humans.
Model and policy are learned concurrently with exploration

of the environment, which means that model uncertainty and
the current policy can guide exploration. In this way model
uncertainty can automatically be corrected, and the model can
become most precise in those areas of the state-action space
which are most relevant for the policy, because exploration will
focus on those areas. The disadvantage of Dyna, on the other
hand, is that early experience can lead to an initially imperfect
and incomplete model, which may bias the learning of the
policy in inappropriate ways. Below we provide solutions for
this issue.

B. Prioritized Sweeping

Prioritized Sweeping (PS) [4], [7] can be understood as
an extension of the Dyna framework. It assumes that the
model that is learned can be used for value iteration, i.e. it
must contain explicit state transition probabilities p(s′|s, a)

and expected rewards r(s, a, s′).

Initialize Q(s, a), p(s′|s, a), and r(s, a, s′) for all s ∈ S
and a ∈ A
loop

s ← current (nonterminal) state
a ← exploration(s,Q)

Promote (s, a) to top of priority queue
Execute action a
while there is time and priority queue not empty do

Remove top state-action pair from priority queue and
call it (sp, ap)

Qp ←
∑
s′

p

p(s′p|sp, ap)[r(sp, ap, s
′
p)+γ max

a′
p

Q(s′p, a
′
p)]

Δ ← |Qp − Q(sp, ap)|
Q(sp, ap) ← Qp

if Q(sp, ap) = maxa′
p
Q(sp, a

′
p) and Δ > θ (a tiny

threshold) then
for all (s′′p , a′′

p) ∈ predecessors(sp) do
P ← p(sp|s

′′
p , a′′

p)Δ

if P > θ and ((s′′p , a′′
p) not on priority queue, or

P exceeds current priority of (s′′p , a′′
p)) then

promote (s′′p , a′′
p) to new priority P

Observe state s′ and reward r resulting from action a
Update model, p(s′|s, a) and r(s, a, s′), based on s′,r

Algorithm 1: Pseudocode of parallel anytime Prioritized
Sweeping, as it used in this paper.

PS modifies the way of doing value iteration updates, com-
pared to standard value iteration. Rather than doing full sweeps
through the entire state-action set, PS focuses computational
effort where it can do the most good. That is, it gives priority
to those state-action pairs whose Q-values are most likely to
have the largest changes. This is implemented by maintaining
a priority queue, and placing state-action pairs on the priority
queue depending on the change in Q-values of their successors.
After all, if their successors have large changes in value, these
state-action pairs will likely have large changes in values as
well (see eq. 1). Value iteration updates are done on state-
action pairs in the order indicated by the priority queue. The

2998

priority queue is itself continuously updated after each value
iteration update.

PS can combine the best of model-based and model-free
RL methods. Like model-based methods, it maximally exploits
information from real experiences to learn a model and maxi-
mally exploits the model by doing full value iteration updates
rather than sample-based value updates. At the same time, like
model-free methods it focuses its efforts on updating relevant
state-action pairs’ Q-values rather than dispersing the efforts
evenly and inefficiently over the entire state-action space.

Standard Dyna and Prioritized Sweeping [4], [7] corre-
spond to serial algorithms that first obtain an experience,
subsequently allow n iterations of value updates based on the
model, then obtain an experience again, etc. In real robots,
the execution of actions and the reading out of sensors take
a significant amount of time, during which the RL control
computer’s CPU is usually idle for much of the time. We
adapt Dyna/PS to make it a parallel anytime algorithm: all
idle computer time is used for iterations of value iteration
according to PS, until the next robot action must be selected
or the priority queue is empty. When there is no sufficient
computation time for convergence to the value function that
is optimal given the current model, this parallel anytime PS
algorithm focuses computation on the most important state-
action pairs, and it always yields a viable value function.
Algorithm 1 provides pseudocode of parallel anytime PS, as
it used in this paper.

C. Directed exploration

Exploration is an inherent aspect of any RL method that
does not assume an a priori model. Undirected exploration,
which explores evenly around the currently policy, is often less
efficient than directed exploration, which attempts to direct ex-
ploration towards “interesting” parts of the state-action space.
Directed exploration is especially beneficial in the case of
Dyna and PS [10], [8], [4], [7]: with standard, straightforward,
undirected exploration, the system may converge prematurely
to suboptimal policies based on an imperfect, incomplete
model learned from limited early experience.

We use a combination/variation of two methods [4], [10],
which results in a directed exploration technique that is
particularly effective for robot RL. It requires the storage of
some extra information for each state-action pair. Using the
terminology of [10], an exploration bonus is added to the
estimated Q-values, which reflects the added value of selecting
a particular state-action value for the sake of exploration,
and action selection is done based on these Q-values plus
exploration bonuses:

Q+
(s, a) = Q(s, a) + ε

√
m(s, a)/n(s, a) (3)

where ε is a constant, m(s, a) is the number of time steps since
action a was last tried in state s, and n(s, a) is the number
of times action a was tried in state s at all. If n(s, a) = 0

it is replaced by a constant ν ∈ [0, 1). Q+
(s, a) is used for

standard Boltzmann exploration, which assigns probabilities

of action selection p(s, a) in proportion to values [11]:

p(s, a) =
eQ

+(s,a)/τ∑
a′ eQ+(s,a′)/τ

(4)

where τ is the so-called temperature parameter.
The net result is exploration that favors actions which are

promising with respect to rewards (the effect of Boltzmann
exploration), that favors actions that have not been tried often
(the effect of n(s, a)), and that favors actions that have not
been tried for a while (the effect of m(s, a)). Once n(s, a)

becomes very large, the exploration bonus vanishes.

D. Transformed reward functions

Appropriate reward functions can speed up RL significantly,
because they may give “encouragement” for imperfect but
approximately correct behavior, and thus direct exploration to-
ward promising parts of the state-action space. However, many
authors have reported problems when using such functions.
The main problem is that imperfect behavior is rewarded and
the system may converge to behavior which obtains a lot of
reward but fails to accomplish the desired task. An example
is a soccer-playing Robocup robot which was given a small
reward for touching the ball (since possession of the ball is
important in soccer) and which learned to remain next to the
ball and “vibrate”, i.e. touching it as often as possible [5].

However, it is possible to design appropriate reward func-
tions and avoid such undesirable and pathological behavior.
The first step is to design a straightforward reward function
which genuinely reflects the goal of the task. For instance, if
the robot is a soccer-playing robot, it may get a reward of 1

if it scores a goal and −1 if the opponent scores a goal.
In the second step we transform this original reward func-

tion to make it more informative during learning. The key
idea is that the optimal policy according to the transformed
reward function must be identical to the one according to the
original reward function. This is the case if, and only if, the
transformed reward r(s, a, s′) has the following form [5]:

r(s, a, s′) = rorig(s, a, s′) + F (s, a, s′) (5)

where rorig(s, a, s′) is the original reward and F is a differ-
ence of potentials:

F (s, a, s′) = γΦ(s′) − Φ(s) (6)

where Φ is a potential function defined over states.
This still leaves room for different potential functions. The

design of a particular potential function is problem-dependent.
But for any given problem, various potential functions can
speed up learning immensely compared to the original reward
function, while guaranteeing that the optimal policy remains
the same as the one according to the original reward function
[5].

IV. LEARNING TASK

A. Task and robot

The techniques designed to accelerate RL described above
were investigated by applying them to a real robot’s RL task.

2999

Fig. 1. Fig. a (left). The wheeled mobile robot, equipped with a standard
forward looking camcorder camera, and front and back ultrasound sensors.
Fig. b (right). Camera image obtained by the robot. The target object, the
yellow cup, is in sight. Detected target color pixels are indicated in blue. The
small yellow cross marks the center of the cluster of target color pixels. This
information is quantized using a regular 5 by 4 grid (white lines). Bold red
lines indicate the grid cell corresponding to the quantized state information.

The task is to find a specific object (a yellow coffee cup in our
experiment, see figure 1b), to move towards it, and to bump
into it, while avoiding bumping into walls. The task is inspired
by the Robocup task of finding a ball, moving towards it, and
kicking it. The robot moves around inside a fenced area (see
figure 3).

The robot is a small wheeled mobile robot equipped with
ultrasound sensors in the front and the back and a forward
looking standard Camcorder camera (see figure 1a). It has an
onboard low-level motor controller which implements 6 basic
actions: go forward (approx. 20 cm), go backward (approx. 20
cm), turn left (approx. 20 degrees), turn right (approx. 20
degrees), turn left and go forward, turn right and go forward.
Which of these actions is to be executed during each iteration
(taking approx. 0.4 seconds) is determined by the RL system
running on an offboard computer. Another offboard computer
is used for dedicated processing of visual data coming from
the camera.

B. State information

The robot’s camera images are processed as follows. A sim-
ple color vision algorithm looks for clusters of densely packed
pixels of certain color (yellow in this case) in the image. If
and only if there is such a cluster, it marks coordinates of
the center of this cluster (see figure 1b). This process has
some (difficult to quantify) noise, especially with increasing
distance to the object of interest. A regularly spaced 5 by 4
grid divides the entire image into 20 regions. All coordinate
values marking the presence of the cluster of specific color
(the yellow coffee cup) within one grid region are assumed
to correspond to one state. Using this standard, BOXES-style
state aggregation method [3], the continuous state is quantized
into discrete states.

Additional state information is provided by two ultrasound
sensors mounted in the front and in the back, respectively.
Each sensor provides noisy estimates of distance to the nearest
object, if this object is less than approx. 1m away. For each
of the ultrasound sensors, this information is quantized into 3
discrete categories: no obstacle (obstacle > .30 m), obstacle
near (obstacle > .15 m and < .30 m), and obstacle bump

(obstacle < .15 m).1 Together with the visual information this
leads to a total of 3 × 3 × 21 (20 grid cells + not seeing the
target object) = 189 possible states.

C. Reward function

The ultrasound sensors are used to detect bumping into ob-
jects (walls) other than the target object, and this automatically
stops forward or backward motion and leads to a negative
reward of −1, but how to avoid bumping must be discovered
by the learning algorithm. Similarly, the ultrasound sensors
and visual information (lowest-central tile in the visual field,
see fig. 1b) are used to automatically detect bumping into the
target object, the yellow cup, which leads to a positive reward
of 4 and the end of the episode. The reward discount parameter
γ = .95.

This original reward function, which directly reflects the
basic goals of the task, is transformed, as described above,
using a potential function. In this task, the potential function
Φ is a function which increases as the coordinates of the grid
cell in which the detected target object lies, (x, y), are closer
to the center of the image (x = 0), meaning that the robot is
facing the target object more directly, or closer to the bottom
of the image (y = 0), meaning that the robot is closer to the
target object:

Φ(s) =

{
6 − |x| − y if target in view
0 otherwise.

(7)

V. EXPERIMENTS

A. Simulation experiment

The state and action representations, reward function, and
learning algorithms described above were tested in simulation
before applying them to the real robot. The simulations were
not used to train the controller beforehand and apply an
already trained controller to the real robot. Instead, the simu-
lations were used to systematically compare different methods
in many runs, which would be impossible in the real robot.
We used a simple simulation of the continuous world of the
robot in its fenced area, with randomly placed robot starting
positions, target positions, and several obstacles (see figure
2a). Actions were as described above. Limited field of view
(90

◦) vision and ultrasound sensors were simulated based on
the simulated robot’s orientation and its distance to the target
object, obstacles, and walls.

Using the state and action representations described above,
we systemically investigated the utility of the described ex-
tensions to the standard RL framework. Starting with standard
Q-learning, we consecutively add Dyna, Prioritized Sweeping,
directed exploration, and the transformed reward function. We
measure performance for each variation in terms of required
numbers of state-action-reward-next state iterations and num-
bers of value updates.

The Q-learning method used the standard update rule of
eq. 2 and Boltzmann exploration with temperature decreasing

1To avoid damage to the robot and obstacles, we do not want the robot to
actually bump into obstacles and the target object, which is why we build in
this safety margin of 15 cm.

3000

0 0.5 1 1.5 2 2.5

x 10
4

0

50

100

150

200

250

300

350

400

450

500

Number of iterations
A

ve
ra

ge
 n

um
be

r
of

 a
ct

io
ns

 to
 ta

rg
et

Q−learning
Dyna
PS
PS+DE
PS+DE+TR

0 0.5 1 1.5 2 2.5

x 10
4

0

0.5

1

1.5

2

2.5

3
x 10

6

Number of iterations

T
ot

al
 n

um
be

r
of

 v
al

ue
 u

pd
at

es

Q−learning
Dyna
PS
PS+DE
PS+DE+TR

Fig. 2. Fig. a (left). Screenshot of the simulated robot and its environment. The simulated robot is close to and oriented towards the round, yellow target
object. Also shown are square obstacles. Fig. b (middle). The average number of actions needed to reach the target, for each investigated method, as a function
of state-action-reward-next state iterations. See text for explanation. Fig. c (right). The cumulative number of value updates for each investigated method, as
a function of state-action-reward-next state iterations. See text for explanation.

over time. We tested learning rates α in the range [0.1, 0.8],
and used the best value for this task, α = 0.3. The Dyna
method used standard value iteration. The model, i.e. the state
transition function and reward function, was learned based
on maximum likelihood, i.e. by counting and averaging over
experienced state transitions and rewards. After each state-
action-reward-next state iteration, a maximum of 2000 value
updates were allowed for value iteration on the current model.
Our Prioritized Sweeping method was similarly allowed 2000
value updates after each state-action-reward-next state iter-
ation, and priority threshold θ = .0001. Next, Prioritized
Sweeping was extended with the directed exploration method
described above, using exploration parameters ε = .02 and
ν = .1. Finally, the transformed reward function was added as
described above.

Figure 2b shows learning performance as a function of state-
action-reward-next state iterations for each of the methods,
averaged over 10 runs. Learning performance is measured as
the average number of actions it takes the robot to bump into
the target object (the system always learned to avoid bumping
into walls/obstacles as well).

The Q-learning method needed the largest number of iter-
ations to reach good performance. The Dyna method needed
only about one third of Q-learning’s number of iterations to
learn the task well. This is in large part due to the fact that in
contrast with Q-learning, Dyna can do a lot of latent learning,
i.e. learning about the characteristics of the environment,
regardless of whether any target rewards are obtained. Once
Dyna experiences the target reward, all this latent learning
allows it to estimate a reasonable policy for the whole state
space almost immediately.

The Prioritized Sweeping method (PS) did not improve
much on the plain Dyna method in terms of number of
iterations to learn the task. This is probably because 2000 value
updates between each state-action-reward-next state iteration
were sufficient for Dyna with standard value iteration. Priori-
tized Sweeping with directed exploration (PS+DE), however,

did significantly reduce the number of iterations needed to
learn the task. This is the case because the directed exploration
method allows the system to more systematically explore the
state-action space, such that the target object is encountered
sooner. Adding the transformed reward function, finally, led
to by far the lowest number of iterations needed to learn the
task (PS+DE+TR). Now just seeing the target object leads to
rewards, such that value function learning can start earlier and
the robot explores the state-action space even more efficiently,
guided by the task’s requirements.

Figure 2c shows total, cumulative numbers of value updates
for each of the methods, again as a function of state-action-
reward-next state iterations. Standard Q-learning makes as
many value updates as state-action-reward-next state iterations.
The Dyna method, in contrast, made many millions of value
updates. With larger state-action spaces or less time between
state-action-reward-next state iterations, that would make this
Dyna method with standard value iteration impractical. All
Prioritized Sweeping variations required significantly fewer
value updates, so they scale much better with larger problems
and stringent real-time requirements. The versions with di-
rected exploration and with transformed rewards made slightly
more value updates, because they encounter more rewards or
encounter rewards earlier.

B. Real robot experiment

Based on the results of the simulations, the complete RL
system with Prioritized Sweeping, directed exploration, and
transformed reward function was implemented in the real
robot. The value function/policy learned in simulation were
not used, the real robot learned from scratch. As described
above, parallel anytime PS was used, using all idle time of
the RL computer while executing actions and sensing. The
priority threshold θ = .0001. The directed exploration method
used exploration parameters ε = .02 and ν = .1.

This combination of techniques allowed the robot to learn
the task in around 20 minutes of learning. In this period, there
was time for approximately 4000 real state-action-reward-next

3001

Fig. 3. Snapshots (ordered like text) of robot moving around inside the fenced area containing the target object, a yellow cup. Top row: after approximately
20 minutes of learning, the robot searches for the target object effectively, and approaches it directly. Bottom row: the robot generalizes successfully to novel
starting positions and target object positions.

state experiences. But sufficient learning of the task required
around a million of value updates in the background using our
anytime PS algorithm.

Figure 3 shows a number of snapshots of the robot during
its task execution.2 First of all, the robot learns to successfully
avoid bumping into walls (or obstacles placed in the robot’s
way), excluding occasional bumping due to exploration. The
robot’s strategy for finding the target object is to usually
simply turn around in one direction until it sees the target
object, and to occasionally move forward or backward (note
that the robot continues to use its exploration algorithm). This
may be likened to “searching” behavior. Once the robot sees
the target object, it approaches the target directly, making small
corrections to keep the target in the center of its field of view,
until its sensors indicate it has bumped into the target.

Importantly, experience with only a limited number of
different robot starting positions and target object positions
allowed the robot to generalize its behavior successfully to
other robot starting positions and target object positions.

VI. DISCUSSION

The combination of techniques investigated in this study
allowed a real robot to do quasi-online reinforcement learning
from scratch. From an outside perspective the robot learned
a nontrivial task online and in real time. The robot learned
very efficiently, both in term of required environment interac-
tions and in terms of computation, compared to standard RL
techniques.

Possible further improvements to the methods explored
in this paper include more sophisticated generalization tech-
niques [9], [8], [1], [6], techniques for dealing with partial
observability [2], [1], and techniques for easily adding more
background knowledge [9]. In general, successful applications

2http://www.science.uva.nl/˜bram/RobotCup.htm has
videos of the robot’s behavior, both during the initial stages of learning and
after sufficient learning.

of RL to robots will, as in this paper, most likely require a
combination of techniques that work well together.

ACKNOWLEDGMENTS

The work described in this paper was mostly done while the
first author was at IDSIA, and it was supported by the Swiss
Center for Electronics and Microtechnology (CSEM) and EU
project FP6-511 931.

REFERENCES

[1] B. Bakker, V. Zhumatiy, G. Gruener, and J. Schmidhuber. A robot that
reinforcement-learns to identify and memorize important previous obser-
vations. In Proceedings of the 2003 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 430–435, 2003.

[2] A. R. Cassandra, L. P. Kaelbling, and M. L. Littman. Acting optimally
in partially observable stochastic domains. In Proceedings of the Twelfth
National Conference on Artificial Intelligence, Seattle, WA, 1994.

[3] D. Michie and R. A. Chambers. BOXES: An experiment in adaptive
control. In Dale E and Michie D., editors, Machine Intelligence 2, pages
137–152, Edinburgh, 1968. Oliver and Boyd.

[4] A. Moore and C. Atkeson. Prioritized sweeping: Reinforcement learning
with less data and less time. Machine Learning, 13:103–130, 1993.

[5] A. Y. Ng, D. Harada, and S. Russell. Policy invariance under reward
transformations: theory and application to reward shaping. In Proc. 16th
International Conf. on Machine Learning, pages 278–287, 1999.

[6] A. Y. Ng, H. J. Kim, M. Jordan, and S. Sastry. Autonomous helicopter
flight via reinforcement learning. In Advances in Neural Information
Processing Systems 16, 2004.

[7] J. Peng and R. J. Williams. Efficient learning and planning within the
dyna framework. Adaptive Behavior, 1 (4):437–454, 1993.

[8] J. Schmidhuber. Curious model-building control systems. In Proceedings
of the International Joint Conference on Neural Networks, Singapore,
volume 2, pages 1458–1463. IEEE press, 1991.

[9] W. D. Smart and L. P. Kaelbling. Practical reinforcement learning
in continuous spaces. In Proc. 17th International Conf. on Machine
Learning, pages 903–910. Morgan Kaufmann, San Francisco, CA, 2000.

[10] R. S. Sutton. Integrated architectures for learning, planning, and reacting
based on approximating dynamic programming. In Proc. 7th ICML,
pages 216–224, 1990.

[11] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction.
MIT Press, Cambridge, MA, 1998.

[12] C. J. C. H. Watkins. Learning from delayed rewards. PhD thesis,
Cambridge University, 1989.

3002

