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Abstract - In this paper, we focus on the problem of

maximizing system performance for future space exploration

missions involving both human and robot agents. One of the

main challenges in human-robot interaction scenarios is

determining which tasks are best done with either human,

robotic systems, or in collaboration with each. Such partitioning

of the task space must acknowledge the capabilities of both

agents, as well as incorporate the effect of repetitive workload, or

stress, on the human operator. Our methodology for role

allocation, which typically consists of either the human or the

machine executing a single task, is based on predicting system

performance of a given scenario by incorporating the concept of

task switching. Task switching is defined as the process of

alternating or switching attention between tasks when

responding to a sequence of stimulus presentations. Using this

concept, system performance can be predicted and used to

determine an optimal allocation of tasks to be divided between

human controlled and autonomous robotic systems to minimize

mental workload while maximizing task performance. We

provide details of the approach in this paper and present our

results as applied to a simulated rendezvous/docking mission

scenario.

Index Terms – Human-Robot Interaction, Task Allocation,
Space Exploration, Performance Assessment

I. INTRODUCTION

As human-robotic systems are increasingly deployed in

future space exploration scenarios, such as Moon exploration,

in-space assembly operations, and habitat construction [1],

there is a corresponding need to develop methods that

optimally partition the task space to ensure mission success. In

this paper, we focus on the problem of maximizing system

performance for future space exploration missions by

acknowledging the capabilities of both agents, as well as

incorporating the effect of repetitive workload, or stress, on

the human operator. In our approach, partitioning the task

space involves predicting system performance of a given

mission scenario by constructing an optimization function

based on the concept of task switching. This involves

analyzing the effect of task switching, i.e. the cost associated

with switching attention between two tasks, in two different

dimensions – task switching within a scenario, and task

switching between iterations of the same scenario. This

predicted system performance parameter can then be used to

determine an optimal allocation of tasks to be divided between

human and robotic-system to minimize mental workload while

maximizing task performance.

II. BACKGROUND

The first formal research in role allocation for human-
machine scenarios is addressed in [2], in which decisions
between machine versus human control are made based on a
simple comparison of capabilities. Earlier work in role
allocation is also found in [3] in which human and machine
capabilities are scaled in order to determine when role
transitions should occur. Olsen and Goodrich [4] develop a
model to allocate roles in human-robot interaction schemes
based on assessment of the number of robots a single
individual can control in a given scenario. In [5], a human-
centered approach is used to understand the role of human-
robotic teamwork in future human space exploration missions.
In this work, a framework is developed in which robots
become functional tools that assist the human rather than
replace the human operator. In [6, 7], the focus is to change
roles by dynamically adjusting the autonomy of an intelligent
agent based on human physiological responses [6] and
reasoning about the costs of decisions [7]. Role allocation in
human and robot teams is proposed in [8,9] using an analytical
framework that decomposes tasks into independent functional
primitives. In [10], Sheridan presents a ten level autonomy
scale that allows for intermediate collaboration between
human and machine and complementary research is presented
in [11] that introduces taxonomies and metrics for task-
oriented human-robot interaction in terms of five task
categories dependent on the level of human interaction.

Previous research in human-robot role allocation typically
looks at the capabilities of the human and robot agent based on
expected performance. Although research in human-robot task
allocation is expanding, an approach that integrates the
expected contributions of both human and robot agents to
estimate performance has been only limitedly addressed. This
work attempts to address these limitations by developing a

systematic approach that incorporates the various effects of

workload on human performance and predicts system

performance derived from allocation of tasks between human-

controlled and autonomous robotic systems. The overall

objective is to use performance characteristics to determine an

optimal allocation of tasks to be divided between human and

robotic-system to minimize mental workload while
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maximizing task performance, as necessary for such future

mission scenarios as Mars exploration, habitat construction,

and in-space assembly.

III. ROLE ALLOCATION IN HUMAN-ROBOT INTERACTION

SCHEMES

The process of role allocation involves estimating a

suitable allocation of tasks between humans and machine that

maximizes the performance of a system. The first step in this

process involves constructing an optimization function that

incorporates aspects of the performance associated with

individual task execution into estimates of the performance for

implementation of a sequence of tasks. This sequence

execution parameter (SEP) represents the performance

associated with a designated allocation of tasks between

humans and machine. To use the sequence execution

parameter as a representation of our optimization function, we

must analyze different combinations of task operations

executed by different agents at different times. This is due to

the fact that the sequence execution parameter not only varies

due to the agent’s performance on individual tasks, but

depends, as well, on the sequential relationship between tasks.

The main theory underlying the process for determining

the sequence execution parameter is dependent on the concept

of task switching [12-14]. Task switching is defined as the

process of alternating or switching attention between tasks

when responding to a sequence of stimulus presentations.

Previous research has shown that the cost of switching

increases when a human participant is required to alternate

between tasks, but that this switching cost is not significantly

dependent on the nature or difficulty of the task. Although the

exact value of the switching cost (typically computed as a time

factor) depends on differences in the experimental setup, there

is general consensus on the different type of factors that affect

the cost of switching.

A scenario is defined as a sequence of tasks that are

necessary to achieve a desired goal. When determining the

sequence execution parameter associated with a scenario, we

must analyze two different dimensions – task switching within

a scenario, and task switching between iterations of the same

scenario. To further clarify our approach, we define some

common terminology associated with the task-switching

paradigm.

• Switching cost is defined as the difference in performance

of an individual task on trial k when participants perform

a different task on trial k-1.

• The Response-Stimulus Interval (RSI) is defined as the

time interval between the completion of a task and the

presentation of the next stimuli for implementation of the

next task.

• Transition cost is defined as the difference in performance

of a task sequence (i.e. scenario) on trial n when

participants perform a different task sequence on trial n-1.

• Task inertia, which reduces task-to-task switching cost,

develops when a sequence of tasks belonging to the same

scenario are repeatedly performed.

Based on these common definitions, our sequence

execution parameter can be determined based on augmenting

the summation of individual task performance values with

derived values from the four parameters. To determine these

values, we further analyze the task-switching results from the

human participant studies performed in [12-14], to derive the

following observations related to our application:

• Observation 1

o By increasing the response stimulus interval (RSI),

the switching cost decreases accordingly. Based on

analysis of the relationship between switching cost

and RSI, the switching cost associated with short RSI

(20ms), is larger than with longer RSIs (550 ms), with

no further reduction in switching cost after 1100ms.

• Observation 2

o Transition costs are highest at the first introduction of

a new sequence.

• Observation 3

o By increasing task inertia (i.e. increasing the number

of times a sequence of tasks is repeated), transitioning

to a different task sequence results in higher transition

costs.

• Observation 4

o Increasing task inertia decreases transition costs

between task sequences.

The parameters associated with the task-switching

paradigm are typically noisy, as they are computed based on

human participation data extracted from averaging the results

of many experiments and based on a diverse set of users. As

such, we evaluate the sequence execution parameter using a

fuzzy logic construct.

Fuzzy logic [15] is a superset of Boolean logic that has

been extended to deal with the notion of partial truths in which

truth values range from [0.0, 1.0], where 0.0 represents

absolute Falseness and 1.0 represents absolute Truth. With

this construct, membership values (i.e. truth values) are used

to represent the degree to which an input or output value

belongs to a variable, represented symbolically by a fuzzy set.

Determination of membership values is accomplished through

the utilization of a set of if-then rules that relate inputs to

system outputs. These linguistic fuzzy sets and conditional

statements allow us to model switching and transition costs

based on information extracted from the noisy, imprecise,

experimental data derived from the human participants.

For our purposes, we categorize switching and transition

costs into the linguistic fuzzy set {Zero, VerySmall, Small,
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Medium, Large, VeryLarge}, which is defined based on the

membership functions as depicted in Figure 1.

Figure 1. Fuzzy membership functions depicting switching

and transition costs

A. Observation 1: Fuzzy Rule Set (fobs1)

Figure 2a depicts the relationship between the response

stimulus interval RSI and human response time as defined in

[13]. We represent RSI by the linguistic fuzzy set {SHORT,

LONG} as depicted in Figure 2b. Based on Figure 2a, we

determine the effect of RSI on the switching costs associated

with transitioning from task k to a different task at k-1. We

model this relationship based on the following fuzzy rule set:

• If RSI is SHORT then SwitchingCost is MEDIUM

• If RSI is LONG then SwitchingCost is SMALL

Figure 2: a) Depicts Response Stimulus Interval with respect

to Switching Cost b) Membership functions representing RSI

Figure 3 depicts the relationship between task inertia and

human response time as discussed in [12], where we represent

task inertia by the linguistic fuzzy set {SMALL, MEDIUM,

LARGE, VERYLARGE}. Based on human participation data

[12], we construct rule sets that incorporate Observations 2, 3,

and 4 as discussed below.

Figure 3. Depicts average response time for the three trials

before and four trials after the transition point. The separate

curves represent changes in the transition point, which occurs

after trials 4 through 11, and corresponds to increased task

inertia.

B. Observation 2: Fuzzy Rule Set (fobs2)

From Figure 3, we calculate that the maximum transition

cost associated with the initial task sequence is associated with

the VERYLARGE membership value. This gives us an

initialization value for transition cost, such that:

TransitionCost0 = VERYLARGE

C. Observation 3: Fuzzy Rule Set (fobs3)

Based on Figure 3, we determine the effect increasing

task inertia has on the transition costs associated with

transitioning to a different task sequence. Transition costs,

depicted in Figure 4, are computed as the difference in average

response time for the three trials before the transition point,

and the response time of the first trial after the transition.

Figure 4. Graph associating transition cost and task inertia

before the transition point

This relationship, associated with Observation 3, is used

to derive the following rule-set:

• If Transition is TRUE

o If Task-Inertia is SMALL OR Task-Inertia is

MEDIUM then TransitionCost is MEDIUM
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o If Task-Inertia is LARGE then TransitionCost is

LARGE

o If Task-Inertia is VERYLARGE then TransitionCost

is VERYLARGE

D. Observation 4: Fuzzy Rule Set (fobs4)

Based on Figure 3, we determine the effect increasing

task inertia has on the transition costs associated with

repetition of the same task sequence. Transition costs are

computed as the difference in average response time between

trial n and trial n-1 after the transition and is depicted in

Figure 5.

Figure 5. Graph associating transition cost and task inertia

after the transition point

From Figure 5, we model the transition cost associated

with Observation 4 based on the following rule-set:

• If Transition is FALSE

o If Task-Inertia is SMALL then TransitionCost is

VERYSMALL

o If Task-Inertia is NOT SMALL then TransitionCost is

ZERO

The four observations provide us with four rule sets. By

combining the outputs from these rules, we can determine the

sequence execution parameter associated with a given scenario

using the algorithmic approach discussed in the next section.

IV. ALGORITHMIC APPROACH FOR PREDICTING SYSTEM

PERFORMANCE

The sequence execution parameter (SEP) is used to

predict performance associated with a designated allocation of

tasks between humans and machine. The following algorithm

outlines our methodology for calculating the sequence

execution parameter:

A. Compute the current task allocation vector for each

agent, such that:

tn
r = r1

n r2
n ... rk

n[ ]
tn
h =1 tn

r

where the variables are defined as:

n : the current scenario run
k : number of tasks in scenario n
tn
r
: robot task vector

tn
h
: human task vector

rj
n
=1: if robot agent performs task j in scenario n

rj
n
= 0 : if human agent performs task j in scenario n

B. Determine switching cost sj for task j 1,k( ) in
current scenario n

if rj
n
=1 then s j = 0

else

a. Determine response stimulus interval RSI

between current human task and last human task

if j = 1, RSI j =1100

else RSI j = ( j 1 rj 1
n ) + ( i ri

n )ri+1
n

i=1

j 2

b. Calculate Switching Cost associated with RSI

s j = fobs1(RSI j )

where the variables are defined as:

pj: value associated with agent performance of task j

C. Determine transition cost for task j 1,k( ) in
current scenario n

if n=1

Task inertia value:μ = 0

j = fobs2(TransitionCost0)
else

if tn 1
h
= tn

h
:

Increment task inertia value: μ = μ +1

j = fobs4 (μ)
else

j = fobs3(μ)
Task Inertia Value:μ = 0
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D. Calculate the sequence execution parameter by

incorporating switching and transition cost in the task

performance computation as defined in [9].

SEPn = 1
r

2
r ... k

r[ ]tnr

+ ( 1
h + s1 + 1) n,1

h ... ( k
r + sk + k ) n,k

h[ ]tnh

where the variables are defined as:

s j : switching cost for task j 1,k( )

j : transition cost for task j 1,k( )

j : performance value for completing task j 1,k( )

n, j
h
: human workload value associated with completing

task j in scenario n

This algorithmic model functions as our optimization

function to determine performance associated with the

allocation of tasks between humans and machine. We must

now extract the maximum of our optimization function to

estimate a suitable task allocation scheme. We employ

genetic algorithms to search the space of allocation

possibilities.

V. HUMAN-ROBOT TASK ALLOCATION SEARCH

Genetic algorithms [16] are a methodology for searching

through the space of solution possibilities using the concept of

evolution. By constructing individual chromosomes that

consist of possible solutions in the search space, genetic

algorithms determine the fitness of an individual based on an

objective function. In this application, our chromosomes are

coded based on the task allocation vector. Our sequence

execution parameter functions as our objective function. The

genetic algorithm process consists of the following steps:

• Create initial population

o Select random allocations as possible solutions to the

human-robot task allocation scenario.

• Evaluate fitness

o Compute the sequence execution parameter for each

task allocation vector in the population.

• Reproduce

o Select vectors with the highest fitness value and

reproduce offspring for next generation.

• Create next generation

o If new generation contains optimal solution, select

vector as the desired human-robot task allocation vector,

else continue through evolution process.

Based on employing genetic algorithms with our

sequence execution parameter functioning as our optimization

function, we now compare results from our task allocation

scheme against a scheme that only incorporates individual task

performance metrics.

VI. TEST RESULTS

HumAnS-3D (Figure 6) is a 3D virtual test environment

developed to allow user access to a virtual representation of

the world and control of a virtual robot. The control panel

allows the human operator to command the robot to move

forward, backward, and turn either left or right. The graphical

user interface also connects the virtual robot, viewable by the

human user, to the real robot for seamless integration with the

real world environment. For our application, we utilize the

Sony ERS-7 robot for interaction.

Figure 6. Virtual environment consisting of human operator

unit and 3D World Environment

It is envisioned that future planetary exploration missions

will involve humans and robots working in collaboration to

accomplish both scientific and exploration goals [17]. For

assessment of our methodology, we apply our approach to a

simulated rendezvous/docking task, applicable to enabling this

vision, and determine a suitable allocation of tasks. The

primary roles for this mission scenario are depicted in Figure

7, with the corresponding performance metrics documented in

Table I. In Table I, the Sequence Designation parameter

designates the sequential relationship between tasks. Further

details on the process of task decomposition for this scenario

can be found in [9].

Figure 8 depicts the graphs comparing the role allocation

methodology with allocation results from a fitness function

that only incorporates individual task performance values (i.e.

it is not based on the sequence execution parameter). We note

that, by incorporating the sequence execution parameter into

the fitness function, the role transition from human controlled

to autonomous robot typically occurs earlier in the sequence

cycle. For implementation of the first task, each role

allocation methodology provides equivalent results.
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Figure 7. Role decomposition for simplified

rendezvous/docking scenario

Table I. Performance metrics associated with simplified

scenario decomposition

Figure 8. Graphs comparing role allocation results of Task 1-4

for repetitive scenario runs

Table II: Schemes to compare results from role allocation

methods

To validate the allocation methodology with real-world

implementation data, we ran through the rendezvous/docking

scenario using HumAnS-3D with six different allocation

schemes (of human controlled versus autonomous robot) as

shown in Table II and compared their execution times as

shown in Figure 9. These scenarios correspond to the role

allocations associated with Scenario Run 1, Scenario Run 2,

and Scenario Run 8, as depicted in Figure 8. We note that, in

some cases, the allocation schemes derived are the same.

Figure 9. Comparison of methodologies for scenario runs

According to the real-world implementation data, the role

allocation computed by our methodology results in faster real-

world execution than the traditional method. These results

provide preliminary validation of our allocation methodology.

VII. CONCLUSIONS

In this paper, we present a methodology that predicts
system performance for determining an optimal allocation of
tasks to be divided between human controlled and autonomous
robotic systems. The goal of the method is to minimize mental
workload while maximizing task performance as necessary for
achievement of human-robot interaction scenarios. We have
discussed our methodology in detail and compared its
implementation on a representative rendezvous/docking
mission scenario. The implementation of the method is shown
to provide a correlated comparison that maximizes the actual
performance of human-robotic systems operating in the real
world. Future work will focus on tasks that require
collaboration between humans and robots such that tasks must
be implemented concurrently to achieve success.
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