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Abstract— Three-dimensional free-hand ultrasound imaging
consists of capturing a set of ultrasound images with a 2D ultra-
sound system and their respective locations in order to position
them in a 3D reference frame. Usually the clinician performs the
acquisition manually through the use of an optical or magnetic
localization system attached to the ultrasound probe. To assist
the clinician, we propose to use a robotic system to automatically
move the ultrasound probe and measure its position. As for
manual 3D ultrasound imaging, it is crucial to know precisely
the spatial calibration parameters of the ultrasound system in
order to perform accurate 3D imaging. Therefore, we propose
to automate the spatial calibration procedure. A robotic task
is developed to automatically position the ultrasound image on
the intersection point of a cross-wire phantom used for spatial
calibration. To perform this task, a new visual servoing technique
based on 2D ultrasound images is used to control automatically
the motion of the ultrasound probe held by a medical robot.

Index Terms— Visual servoing, 3D ultrasound imaging, medi-
cal robotics.

I. INTRODUCTION

Three-dimensional ultrasound imaging is used in numerous
medical applications such as vascular imaging, cardiology,
obstetrics, and neurosurgery. This imaging modality is, for
example, used to detect or survey the evolution of atherom
plates attached to the walls of arteries that can be deadly for
the patient. Two different techniques are used to perform 3D
ultrasound (US) imaging. The first one uses a 3D ultrasound
sensor, however it currently provides low voxel resolution and
a small field of view. The second technique, referred to as
73D free-hand ultrasound imaging” consists of measuring the
relative displacement between each image captured by a two-
dimensional ultrasound system in order to position them in a
3D frame [1]. For this second technique a localization system,
which can be magnetic, optic, acoustic, or mechanical is fixed
to the 2D US probe. In the context of 3D free-hand ultrasound
imaging, we propose to use a medical robotic manipulator
as the localization system and also to automatically move
the 2D US probe. This will allow repeat examinations of a
patient on different dates in order to observe quantitatively
the pathology evolution under the same conditions. Towards
that end, a robotic system [2] has already been developed to
perform 3D US acquisition of cardiovascular pathologies by
automatically moving a 2D ultrasound probe along a given
trajectory. Nevertheless, to ensure the accuracy of the 3D
reconstruction, it is crucial that the two scaling factors of
the ultrasound image and the relative position between the

ultrasound image reference frame and the localization system
(which is in this case the robot end-effector) are known
precisely. Usually, a spatial calibration procedure is manually
performed before the 3D acquisition. The approach of the
calibration procedure is to capture a set of 2D US images of a
known object for different measured probe positions and then
to off-line estimate the spatial parameters by coupling visual
features extracted from each US image to the geometrical
properties of the object. For example, in [3], a method is
presented whereby the intersection point of a fixed, cross-wire
phantom, immersed in water, has to be centered in the US
image for different positions and orientations of the US probe.
In [4] another method is presented using a plane phantom.

The calibration procedure is laborious for the clinician and
its quality influences the accuracy of the 3D reconstruction.
Thus, in this paper, we propose to automate the spatial
calibration procedure by developing a robotic task using a
new ultrasound image-based visual servoing. Up until now,
only a few studies have been made on visual servoing using
information from 2D ultrasound images. In [5], visual servoing
is used to center within the 2D US image a point corresponding
to the section center of an artery during the probe displacement
along a 1D trajectory. Of the 6 degrees of freedom (DOF)
available to the robot holding the US probe, only 3 DOF in
the US observation plane are controlled by visual servoing,
while the 3 other DOF are teleoperated by the user. In another
work [6], the authors present a robotic system for needle
insertion with the US probe rigidly fixed to the base of a
small 2 DOF robot held by a 5 passive DOF mechanical
architecture. The probe is positioned in such a way that the
needle is always visible in the US image as a straight line.
Once again, only 2 DOF (1 translation and 1 rotation) in the
US observation plane are controlled by visual servoing. More
recently, a study [7] has been presented where 4 DOF, which
are not necessary in the observation plane of the probe, are
controlled by visual servoing in order to automatically move
a robotized laparoscopic instrument.

The paper is organized as follows: the next Section briefly
introduces the principle of the Detmer spatial calibration
method [3] that we propose to automate. In the Section III,
the robotic task is formulated, the visual features are defined,
and the visual servoing control law is developed. The image
processing used to extract the visual features from the US
image is described in Section IV. Then Section V presents



experimental results of the robotic task performed with a 6
DOF medical robot and the validation of the calibration.

II. SPATIAL CALIBRATION

Let F, and F,, be respectively the cartesian frames attached
to the probe sensor and the end-effector of the robot as
illustrated in Fig. 1.a. Fy is the base frame of the robot and
F. is the frame chosen for the 3D reconstruction. The 3D
coordinates expressed in F, of a point P belonging to the
ultrasound plane is given by the following relation:

‘P= °T, T, "T, °P (1)

where T, °T,, and T are the different homogeneous trans-
formations between each frame and *P = (z,y,0, 1) denotes
the homogeneous coordinates of P expressed in the probe
frame (the left subscript ¢ denotes that the components are
expressed in F.). Since the image coordinates are measured
in pixel, the following variable transformations have to be
made: z = (u — ug)S, and y = (v — v9)Sy, where (u,v)
and (ug,vg) are respectively the pixel coordinates of P and
the image center, S, and S, are the height and width of a
pixel (scaling factors).

In practice, in order to obtain a good accuracy of the coor-
dinates “P expressed in F. (with a given “Ty), it is crucial
that the robot provides a very low position error on °T,, and
that the spatial calibration parameters of the system which
include the rigid transformation "T ¢ and the two scaling factor
(S:,Sy) of the image are known precisely. Several methods
were proposed in the literature to estimate these parameters.
We apply the one introduced by Detmer [3] which consists
of capturing a set of ultrasound images of a fixed point for
different positions and orientations of the end-effector. To do
this in practice, the center of a cross-wire phantom immersed
in water is used as the point. Then if we consider that this
point corresponds to the origin of F. we obtain the following
relation for each image:

0 (u —ug)Ss

‘p= 0 _ CTO OTn nTs (U - UO)Sy (2)
0 0
1 1

Several measurements allow then to write a system of non-
linear equation which can be soled by an iterative method
in order to obtain the rigid homogeneous transformation "T'
and the image scale factors S, and S, (see [3], [8] for more
details). Nevertheless in practice it is really difficult to position
the US plane on the intersection of the cross-wire phantom.
So we propose to automatically perform it by visual servoing.

III. VISUAL SERVOING

First, let us formulate the robotic task to achieve. The goal
is to position the intersection point P* (see Fig. 1.b) between
the two converging straight lines D; and D. forming the
cross-wire phantom in the ultrasound image with a set of
different positions and orientations of the probe. So the visual
task consists of centering the points P; and P» on a desired

or,

Fig. 1. (a) 3D ultrasound imaging with a 2D probe - (b) Coupling between
the ultrasound observation plane and the two converging straight lines forming
the cross-wire object

target in the image plane P,. We choose as visual features
s = (21,y1,T2,y2) the 2D coordinates p; = (x1,y1) and
p2 = (x2,y2) of points P; and P, expressed in the ultrasound
probe frame F;.

The variation of the visual information s to the kinematic
screw v = (v, w) of the US probe is given by :

_ U1y UYig _Wig
1 0 ur, us, Y1 ur, X1 Y1
0 -1 v T —
L U, U, 1 U, 1
S = LgVv = 1 0 U2 U2y *ule‘ A%
Uz,  ua, J2 up, X2 Y2
0 _1 u2y u2y y2 ) —.]j2
U2, U2, U2,
3)
= (Ug, Uy, V,) 1 i i
Where v 2> Uy, Uz) is the translational velocity vector

and w = (wg,wy,w,) is the angular velocity vector of the
probe frame with respect to the robot base frame. In classical
visual servoing, Ly is called the interaction matrix (see [9]) and
is determined from the geometrical model of the considered
system. For our system, it is analytically obtained from the
modelling of the coupling between the ultrasound observation
plane and the two converging straight lines (modelling details
are given in [10]). As we can note Lg depends only on the
components of the unitary vectors *u; = (u1,,u1,,u1,) and
*uy = (ug,,us,,us,) of the straight lines D; and D, and
the 2D coordinates p; and po, all expressed in the probe
frame. The condition to compute Lg is that uq, or us, # 0.
This is verified when the straight lines are not collinear to the
observation plane.

The visual servoing task can be expressed as a regulation to
zero of the visual error [9]:

ei(r(t)) = s(r(t)) —s* “4)

where s* is the reference value of the visual features to be
reached and s is the value of the visual features currently
observed by the US probe. The features depend on the relative
position r between the probe and the scene. Note that the rank
of Lg is 4 except when the two points are joined together.
In this last case, the rank is reduced to 3. This means that
when the points are centered on a target in the image, the
dimension of the visual task switches from 4 to 3 and then
only 3 DOF are constrained. We will see in the Section V
how to cope with the rank change. Consequently, as the robot
holding the ultrasound probe has n = 6 DOF, it is possible to



use the remaining 3 DOF to perform a secondary task such as
changing the orientation of the probe.

A. Redundancy formalism

In our approach we use the redundancy formalism [11]
to combine the visual task and the task of changing the
orientation of the probe. This formalism has first been used for
visual servoing in [9], and in numerous applications since (e.g.
avoiding visual features occlusion [12], or human-machine
cooperation using vision control [13]). The idea is to use the
DOF left by a main task e; of dimension m < n, to realize
a secondary task g = % at best without disturbing the first
one. Generally, the realization of a secondary goal is expressed
as a minimization of a cost function A under the constraint that
the main task is achieved, i.e e; = 0. The determination of
DOF which are left by the main task requires the computation
of the null space of the interaction matrix Le, of the task
e;. We have of course Le, = Ls. Performing the two tasks
consists then in minimizing a global task function given by
[11]:

e=L}le + (I, - L¥Ly)g" (5)

where ﬁ;" is the pseudo-inverse of an estimation Lg of the
interaction matrix and (I,, — ﬂ;’ f,s) an orthogonal projector
operator which projects g' in the null space of Ls in order
that the second task does not disturb the first one.

In practice the secondary task we propose consists of mini-
mizing the Au angle vector of the relative rotation between
the current orientation of the probe and a desired orientation.
To do this we define the following quadratic cost function:

1
h= 5euTau (6)

and by computing the gradient of i and its partial time
derivative, we get:

9% _ 7)

d
an T

g=[ Opuxy fu’ |
B. Control law

Usually, the control law is obtained by trying to make
the global task e exponentially decrease in order to behave
like a first order decoupled system. If the observed object is
static (which is our case because the cross-wire phantom is
motionless), this is achieved by applying the following control
screw velocity to the probe [9]:
og’

v=-Xe— (I, Y

- IA-‘;rf-‘s)

®)

where:
« A is the proportional coefficient involved in the exponen-
tial convergence of e.
o Lgisan approximation of the interaction matrix. An on-
line estimation of Lg is presented in paragraph III-C.
In practice, we consider the input of the robot controller as
the kinematic screw v,, of the end-effector. It is linked to the
kinematic screw v of the US probe by:
> v ©))

— nRS [nts]ans
Vn = < 03 nRs

where "t and "R are the translation vector and the rotation
matrix from the end-effector frame to the probe frame. These
two parameters with the image scaling factors S, and S,
correspond to the spatial parameters of the ultrasound system.
Since these parameters are not perfectly known before using
the off-line Detmer calibration method, we set them to rough
values. We will see in Section V that this will not affect the
task performance due to the well-known robustness property
of image-based visual servoing.

C. On-line estimation of the interaction matrix

The interaction matrix Lg depends on the unitary vectors
Su; and ®us of straight lines D; and Dy and the 2D coordi-
nates p1, po. In practice p1, po are measured from their pixel
coordinates but *u; and us are not known and we have to
on-line estimate them. To do this, we use a recursive least-
squares algorithm delivered below. For the sake of simplicity,
in the sequel we give the method for one straight line D . As
the straight lines are motionless it is better to estimate them in
a fixed frame such as the robot base frame wherein projection
Yu of *u is constant and the following minimal representations
of D can be used:

r=az+c and y=bz+d (10)

Here z,y, 2 are the coordinates expressed in the robot base
frame of any point belonging to the straight line D and a, b, ¢, d
are constant parameters. This minimal representation is always
valid if D is not collinear to the plane described by X and
Y axis of the robot base frame Fy. By rewriting (10) in a
vectorial system form we obtain:

1 0

0 1 > (11)

where 6§ = (a,b,c,d) is the parameters vector to estimate.
This system can be solved if we have at least the coordinates
measurement of 2 points. In our approach we use a least-
squares algorithm in order to take into account the coordinates
of the point P measured at each iteration k. The method
consists of computing the estimation value é[k] that minimizes
the following quadratic sum of the modeling error [14]:

Y = (z,9) =®70 with @T(Z 2

0

k
TA T TAH
> (Y —®000) " (Y — @404)
1=0

<
—
=
o
=

I

12)

Therefore é[k} is obtained by nullifying the gradient of J (é[k])
and is given by the following recursive estimation:

Oy = Oy + Fig @iy (Y — ®f—ry)  (13)
[k

where F;) is a covariance matrix such that Fy) = F[Tk] >0
and whose recursive expression is:

Fl= F{I] + q>[k]<1>[7€] (14)

(%] [k

In practice we set initial values Fg = fols with fo > 0 and
o) = 6o. Once 6 = (a,b,¢,d) is computed, the estimated



unitary vector of D expressed in the Fy and in F; is finally
given by:

(a,b,1)
1@, b, 1)
where Ry is the rotation matrix between the probe frame and
the robot base frame. Note that *Ry = *R,,"R is computed
from the inverse of the rotation matrix "R included in the
spatial parameters. Therefore the estimation of the straight
lines is sensitive to the accuracy of the spatial parameters. We
finally obtain an estimation Ls of the interaction matrix by
substituting in (3) the estimated unitary vectors iy, *tiz and
the current coordinates p; and p» measured in the US image.
An adaptive visual servoing is then performed by updating L
at each iteration of the control law (8).

Oﬁ — S{L = SROOﬁ

5)

IV. IMAGE PROCESSING

This Section concerns the image processing used to extract
image coordinates of point P, and P». The cross-wire phantom
is realized with two nylon yarns (0.5 mm diameter) which
are fixed in a box full of water such that they make two
converging straight lines (see Fig. 3.a). From the captured
image seen in Fig. 2.a we can see that Sections of nylon yarns
are visible with high intensity level pixels. To extract the pixels
of the two points, we apply a binary thresholding on the whole
US image following by a binary closing. Then, two lists of
pixels belonging to point P, and P, are obtained by detecting
the pixels of connected components. The computation of the
pixels center of mass for each list gives finally the image
coordinates of P, and P». This coordinates extraction works
very well as long as the two points are not joined together.
If the points begin to join together, the detection of the
connected components give only one list of pixels and the
center of mass computed from this list is shifted from the
real centers of points P, and P». To cope with this problem
which may introduce discontinuity in the control law, we use
a k-mean algorithm to separate the two image points. To do
this, first we affect randomly each pixel to a region k with
k =1 or 2. Then the k-mean algorithm consists to reallocate
each pixel to the region k such that the distance from this
pixel to the center of mass of the region k is minimum.
Once all the pixels are affected, the center of mass of each
region is updated and the pixels affectation is repeated until
the centers of mass remain stable. At the end we obtain two
pixels regions like these shown in blue and white in Fig. 2.b.
We assume hereafter that the nylon yarns sections are seen as
small regular disks in the US image with identical radius. In
this case, the k-mean algorithm gives the same area Aj=As=A
for the two truncated disks shown in Fig. 2.b as well as their
center of mass coordinates M; and Ms. However My and
M5 can not be used as the image coordinates of P, and P»
because they are shifted from the real disks centers due to
the truncation. Nevertheless, if the distance d. (see Fig. 2.b)
is known, the image coordinates of P, and P, can then be
easily located on the straight line defined by M; and M,. So
we propose to compute the distance d. from the area A and

Fig. 2. (a) Ultrasound image with image points zoomed - (b) Points fusion

Distance between image points PI Pz
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Fig. 3. (a) Medical robot holding the ultrasound probe and phantom used
for spatial calibration - (b) Measured image distance between points P; and
P> when the probe is manually moved in order to overlay the two points

the distance d,, both provided by the k-mean algorithm. In
our approach, by determining the analytical expression of the
truncated disk area A and the expression of the x coordinate of
M which corresponds to d. — d,,,, we obtained the following
two nonlinear equations system to solve r and d.:

f(r,d.) = dey/r? —d2+r?arctan(d./\/r2 — d2)
FIT - A=0
2 2 2
glrde) = 2 g, =0

Analytically it is very hard to solve it, so we use the popular
numerical Newton-Raphson method to estimate r and d.. Fig.
3.b displays the evolution of the distance between points P;
and P> measured in the US image, when we manually move
the probe in order to overlay the two points in the image. To
compare the performance of the image coordinates extraction,
we show the distance computed, firstly without considering
fusion of the points, then by using the k-mean algorithm to
separate the points when they join together (distance = 2d,,),
and finally with the k-mean algorithm followed by the d.
computation (distance = 2d.). We can easily see that the better
method is the last one because continuity is improved when
the points join together and offset is null once the two points
are entirely layered.

V. EXPERIMENTAL RESULTS

A. Experimental setup

The ultrasound system is composed of a SonoSite 180PLUS
(2D imaging system) connected to a broadband 10-5 MHz
linear transducer (probe). We use a PC running Linux for real-
time image processing and for controlling, via a LAN network,



a 6 DOF medical manipulator holding the US probe (see Fig.
3.a). This robot was specially designed for 3D ultrasound
imaging and is similar to the Hippocrate robot [2]. The 2D
imaging system is linked to a PCI capture board which grabs
gray level 576 x 768 images at 25 fps.

B. Test of the robotic task for automatic spatial calibration

As we have mentioned in Section III, the rank of the
interaction matrix switches from 4 to 3 when points P; and P
join together. Of course joining the two points is the goal of
the visual task. So in order to avoid numerical instabilities, we
propose to force the rank of the interaction matrix used in the
control law to 3 when the two points join together (distance
< 5 pixels).

In a first experiment, we set rough values for the spatial
calibration parameters used by the control law. The image
scale factors are set to S,=5,=2e-4 (meter/pixel), the trans-
lation from the end-effector frame to the probe frame is
"t,=(0.17,0,0) (meter) and the X-Y-Z Euler angles describing
the rotation "R, are a=0=7y=0 (deg). We set the reference
values of the visual features in order to position the images
of points P, and P, on a target point located in the image at
(144, 384) pixels. For the secondary task, the relative rotation
between the current and desired orientation of the probe is set
to the fu angle vector (0,5, 15) (deg). The gain of the control
law is fixed to A = 0.2 and the initial estimation of the straight
lines parameters are set to wrong values @[O]=(O.27 0.2,0,0) for
straight line D, é[o]z(—O.Q, —0.2,0,0) for straight line D-.
Fig. 4 displays the evolution of the visual error of P; and P>
image coordinates, the fu angle error of the secondary task
and the rank of the interaction matrix. We can see that the
visual error overall decreases towards zero but that the visual
task is lightly coupled with the secondary one (see at time
t=22 s when the error briefly increases). This coupling is due
to an estimation error on ﬁs used in the control law (8) and the
inaccurate spatial parameters needed in equation (9). Indeed
the components of the unitary vectors of the straight lines
used to compute L are not well estimated in the robot base
frame as it is shown in Fig. 5, where dashed lines correspond
to ideal values measured on the phantom. This is also due
to the inaccurate spatial parameters which are needed in the
estimation algorithm (eq. (10)) to express in the robot base
frame the 3D coordinates of a point measured in the probe
frame. Note that when the rank of the interaction matrix f;s
decreases to 3, the angle error decreases exponentially since
the secondary task can use the 3 DOF necessary to orientate
the probe whereas if the rank is 4 the secondary task can not
be achieved. As the visual task is lightly coupled with the
secondary one, we can also see that the rank of f;s switch
from 3 to 4 when the points disjoint (distance > 5 pixels) and
that the secondary task stops to converge due to the priority
of the visual task. The image trajectories of the points are
drawn in Fig. 6. We can note that at the start the points
do not move towards the correct direction due to the wrong
initial estimated values of t1; and 115, but estimation values are
quickly readjusted by the on-line least-square algorithm and
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Fig. 4. Evolution of the visual error s — s* (top figures), fu angle error

(middle figures) and the Lg rank (bottom figures) for uncalibrated (left figures)
and calibrated (right figures) spatial parameters

the points converge towards the image target point (144, 384)
(pixels). Although the spatial parameters of the US system are
not accurate, the robotic task is well achieved thanks to the
robustness property of the image-based visual servoing.

We repeated this robotic task 20 times for different desired
target points in the image and different desired orientations
of the US probe. For each experiment, once the task was
achieved, the relative position and orientation between the
end-effector and the robot base frame as well as the pixel
coordinates of the point P*=P;=P, were measured. This data
was then given as input to the Detmer algorithm [3] referred
in Section II in order to off-line estimate the spatial calibration
parameters. This algorithm provides us the following param-
eters: Sp=1.22e-4, Sy =1.27e-4, "t,=(0.206,—0.007,0.001)
(meter) and X-Y-Z Euler angles a=1.7, §=-2.5, y=-3.7 (deg).

To verify the accuracy of these parameters, we perform the
robotic task in the same conditions than the first experiment
but using in the control law the estimated spatial parameters.
We present in figures 4-6 the same measurements than for
the first experiment. However, we can now see that the two
points converge quasi exponentially towards the image target
and that the angle error also decreases exponentially towards
zero once the rank of f;s switches from 4 to 3. Now the
secondary task is achieved without disturbing the visual task
thanks to the accurate estimation of the spatial parameters.
The estimated components of the unitary vectors converge
also better towards the good values and the points trajectories
become nearly straight lines in the image once the estimation
of unitary vectors are readjusted. This well behaviour of the
robotic task means that the spatial parameters are now more
accurate than these used in the first experiment.

C. Validation for 3D ultrasound imaging

To validate the spatial calibration we perform the 3D ultra-
sound imaging of a straight nylon string by moving the probe
with the robot. The 3D trajectory applied to the end effector



with uncalibrated parameters

0.5 05

with calibrated parameters

estimated in F0

o
49
= 05 0.5
oy : e
R I
g °f of
G
5l
~ -05 -05
=
-1 -1
0 10 20 30 40 50 0 10 20 30
time (s) time (s)

Fig. 5. Evolution of the estimated unitary vectors *i1; and %15 expressed in
the robot base frame for uncalibrated (left figures) and calibrated (right figures)
spatial parameters. The dashed lines correspond to ideal values measured on
the cross-wire phantom
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Fig. 6. Image trajectories of points PP, and P» during the robotic task for
uncalibrated (blue color) and calibrated (red color) spatial parameters

of the robot is set in order to have a constant translational
motion along the Z axis of the probe frame F;, sinusoidal
translation motions on the 2 lateral axis of F; and sinusoidal
rotation motions around the 3 axis. A set of ultrasound images
with their respective probe locations is captured when the robot
tracks the trajectory and is used as input to the 3D visualisation
Stradx software [15]. Fig.7 displays the 2D ultrasound images
positioned in the robot base frame and the 3D shape of the
string obtained when either inaccurate spatial parameters or
calibrated parameters are used. Here again, we can see that our
automatic calibration is well performed because the 3D shape
resulted for the calibrated parameters is straight contrary to the
shape obtained for uncalibrated parameters. In the future, we
plan to compare accuracy of the obtained spatial parameters
with other calibration methods like this described in [4].

VI. CONCLUSION

In order to automatically perform the spatial calibration
procedure of a robotized 3D ultrasound imaging system, a
new visual servoing technique based on 2D ultrasound images
has been presented to position the ultrasound image on the

— with uncalibrated parameters — — with calibrated parameters —

Fig. 7. 3D reconstruction of a straight nylon string (visualisation with Stradx
software)

intersection point of a cross-wire phantom. A robust image
processing method has also been developed to extract, from
the ultrasound images, the coordinates of two points joining
together. Experimental results show that the visual servoing
is robust to large model errors and that the spatial calibration
procedure is well performed.
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