
Abstract— We present a novel approach to mobile robot 
navigation that enables navigation in outdoor environments 
without GPS. The approach uses a path planner that calculates 
optimal paths while considering uncertainty in position, and 
that uses landmarks to localize the vehicle as part of the 
planning process. The landmarks are simple, possibly aliased, 
features that have been previously identified in a high-
resolution map. These landmarks are combined with an 
estimate of the position of the vehicle to create unique and 
robust features. This approach reduces or eliminates the need 
for GPS and enables the use of prior maps with imperfect map 
registration.   

I.  INTRODUCTION  

Navigating autonomously is probably the most important 
problem facing outdoor mobile robots.  This task can be 
extremely difficult if no prior information is available, and 
would be trivial if perfect prior information existed. In 
practice prior maps are usually available, but their quality 
and resolution varies significantly. 

When accurate, high-resolution prior maps are available 
and the position of the robot is precisely known, many 
existing approaches can reliably perform the navigation task 
for an autonomous robot. However, if the position of the 
robot is not precisely known, most existing approaches 
would fail or would have to discard the prior map and 
perform the much harder task of navigating without prior 
information. 

Most outdoor robotic platforms have two ways of 
determining their position: a dead-reckoning system and a 
Global Position System (GPS). The dead reckoning system 
provides a locally accurate and locally consistent estimate 
that drifts slowly, and the GPS provides globally accurate 
estimate that does not drift, but is not necessarily locally 
consistent. A Kalman filter usually combines these two 
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estimates to provide an estimate that has the best of both 
position estimates.  

While for many scenarios this combination suffices, there 
are many others in which GPS is not available, or its 
reliability is compromised by different types of interference 
such as mountains, buildings, foliage or jamming.  In these 
cases, the only position estimate available is that of the dead-
reckoning system which drifts with time and does not 
provide a position estimate accurate enough for most 
navigation approaches. 

This paper presents a new approach to mobile robot 
navigation that addresses some of the issues mentioned 
above. We propose a path planner for autonomous ground 
vehicles that calculates resolution-optimal paths while 
considering uncertainty in position, and uses landmarks to 
localize the vehicle as part of the planning process. The 
planner uses simple, possibly aliased, features that have been 
previously identified in a high-resolution map, and combines 
them with an estimate of the position of the vehicle to create 
unique and robust features. This approach reduces or 
eliminates the need for GPS and enables the use of prior 
maps with imperfect map registration.  

II. RELATED WORK 

 While many existing approaches such as Simultaneous 
Localization and Mapping (SLAM) provide robust 
localization, few combine localization with the path 
planning process. To the best of our knowledge, the 
approach presented here is the first to address the combined 
challenges of planning with uncertainty and landmarks to 
reduce uncertainty while optimizing a continuous objective 
function in an outdoor setting. 

There is however, significant work in some of the parts of 
the problem: In the field of classical path planning, Latombe 
[3]0 has an extensive review on the state of the art as of 
1991. Since then, important contributions by Lazanas and 
Latombe [4], Bouilly [5][6], Haït [7], Fraichard [8] and 
others have not only expanded the theoretical approaches to 
planning with uncertainty, but have also addressed some of 
its practical limitations. There is, however, little work aimed 
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at creating paths that are optimal with respect to more 
general objective functions. Although the planner proposed 
by Bouilly [5] calculates an optimal path with respect to 
uncertainty or path length, the approach is not applicable to 
finding optimal paths with respect to other important criteria 
such as mobility cost, risk, or energy expended. Gonzalez 
and Stentz [13] proposed a planner that considers 
uncertainty in position while optimizing a non-binary 
objective function. Their approach, however, does not use 
landmarks, does not deal with aliasing, and is limited to 
results in simulation. While some of the approaches 
mentioned above use landmarks as part of the planning 
process, none address the possibility of aliasing in the 
landmarks. 

In the field of Partially Observable Markov Decision 
Processes (POMDPs), the problem of planning with 
uncertainty has been frequently addressed. However, most 
algorithms become computationally intractable when dealing 
with worlds with a large number of states. Only Roy and 
Thrun [9] have solved the problem of finding optimal paths 
for large, continuous-cost worlds in the presence of 
uncertainty. The planner they propose includes some of the 
elements of the planner proposed here but is based on an 
approximate solution to a POMDP. This approach requires 
pre-processing of all the states in the search space, which 
later allows for very fast planning. However, the total 
planning time (including the pre-processing stage) can take 
from several minutes to a few hours [10]. The planner 
optimizes uncertainty rather than expected cost, and does not 
deal with aliasing of features. 

The research presented here extends the work of Gonzalez 
and Stentz [13] by adding landmarks and providing tools to 
deal with ambiguity and aliasing. We also present some 
experimental results that show the feasibility of the 
approach. 

III. PROBLEM STATEMENT 

The problem we are trying to solve is navigating 
autonomously between two points without GPS and using a 
high-resolution prior map.  

We assume an accurate, high-resolution map that allows 
the identification of landmarks and the approximate 
estimation of terrain types by automatic or manual methods. 
The high-resolution map is translated into a cost grid, in 
which the value of each cell corresponds to the cost of 
traveling from the center of the cell to its nearest edge. Non-
traversable areas are assigned infinite cost and considered 
obstacles.  

The resulting path should minimize the expected value of 
the objective function along the path, while ensuring that the 
uncertainty in the position of the robot does not compromise 
its safety or the reachability of the goal. 

IV. PROPOSED APPROACH 

Without simplifying assumptions, the solution of the 
problem described above would require solving a Partially 
Observable Markov Decision Process (POMDP), since we 
are combining planning, uncertainty, and sensing. 

However, POMDPs are intractable for most large 
problems, and although efficient approximations exist, they 
are not as efficient as deterministic search, especially A*. 

In order to solve the problem in a deterministic way, we 
use the following simplifying assumptions: 
- Low initial uncertainty (smaller than the sensor range of 

the vehicle) 
- Low uncertainty rate (less than 10% of distance traveled) 
- Availability of basic landmarks that can be reliably 

detected. 
These assumptions are easily met in a mobile robot that 

has wheel encoders and a fiber-optic gyro for dead-
reckoning, and when there is a good initial estimate of the 
position of the vehicle.  

A. Perception Model  

The vehicle is assumed to have a range sensor with a 
maximum detection range R and 360o field of view. The 
vehicle is assumed to be able to detect obstacles not present 
in the prior map, and most importantly, to be able to reliably 
detect the landmarks in the map. Vandapel [14] has shown 
that many natural and man-made structures can be reliably 
detected in laser data. 

The results presented in this paper use electric poles as 
landmarks since they widely available in our test location 
and can be reliably detected at distances of up to 10 meters. 
With little modification the approach could be modified to 
detect tree trunks and other similar features.  

 

B. Motion Model and Uncertainty Propagation 

The first-order motion model for a point-sized robot 
moving in two dimensions is: 
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where the state of the robot is represented by x(t), y(t) and 
θ(t) (x-position, y-position and heading respectively), and 
the inputs to the model are represented by v(t) and ω(t) 
(longitudinal speed and rate of change for the heading 
respectively). Equation (1) can also be expressed as: 

 ( ) ( ( ), ( ))t f t t=q q u&  (2) 

where ( ) ( ( ), ( ), ( ))t x t y t tθ=q  and ( ) ( ( ), ( ))t v t tω=u . 
A typical sensor configuration for a mobile robot is to 

have an odometry sensor and an onboard gyro. We can 
model the errors in the odometry and the gyro as errors in 
the inputs where ( )vw t  is the error in ( )v t (error due to the 



longitudinal speed control), and ( )w tω is the error in 
( )tω (error due to the gyro random walk). 
Incorporating these error terms into (1) yields: 
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or, in discrete-time: 
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Using the extended Kalman filter (EKF) analysis for this 
system, which assumes that the random errors are zero-mean 
Gaussian distributions, we can model the error propagation 
as follows:  

 1 ( ) ( )k k k k T k k k T+ = ⋅ ⋅ + ⋅ ⋅P F P F L Q L  (5) 
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C. Prior Map 

A prior map is necessary to provide estimates of the cost 
to traverse different areas and to provide landmarks for 
navigation.  

1) Cost Map 
The cost map is the representation of the environment that 

the planner uses. It is represented as a grid, in which the cost 
of each cell corresponds to the cost of traveling from the 
center of the cell to its nearest edge. Non-traversable areas 
are assigned infinite cost and considered obstacles.  

 The resulting path calculated by the planner minimizes 
the expected value of the cost along the path, while ensuring 

that the uncertainty in the position of the robot does not 
compromise its safety or the reachability of the goal. 

 The procedure to create a cost map from a prior map 
depends on the type of prior map used. If elevation maps are 
available, cost is usually calculated from the slope of the 
terrain. When only aerial maps are available, machine 
learning techniques such as those in [15] can be used. Fig 1 
shows the cost map for the test area used in the experimental 
results presented here. The cost map was created by training 
a Bayes classifier and adding manual annotations to the 
resulting map. The table below shows the cost assigned to 
the different terrain types. 

TABLE I  

COST VALUES FOR DIFFERENT TERRAIN TYPES. 
 

Terrain Type Cost 

Paved Road* 5 

Paved Road 2 10 

Dirt Road 15 

Grass 30 

Trees 40 

Water 250 

Buildings* 255 
* Items manually labeled. 
 
2) Landmarks 
Landmarks are features in the prior map that can be 

detected with the on-board sensors. They can come from a 
separate database of features, or can be extracted directly 
from the prior map if the resolution of the map is high 
enough. In our approach, we use aerial maps with a 
resolution of 0.3 meters per cell. At this resolution, many 
features are clearly visible and can be identified using 

 
Fig 1. Cost map: lighter regions represent lower cost, and 
darker regions represent higher cost. Green areas are 
manually labeled buildings. 



manual labeling. Automatic extraction is also possible for 
some types of features, but the state-of-the-art for automatic 
feature detection does not yet allow for reliable extraction 
of most features. Fig 2 shows a small section of our test area 
with some electric poles labeled as landmarks. 

3) Map Registration 
A prior map that is not correctly registered to the position 

of the vehicle is of little use for most planning approaches. 
The error in map registration usually comes from two main 
sources: error in the estimation of the position of the 
vehicle, and error in the estimation of the position of the 
map. The approach presented here uses the prior map as the 
reference for all planning and execution. Since the planner 
considers uncertainty in position, the error in map 
registration can be modeled as being part of the error in the 
position of the robot, therefore making use of the 
information of the map in a way that includes the total 
uncertainty in the position of the robot.  

 

D. Unique Detection Regions and Aliasing 

 The planning approach proposed requires the presence of 
reliable landmarks. Reliable landmarks are features in the 
map that can be reliably detected in both aerial images and 
the onboard perception system. In order to improve the 
reliability in the detection of the landmarks we chose very 
simple, yet easy to detect, vertical features such as electric 
poles and trees. Detection of electric poles and trees can be 
reliably achieved with existing approaches such as the one 
presented in [14] .  

 The challenge with simple features such as electric poles 
and trees is that cannot be uniquely identified in a reliable 
manner. It is easy to find an electric pole in a high-resolution 
aerial image and in a range image from the on-board 
perception of the vehicle, but is very hard to uniquely 
identify which electric pole or tree we are looking at.   

 However, if we know that our position is within certain 
error distribution, the number of features that are be visible 
within a given detection range are significantly fewer. And if 
we choose our features and our positions well, we can often 
make sure that there is only one feature within the detection 
range of the robot, in which case the feature detected 
becomes a unique feature.  

 The key idea is to identify those areas in which a given 
feature can be uniquely identified. We call these regions 
unique detection regions. Assuming flat terrain, 360o

 field of 
view, and a detection range R, the detection region for a 
point feature i such as an electric pole is a circle of radius R. 
If the robot is located within this region we can guarantee 
that only feature i can be detected. 

 If there is no overlap between detection regions, each 
circle would be a unique detection region. However, if there 
are other features within a 2R radius of the feature, the other 
features would reduce the unique detection region of the 

original feature. These overlapping regions would be the 
unique detection regions for groups of two or more features. 
However, multiple features are harder to detect than 
individual ones because of occlusions and visibility 
constraints. For this reason, the current approach only uses 
unique detection regions generated by single features. 

 Fig 3 shows the same area as in Fig 2, with the unique 
detection regions highlighted for a detection range R=10 
meters. The dark(blue) shading shown in feature number 1 
indicates unique detection regions. In this case, since there 
are no other features in a 2R radius the whole circular 
detection region is a unique detection region. The light 
shading(red) shown in parts of the detection regions of all 
the other features indicates a part of the detection region 
where more than one feature can be detected, therefore 
excluding that area from the unique detection region.  

 

 
Fig 2. Detail of test area showing features of interest 

 

 
Fig 3. Unique detection regions 
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E. State Space Representation 

 Gonzalez and Stentz [13] showed that an isometric 
Gaussian is an appropriate upper bound in the uncertainty 
propagation for planning horizons up to a few kilometers.  
We model the probability density function (pdf) of the error 
as a Gaussian distribution, centered at the most likely 
location of the robot at step k: 
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where k
cq  is the most likely location of the robot at step k, 

and k k k
x yσ σ σ= =  is the standard deviation of the 

distribution at step k. 
 Let us define: 

 2k kε σ= ⋅  (10) 

 We can then model the boundary of the uncertainty 
region as a disk centered at k

cq  with a radius kε . This model 
is a conservative estimate of the true error propagation 
model and, depending on the type of error that is dominant 
in the system, can provide an accurate approximation of the 
true model.  

F. State Propagation  

 In order to use a deterministic planner to plan we need to 
define the transition cost between adjacent cells. In our 3-D 
configuration space, we are interested in calculating the cost 
of moving between the configuration rk (at path step k) and 
an adjacent configuration rk+1 (at path step k+1). This is 
equivalent to calculating the expected cost of going from a 
most likely workspace location k

cq , with uncertainty kε to 
an adjacent most likely workspace location 1k

c
+q  with 

uncertainty 1kε + : 

 ( )1 1 1( , ) ( , ),( , )k k k k k k
c cC E C ε ε+ + + =  r r q q  (11) 

Equivalently,   

  
 (12) 

 
 
 
where k

iq is each of the i possible states at path step k, 
1k

j
+q  is each of the j possible states at path step k+1, and  

1( , )k k
o i jC +q q  is the deterministic cost of traveling from 
k

iq  to 1k
j

+q (see Fig 4)1. 
 Since we are assuming a low uncertainty rate ( 0.1uα < ), 

we can make additional simplifications that transform (12)  
into:  

                                                        
1 As mentioned previously, we assume a discretized grid of states 

corresponding to a known map. 
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where a and b are constants determined by the relative 
position of k

cq  and 1k
c

+q , and 
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is the expected cost of traversing cell k
cq  if the uncertainty 

at this location is kε . Therefore,  

 1 1( , ) ( , ) ( , )k k k k k
E c k E cC a C bCε ε+ += ⋅ +r r q q . (15) 

 The planner used for planning with uncertainty is a 
modified version of A* in 3-D in which the successors of 
each state are calculated only in a 2-D plane, and state 
dominance is used to prune unnecessary states [13]. 

 
1) Outside of Unique Detection Regions 
 Since the dominant term in the error propagation for our 

planning horizon is linear with distance traveled, equation 
(5) can be simplified to the following model to propagate 
uncertainty: 

 1 1) ( , )k k k k
c c u c cdε ε α− −( ) = ( +q q q q  (16) 

where αu is the uncertainty accrued per unit of distance 
traveled, 1k

c
−q  is the previous position along the path, and 

1( , )k k
c cd −q q  is the distance between the two adjacent path 

locations 1k
c

−q  and k
cq . The uncertainty rate αu is typically 

between 0.01 and 0.1 (1% to 10%) of distance traveled.  
 By modeling the error propagation in this manner, we are 

assuming that the dominant term is the uncertainty in the 
initial angle. Even though we are not explicitly modeling θ 
as a state variable, the effects of uncertainty in this variable 
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are accounted for in the uncertainty propagation model for 
q=(x,y). 

 State propagation outside unique detection regions uses  
(15) for cost propagation, and (16) to update the uncertainty 
at each step. No sensing of landmarks takes place when 
planning outside of unique detection regions, which allows 
the planner to use deterministic search in the state 
expansion. 

 
2) Inside Unique Detection Regions 
 If all the possible locations for a configuration rk are 

inside a unique detection region, we can guarantee that the 
feature that created the region can be detected, and that no 
other features will be visible within the field of view of the 
robot.  

 For practical purposes we make the simplifying 
assumption that a circle with radius 2k kε σ= ⋅ completely 
contains all possible locations on (x,y) of a given state  rk. 
Therefore, if a circle of radius kε centered at k

cq  is 
completely contained within a unique detection region i, we 
can guarantee that feature i will be detected. This 
approximation allows us to model the detection of 
landmarks in a deterministic way, therefore allowing the use 
of deterministic search for this part of the state propagation 
as well. This assumption is only valid if we can reliably 
detect landmark i. 

G. Discussion 

The approach proposed here finds the path that has the 
lowest expected cost and guarantees the reachability of the 
goal within the given error bounds. The solution is 
resolution-optimal as long as the landmarks can be reliably 
detected. 

 However, in some scenarios, the best approach would be 
to have a policy instead of a path. A policy would consider 
the detection of features as a non-deterministic event and 
would produce a set of actions to be performed depending 
on the outcome of the detection of features. Because of this 
added flexibility a policy could have a lower expected cost 
than the path found by our approach. But finding an optimal 
policy would require solving a POMDP, which would be 
intractable to solve or would take significantly longer to 
plan even with an approximate solution as in [9] 

V. RESULTS 

A. Simulation Results 
Fig 5 shows a sample cost map with some landmarks. 

Shades of gray indicate different costs in the cost map: areas 
with lighter color have lower cost, and areas with darker 
color have higher cost. Solid green areas are obstacles. The 
start location is a small square on the left, and the goal is a 
small circle on the right. As a reference, this figure also 
shows the shortest path that guarantees reachability of the 
goal for this cost map. The uncertainty rate is 10% of 

distance traveled. The yellow circles indicate the ε = 2σ 
contours of the error distribution at each step along the path. 
The expected cost for this path is 8586.9 and the uncertainty 
at the goal is εf = 2σf= 3.8 m.  

The following figures show the paths found by our 
approach under different constraints for uncertainty at the 
goal. They also illustrate the advantages of minimizing the 
expected cost of the path instead of minimizing the path 
length or the uncertainty of the path. 

Fig 6 shows the lowest expected cost path with an 
uncertainty rate ku=10% if the maximum uncertainty allowed 
at the goal is 12 m. The path found has an expected cost of 
1485 (82% lower than the shortest path) and the uncertainty 
at the goal is 11 m. Because the uncertainty allowed at the 
goal is large, the planner has enough freedom to look for a 
low cost path, even if a low cost path is longer and has 
higher uncertainty. Only one of the localization regions can 
provide an improvement in the total cost, therefore the 
planner only includes that landmark in the final path. The 
planner also avoids the aliased region between the two 
landmarks on the left, and localizes only with the leftmost 
landmark. 

If the maximum uncertainty allowed at the goal is small, 
the planner trades off lower cost solutions in order to satisfy 

 

 
Fig 5. Planning with uncertainty rate ku=10% and using  
landmarks for localization (shortest path). 

 
Fig 6. Planning with uncertainty rate ku=10% and 
maximum uncertainty at the goal of 12 m.  



the uncertainty constraint. Fig 7 shows the lowest expected 
cost path when the maximum uncertainty allowed at the goal 
is reduced to 3.8 m. Even with a maximum uncertainty at the 
goal equal to that of the shortest path there can be significant 
advantages in minimizing the expected cost instead of the 
uncertainty or the path length. The expected cost is now 
4710 (still 47% lower than the shortest path) and the final 
uncertainty is ε =3.8 m. Although the last segment of the 
path is the shortest path for that segment, the first segment is 
able to look for a less expensive path than the shortest path 
and the resulting path is significantly less costly than the 
shortest path. 

 

B. Field Tests 

 In order to validate the results experimentally the 
following field test was carried out on the e-gator 

autonomous vehicle shown in Fig 8: a path was planned 
between a location S and a location G, assuming initial 
uncertainty σ=2.5m, uncertainty rate of 5% of distance 
traveled and maximum uncertainty of 10 m, using electric 
poles for localization (Fig 9). Notice how the path follows a 
road in order to minimize the expected cost along the path 
(instead of just minimizing the length of the path). The path 
also visits detection regions as needed to maintain a low cost 
path and avoids narrow areas that could not be safely 
avoided if the position of the robot is not accurately known.  

 

Also notice that the final uncertainty of the path is 
relatively high (ε = 5.4 m). This is because the maximum 

 
Fig 7. Planning with uncertainty rate ku=10% and 
maximum uncertainty at the goal of 3.8 m 

 

 
Fig 8.  E-gator autonomous vehicle used for testing and 
electric poles used for localization at test site. The vehicle 
equipped with wheel encoders and a KVH E- core 1000 
fiber-optic gyro for dead reckoning, and a tilting SICK ladar 
and onboard computing for navigation and obstacle 
detection 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 9. Path planned assuming initial uncertainty σ=2.5m, 
uncertainty rate of 5% of distance traveled and 
maximum uncertainty of 10 m. The expected cost of the 
path is 3232, and the final uncertainty is σ=2.7m. Top: 
aerial image and unique detection regions. Bottom: cost 
map used. 
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uncertainty allowed was set to 10 meters, and the planner 
will only try to reduce the uncertainty if the reduction in 
uncertainty will reduce the expected cost of the path. In the 
last segment the path is going through a large paved area and 
there is no increase in cost because of the higher uncertainty. 
For this reason, the planner does not try to detect any 
features in last 50 meters of the path. 

 Fig 10 shows the path executed by the robot. The blue 
line is the position estimate of the robot according to the 
onboard Kalman filter that combines the dead reckoning 
sensors and the landmark detections (no GPS). The green 
line shows the position estimate according to the GPS 
(shown as a reference only). Notice how the blue line stays 
very close to the GPS estimate, and jumps in a few places 
after detecting a landmark.  

 
 

VI. CONCLUSIONS AND FUTURE WORK 

 We have introduced a novel approach for mobile robot 
navigation that allows robust and efficient navigation 
without GPS. The approach uses landmarks in the 
environment that have been manually identified in a high-
resolution prior map to reduce the uncertainty in the robot’s 
position as part of the planning process. The resulting path 
minimizes the expected cost along the route considering the 
uncertainty in the position of the robot. We have also shown 
experimental results of the system, showing navigation 
capabilities similar to those of a robot equipped with GPS. 

The current version of the algorithm uses light poles as its 
landmarks, and assumes that the landmarks will always be 
detected in both planning and execution. Future work 

includes using other common features for localization such 
as trees, buildings and roads. This will require a version of 
the algorithm that allows for more complex representations 
of the error propagation model. Relaxing the assumption that 
landmarks will always be detected in planning and execution 
is another area of future work that we will explore. 
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Fig 10. Path planned and executed without GPS. Blue dots 
show the location of landmarks. The blue line is the 
position estimate of the Kalman filter on the robot and the 
green line is the position reported by a WAAS differential 
GPS with accuracy of approximately 2 meters (for 
reference only). 


