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Abstract— This paper focuses on leader-follower formations
of mobile robots equipped with panoramic cameras and extend
earlier works in the literature addressing both the vision-
based localization and control problems. First, a new sufficient
analytical condition for localizability is proved and used to shed

light on the geometrical meaning of formation localization using
uncalibrated vision sensors, here performed with the Unscented
Kalman Filter. Second, we design a feedback control law based
on dynamic extension in order to extend the applicability of
our control scheme also to the case of distant robots.

I. INTRODUCTION

Distributed vision systems or camera networks mounted

on robotic platforms are ubiquitous today in many appli-

cations including mapping of unknown environments, dis-

tributed manipulation, exploration and autonomous naviga-

tion. In the last few years, we witnessed an increasing

interest in formation control topics. With formation control,

we simply mean the problem of controlling the relative

position and orientation of camera-robots in a group while

allowing the group to move as a whole [2]. In this sense,

formation control needs the solution of the localization

problem, i.e., the estimation of the relative position and

orientation of all robots with respect to a reference coordinate

system. An inexpensive and challenging way to solve this

problem is to use entirely passive vision systems –off-the-

shelf cameras– which can provide only the projection of the

scene points. This is dual to wireless networks where only

distance or some function of distance (inverse square) can

be measured [3], [8].

The localization problem with vision sensors is intrinsi-

cally nonlinear [1], in fact linearized approximations can

be non-observable, while tools from differential nonlinear

systems theory prove the possibility to reconstruct the state.

This localization problem is often referred to as the ob-

servability of perspective dynamical systems [10], [11] and

can be embedded in the more general problem of current

state estimation using input-output measurements. In [4], the

state estimation for a single robot is approached using a

Luenberger-like nonlinear observer, based on the projection

of stationary landmarks in the environment. In [16] the

localization problem for a team of nonholonomic mobile

robots with calibrated vision sensors, is addressed using

motion segmentation techniques based on optical-flow.

Das et al. [5] have recently presented an interesting cen-

tralized framework for vision-based formation control where

the leader moves along predefined trajectories, while the

followers are to maintain a desired relative posture (distance

and angle) with respect to the leader. However, an underlying

assumption consists in assuming that the leader-follower

distance can be provided directly by the calibrated panoramic

camera mounted on the robots.

In [14], we relaxed the above assumption and exploited

the Extended Output Jacobian (EOJ) to analytically prove

a sufficient condition on the formation localizability with

uncalibrated panoramic cameras, providing only the view-

angle between each robot pair (and not the distance).

In this paper, we address both the localization and the

control problems for a leader-follower formation of nonholo-

nomic mobile robots equipped with panoramic cameras. In

particular, we list here the innovative contributions of the

present work:

• Differently from [5] and [14], we assume that the

only distinguishable feature detected by each camera is

the view-angle to the other observed robot’s center of

gravity (or centroid). This is a convenient choice (partic-

ularly suited, e.g., for airplane formations) because the

centroid can be easily computed with standard computer

vision techniques [7] also in the case of distant robots.

In this case, the EOJ theory allows us to prove the

feasibility of the formation localization and gives a very

intuitive geometrical interpretation of this property.

• Differently from [14], the localization has been

approached here using the Unscented Kalman Filter

(UKF) [13], a derivative-free alternative to the extended

Kalman filter (EKF). UKF is particularly suitable for

multirobot localization since its equations do not change

as new robots join the formation. Moreover, system

nonlinearities are approximated with higher accuracy

than the EKF.

• The state-tracking control law proposed in [5] does not

apply when observing robot centroids. To overcome this

drawback, we designed a feedback control law based on

dynamic extension, whose effectiveness has been proved

through simulation experiments with noisy data.
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Fig. 1. The communication network and the information flow between the
leader and the followers.

We emphasize that, due to the aims of this work and space

constraints, we are not interested in presenting experimental

results which are expected to be comparable to those in [5],

due to the similarity of the leader-follower setup.

The paper is organized as follows. In Sect. II the general

leader-follower kinematic model and some basic assump-

tions are introduced. In Sect. III we present the vision-

based observability study for leader-follower formations. In

Sect. IV we introduce the Unscented Kalman Filter. In

Sect. V we design the feedback control via dynamic exten-

sion. Simulation results are discussed in Sect. VI. In Sect. VII

the major contributions of the paper are summarized and

future research lines are highlighted.

Distributed architecture
/

communication network:

We assume that both the state estimation process and the

control law computation are centralized on the leader 〈L〉
which transmits to the ith follower 〈Fi〉 the velocity control

[vF i ωF i]
T needed to maintain the formation (see Fig. 1).

The view-angle ηi from 〈Fi〉 to 〈L〉, is transmitted to the

leader. We suppose there are no communication delays.

II. LEADER-FOLLOWER KINEMATIC MODEL

The leader-follower setup consists of q+ 1 nonholonomic

mobile robots whose individual kinematics can be abstracted

as a unicycle model,

ẋ = v cos θ, ẏ = v sin θ, θ̇ = ω

where (x, y) represents the position and θ the orientation of

the robot with respect to the world frame 〈WF 〉 (Fig. 2).

One of these robots is the leader 〈L〉 whose configuration

vector in the world frame is [xL yL θL]T . The other q
robots are the followers, 〈Fi〉, described by [xFi

yFi
θF i]

T ,

i = 1, ..., q. The control inputs are the translational and

angular velocities [vL ωL]T and [vFi
ωFi

]T of the leader and

followers, respectively.

The view-angle ψi is the angle from the leader y-axis

to the line connecting the centers of mass of the leader

and the ith follower (the view-angle ηi is defined in a

similar fashion). In the spirit of [5] we assume that each

robot is characterized by a different color and is equipped

with an omnidirectional camera, whose coordinate system is

supposed to be coincident with that of the robot. However,

differently from [5], [16], we do not assume any knowledge

of the camera calibration parameters (i.e. mirror shape,

focal length, pixel aspect ratio, etc.). The robot centroid Ci
(Fig. 3(a)) can be detected in the image using standard color

filtering techniques. After the centroid detection, the view-

angle is readily computed as in Fig. 3(b).

The whole leader-follower setup can be modelled using

polar coordinates [5], where ρi is the distance from the

center of the leader 〈L〉 and the ith follower 〈Fi〉. Let us

refer to βi as the relative orientation between the robots,

then βi = −ψi + ηi + π.

Proposition 1 (One leader – one follower kinematics):

Consider the setup in Fig. 2. The one leader – one follower

kinematics can be written as follows:

ṡi = Gi(si)ui, i = 1, ..., q (1)

where

Gi(si) =






cos γi 0 − cosψi 0
− sin γi

ρi
0 sinψi

ρi
−1

0 −1 0 1






being ui = [vFi
ωFi

vL ωL ]T , si = [ρi ψi βi]
T

and γi , βi + ψi.

. . . . .

x

y

ρi

〈WF 〉

〈Fi〉

〈Fq〉

〈L〉

θFi

θL

ηi
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Fig. 2. Basic leader-follower setup in polar coordinate representation.
Panoramic cameras provide information on robots relative orientation.

(a)

Ci
y

ψi

(b)

Fig. 3. Vision sensing. (a) Panoramic image provided by the leader;
(b) Detection of the centroid Ci and computation of the view-angle ψi.
A coarse approximation of the principal point can be provided by the image
center.
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The one leader – many follower kinematics is in [14] and

can be obtained extending the one leader – one follower case

in Prop. 1:

ṡ = G(s)u (2)

where u = [vF1
ωF1

... vFq
ωFq

vL ωL]T ∈ IR2(q+1) and

s = [sT1 ... sTq ]T ∈ IR3q.

III. VISION-BASED OBSERVABILITY OF

LEADER-FOLLOWER FORMATIONS

A. Basics on nonlinear observability

We here present some basic facts about observabil-

ity of nonlinear systems [11], [12], in order to study

the localizability of leader-follower formations in the case

of panoramic cameras used as the only sensor system.

Prop. 2 provides an analytical sufficient condition for the

observability in our multirobot context.

Consider a generic nonlinear system ΣN of the form

ΣN :

{

ṡ(t) = f(s(t),u(t)), s(0) = s0 ∈ IRn

y(t) , h(s(t)) = [h1 h2 ... hm]T

where s(t) = [s1(t) s2(t) ... sn(t)]T ∈ S is the system state,

y(t) ∈ Y the observation vector and u(t) ∈ U the input. S, Y
and U are differential manifolds of dimension n, m and p,

respectively.

Let λ(s) : IRn 7→ IR be a scalar-valued function and define

the following operator,

dλ(s) ,
∂λ(s)

∂s
=

[
∂λ(s)

∂s1

∂λ(s)

∂s2
...
∂λ(s)

∂sn

]

.

The problem of observability for ΣN can be roughly viewed

as the injectivity of the input-output map RΣN
: S × U 7→ Y

with respect to the initial conditions. Two states s1 and s2

are said indistinguishable [15], s1Is2, if ys1,u(t) = ys2,u(t),

i.e., there exists an input u(t) and a time t for which, starting

from different s1 and s2, ΣN exhibits the same outputs.

The concepts of observability and indistinguishability are

related, as shown in the following:

Definition 1 (Observability [15]): Given two states

s1, s2 ∈ S, system ΣN is observable, if s1Is2 ⇒ s1 = s2.

An analytical sufficient condition for the local weak

observability of ΣN has been introduced by Hermann and

Krener in [9]. An equivalent and more intuitive formulation,

based on the Extended Output Jacobian (EOJ), was proposed

in [14] and here reported.

Proposition 2: System ΣN is said to be locally weakly

observable at a point so ∈ IRn, if there exists an open set

D ⊂ IRn of so such that, for arbitrary s ∈ D, the set of row

vectors,

{dh
(j−1)
i (s) | i = 1, ...,m ; j = 1, ..., n} (3)

is linearly independent (j is the order of time differentiation).

From (3) we define the Extended Output Jacobian matrix

J ∈ IRmn×n, built by stacking the row vectors in (3).

Remark 1: Roughly speaking Prop. 2 states that the

observability of ΣN can be tested by checking the rank of

a matrix made of the state partial derivatives of the output

vector and of all its n− 1 time derivatives. From Prop. 2, it

is straightforward to note that the system observability holds

true also when at least one n × n submatrix of J has full

rank. Thus, it is not necessary to check for the determinants

of all possible submatrices of J.

B. Observability condition for leader-follower formations

Proposition 2 is here used to provide an analytical condi-

tion for the observability of the setup presented in Sect. II

in the case of a single follower. As previously discussed,

we assume that the leader can observe the ith follower and

measure a two dimensional output vector,

yi , [y1 y2]
T = [ψi βi]

T . (4)

From Prop. 2, the observability of (1) with output (4),

is guaranteed when at least one 3 × 3 submatrix of the

whole Extended Output Jacobian J ∈ IR 6×3 is nonsingular.

Consider, e.g., the submatrix Ji,

Ji =







∂y1
∂ρi

∂y1
∂ψi

∂y1
∂βi

∂ẏ1
∂ρi

∂ẏ1
∂ψi

∂ẏ1
∂βi

∂y2
∂ρi

∂y2
∂ψi

∂y2
∂βi







=






0 1 0

∂ψ̇i

∂ρi

∂ψ̇i

∂ψi

∂ψ̇i

∂βi

0 0 1






whose determinant is

det(Ji) = −
∂ψ̇i
∂ρi

=
1

ρi

[

ψ̇i + ωL

]

. (5)

Therefore, if det(Ji) 6= 0 the state si(t) is observable.

In the case of q followers the observability condition is a

simple extension of (5), as shown in [14].

1) A geometrical interpretation of the EOJ singularity:

In Fig. 4 we provide a basic example to give a geometrical

interpretation of (5). The leader 〈L〉 observes two moving

followers 〈F1〉 and 〈F2〉 at different time instants t = 0 and

t = 1. Intuitively, one can argue that any change in the

visual data represents a gain in information and can thus

improve the localization process. The following arguments,

based on (5), confirm this intuition. At t = 0, 〈F1〉 has the

same heading of 〈L〉 (i.e., β1(0) = 0), while 〈F2〉 has not

(β2(0) 6= 0). Suppose that ψ1(0) = ψ2(0) and that all the

robots move with the same translational velocity. At time

t = 1 it happens that ψ1(1) = ψ1(0) (i.e., no temporal

change in visual information) while ψ2(1) 6= ψ2(0) and thus,

〈F2〉 〈F1〉 〈L〉

t = 0

t = 1ψ1(0) = ψ2(0)

ψ2(1)
ψ1(1)

Fig. 4. Geometrical interpretation of the EOJ singularity.
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ψ̇1 = 0 and ψ̇2 6= 0. This implies, from (5), that det(J2) 6= 0,

while det(J1) = 0. As a conclusion, from Prop. 2, the state

of 〈F2〉 is observable, while we can argue that the state of

〈F1〉 is not observable.

IV. NONLINEAR OBSERVER

In order to control the formation with q followers we need

an estimate ŝ of the state configuration s. This estimate is

provided by a nonlinear observer that uses the input vector

u and the output vector

y , [yT1 . . . yTq ]T ∈ IR2q. (6)

We assume additive noise on both the process (2) and

measurement equation (6),

ṡ = G(s)u + z with z ∼ WGN(0,Q) (7)

y = Cs + v with v ∼ WGN(0,R) (8)

where C is the output transition matrix, z and v are white

gaussian noises (WGN) with zero mean and covariance

matrices Q and R, respectively. We assume that s(0), z and

v are uncorrelated. We apply the Euler forward method with

sampling time Tc to discretize (7),

s(k + 1) = Γ (s(k),u(k)) + Tc z

where Γ(s(k),u(k)) , TcG(s)u + s(k) and k ∈ IN .

In the next paragraph we describe the Unscented Kalman

Filter (UKF), the nonlinear observer we used to estimate the

state s.

A. Unscented Kalman Filter

The UKF [13] represents a derivative-free alternative to

the extended Kalman filter (EKF) in the framework of robot

localization. Since Jacobian matrices need not to be com-

puted, then the filter equations do not change as the system

state dimension grows. This property is particularly suited

in our multirobot framework, since the observer remains

unchanged when new followers join the formation. The UKF

has a computational complexity cubic in the size of the state

vector, the same order of magnitude of the EKF. Nonetheless,

the UKF handles system nonlinearities with higher accuracy

than the EKF. Analogously to the Kalman filter, the UKF

consists of a prediction and a correction step [17], that are

detailed in the Appendix.

To the best of our knowledge, this is the first time that the

UKF is applied to localize vision-based multirobot forma-

tions. The connections between the observability condition

and the UKF performances will be discussed in Sect. VI.

V. FEEDBACK CONTROL VIA DYNAMIC EXTENSION

Consider the set of kinematic equations equivalent to (1),

ṡri
= Fi(si)uL + Hi(si)uFi

(9)

β̇i = ωL − ωFi
, (10)

where sri
= [ρi ψi]

T , i = 1, . . . , q, is a reduced state-space

vector and Hi ∈ IR2×2, Fi ∈ IR2×2 consist of the first and

the last two columns of Gi, respectively.

Using an analogous expression of (9), the authors in [5]

proposed an input-state feedback linearizing control law

assuming that a landmark was displaced at a known distance

w.r.t. the robot centroid. In this way the invertibility of Hi

is guaranteed and, as a consequence, also the feasibility

of the control scheme. However, this assumption restricts

the applicability of their formation control scheme only to

near robots, for which the displaced landmark can be easily

detected.

In order to overcome this problem, as anticipated in

Sect. II, we propose here to observe the centroid of the robot.

Despite the singularity of Hi, it is yet possible to design a

feedback control via dynamic extension [6], [12] with output

vector [ρi ψi]
T by adding integrators on a subset of the input

channels. A time differentiation of the first two equations

in (1), yields,

[
ρ̈i

ψ̈i

]

=





− v̇L cosψi + vL ψ̇i sinψi

ρi[v̇L sinψi+vLψ̇i cosψi]− vL ρ̇i sinψi

ρ2
i

− ω̇L



 +

+





v̇Fi
cos γi − vFi

γ̇i sinγi

−
ρi[v̇Fi

sin γi+vFi
γ̇i cos γi]− vFi

ρ̇i sin γi

ρ2i



 . (11)

Substituting the first two lines of (1) in (11) and collecting

the terms depending on the new input µ , [v̇Fi
ωFi

]T , we

obtain,

[
ρ̈i

ψ̈i

]

=





cos γi vFi
sin γi

−
sinγi
ρi

vFi
cos γi
ρi





︸ ︷︷ ︸

C(s, vFi
)

[

v̇Fi

ωFi

]

+

+







1

ρi
[vLsinψi − vFi

sinγi]
2 − v̇L cosψi−

2

ρ2
i

[
v2
Fi

cos γi sin γi + v2
L cosψi sinψi

]
− ω̇L−

− vL ωL sinψi

−
2 vL vFi

sin(γi+ψi)

ρ2
i

+
−vL ωL cosψi+v̇L sinψi

ρi




 .

(12)
Supposing vFi

6= 0, then C(s, vFi
) represents a nonsin-

gular counterpart of the decoupling matrix Hi(si), being

det(C(s, vFi
)) = vFi

/ρi. Since C(s, vFi
) is invertible, the

following output-tracking control law can be implemented,

µ = C(s, vFi
)−1 [ν − b(s, vFi

)] , (13)

where b(s, vFi
) is the second term on the right-hand side of

(12) and ν is:
[
ν1

ν2

]

,

[
ρ̈desi + ki21 (ρ̇desi − ρ̇i) + ki11 (ρdesi − ρi)

ψ̈desi + ki22 (ψ̇desi − ψ̇i) + ki12 (ψdesi − ψi)

]

where ρdesi and ψdesi are the desired values. The polynomials

z2 + ki2j
z + ki1j

, j = 1, 2, are Hurwitz and ki1j
, ki2j

∈ IR
are the controller gains. In order to compute the actuating

control input vFi
, the signal v̇Fi

has to be integrated at each

time t. Note the following points:

ThB12.4
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i) In order to guarantee the closed loop stability the

study of the internal dynamics is required. In particular, due

to the dynamic extension process, the extended state-space

dimension is τ = 4 and the system is described by,







ρ̇i
ψ̇i
β̇i
v̇Fi






=







0 0
0 0
0 −1
1 0







[
v̇Fi

ωFi

]

+









vFi
cos γi − vL cosψi

−vFi
sin γi + vL sinψi

ρi
− ωL

ωL

0









. (14)

However from (12), the total relative degree of (14) is 4

(for both the outputs ρi, ψi), that equals τ . Then, we

conclude that (14) has not internal dynamics and the output

tracking control law (13) yields full-state linearization.

ii) In order to initialize the dynamic controller for an

exact reproduction of the desired output trajectories, a

common choice consists in assuming ρi(0) = ρdesi (0) and

ψi(0) = ψdesi (0). Exploiting tan γi from the first two lines

of (1), and the leader’s known control inputs vL(0), ωL(0),
we get,

βi(0)= ATAN2
{

vL(0) sin(ψi(0)) − ρi(0)
(
ωL(0)+ψ̇i(0)

)
,

vL(0) cos(ψi(0)) + ρ̇i(0)
}

− ψi(0).

Analogously, we obtain,

vFi
(0) =

ρ̇i(0) + vL(0) cos(ψi(0))

cos
(
βi(0) + ψi(0)

) .

VI. SIMULATION RESULTS

This section presents the simulation experiments

we carried out to analyze the performance of the

closed-loop system and to study condition (5). For

the sake of simplicity the formation consists of two

followers. We set vL(t) = 5 m
/

s and ωL(t) = 0 rad
/

s

if t ∈ [0, 2] ∪ [6, 8] s, ωL(t) = π/4 rad
/

s otherwise. Note

that the trajectory generated by [vL ωL]T is particularly

suited to test condition (5), (remind the geometrical

interpretation in Sect. III-B.1). The initial configuration

vectors are [xL(0) yL(0) θL(0)]T = [5 2 π/2]T ,

[xF1
(0) yF1

(0) θF1
(0)]T = [4.7 1.8 π/2]T ,

[xF2
(0) yF2

(0) θF2
(0)]T = [5.3 1.8 π/2]T ,

hence s(0) = [0.361 2.159 0 0.361 4.124 0]T .

The UKF has been initialized with

ŝ(0| − 1) =
[

3
2ρ1(0) ψ1(0) β1(0) 3

2ρ2(0) ψ2(0) β2(0)
]T

corresponding to a 50% perturbation of

the unknown distances to the leader and

P(0| − 1) = 10−2 diag(1, 1.1, 1.1, 1, 1.1, 1.1). The

tuning parameters of the UKF (see the Appendix) are

α = 0.1, κ = 0, δ = −1 and the sampling time Tc = 10 ms.

We set Q = 10−7 diag(1, ̺, ̺, 1, ̺, ̺) and R = 10−7̺ I4

where I4 is the 4 × 4 identity matrix and ̺ = 3.0462 rad2.

The desired state is sdes = [0.5 3π/4 0 0.5 5π/4 0]
T

and the controller gains are ki11 = ki12 = 0.15,

ki21 = ki22 = 0, i = 1, 2.

Fig. 5(a) shows the trajectory of the leader and the

followers maintaining the desired formation (in order to have

a temporal reference in the figure the robots are drawn each

second). Fig. 5(b) shows det(J1) (det(J2) is neglected being

similar to det(J1)). Note that the determinant is approx-

imately equal to zero in correspondence of the rectilinear

tracts of the trajectory, i.e., in the intervals [0, 2] s, [6, 8] s.

On the other hand, in the curvilinear tracts the determinant

is significantly different to zero. Fig. 5(c) shows the errors

ρ1 − ρ̂1, ρ2 − ρ̂2 (solid) and the 99.7% confidence intervals

± 3
√

P(j ,j), j = 1, 4 (dash). βi − β̂i and ψi − ψ̂i, i = 1, 2
are not given since angles (differently from distances) are

not critical parameters to be estimated. From Fig. 5(c) we

observe that in correspondence of the rectilinear tracts of

the trajectory, the confidence intervals increase sensibly and

the estimation errors are not equal to zero. Namely, the UKF

localization gets worse (consistency is temporarily lost). This

allows us to postulate that, besides a sufficient condition,

Prop. 2 also provides a necessary condition for nonlinear

observability, namely, if the EOJ is singular then the system

is not observable. Although the previous results are sound,

further investigations are needed to validate this hypothesis.

VII. CONCLUSIONS AND FUTURE WORKS

In this paper we address both the localization and con-

trol problems for a centralized leader-follower formation

of mobile robots equipped with panoramic vision sensors.

Extending earlier works, we assume that the cameras are

uncalibrated and that only the robots centroid needs to be ob-

served in order to maintain the formation. The localizability

problem is approached using a sufficient condition based on

the Extended Output Jacobian matrix, while the Unscented

Kalman Filter achieves the localization. A feedback control

based on dynamic extension is designed in order to guarantee

the leader-to-follower formation stability. Simulation expe-

riments show the effectiveness of our coordination scheme

also providing a meaningful insight into the observability

condition. In particular, we postulated a stronger relationship

between system observability and UKF performances.

Future research lines include the study of a decentralized

control strategy and the extension of our results to formations

with more involved robot kinematic models.

APPENDIX

UNSCENTED KALMAN FILTER

The UKF is based on the Unscented Transformation

(UT) [17], a method for computing the statistics of a random

variable s (with mean s̄ and covariance P) that undergoes

a nonlinear transformation. A set of points and weights

{Sj , [W
(m)
j ,W

(c)
j ]}6q

j=0, called sigma points, are chosen in

a deterministic way so that their sample mean and covariance

are respectively s̄ and P. For ξ = 1, ..., 3q, according to [17],

S0 = s̄ W
(m)
0 = λ

3q+λ

Sξ= s̄ + (
√

(3q + λ)P )ξ W
(c)
0 = λ

3q+λ + 1 + δ − α2

Sξ+3q= s̄− (
√

(3q + λ)P )ξ W
(m)
{1..6q}=W

(c)
{1..6q}= 1

2(3q+λ)
(15)

where λ = α2 (3q + κ) − 3q is a scaling parameter,

α ∈ [10−4, 1] determines the spread of the sigma points

ThB12.4

2407



15 10 5 0 5

5

0

5

10

15

20

x [m]

y
 [

m
]

leader

follower 1

follower 2

___

_

t = 0s

t = 2s
t = 6s

t = 8s

(a)

0 2 4 6 8 10 12
2

1.5

1

0.5

0

0.5

1

1.5

2

2.5

3

time [s]

_

_

_

_

d
et

(J
1
)

(b)

0 2 4 6 8 10 12

0.02

0.01

0

0.01

0.02

time [s]

0 2 4 6 8 10 12

0.02

0.01

0

0.01

0.02

time [s]

_

_

_

_

ρ
1
−
ρ̂
1

ρ
2
−
ρ̂
2

(c)

Fig. 5. (a) Trajectory of the robots; (b) Determinant of J1; (c) ρ1 − ρ̂1, ρ2 − ρ̂2 (solid) and 99.7% confidence intervals (dash).

around s̄ and κ is a secondary scaling parameter which is

usually set to 0 or 3 − 3q. δ is used to incorporate prior

knowledge of the distribution of s (δ = 2 is optimal for

Gaussian distributions). (
√

(3q + λ)P )ξ is the ξth column

of the matrix
√

(3q + λ)P (if a Cholesky factorization is

used [13]). The UKF represents a straightforward extension

of the UT in a recursive framework.

Prediction Step

1) Fix {W
(m)
j ,W

(c)
j }6q

j=0 and compute Sj(k|k) in (15)

using {ŝ(k|k),P(k|k)}. Transform Sj(k|k) according

to the process model, thus obtaining S∗
j (k + 1|k) =

Γ [Sj(k|k),u(k)].
2) The predicted mean and covariance are computed as,

ŝ(k+ 1|k) =
∑6q
j=0W

(m)
j S∗

j (k+ 1|k), P(k+ 1|k) =
∑6q

j=0W
(c)
j

{
S∗
j (k + 1|k) − ŝ(k + 1|k)

}{
S∗
j (k + 1|k)

− ŝ(k + 1|k)}
T

+ Q.
3) Compute Sj(k + 1|k) in (15) using

{ŝ(k + 1|k),P(k + 1|k)} and define the predicted

points as, Y j(k + 1|k) = CSj(k + 1|k).
4) The predicted observation is ŷ(k + 1|k) =

∑6q
j=0W

(m)
j Y j(k + 1|k).

5) The innovation covariance and the cross

correlation matrices are Pyy(k + 1|k) =
∑6q

j=0W
(c)
j {Y j(k + 1|k) − ŷ(k + 1|k)}{Y j(k + 1|k)

− ŷ(k + 1|k)}
T

+ R and Psy(k + 1|k) =
∑6q

j=0W
(c)
j {Sj(k + 1|k) − ŝ(k + 1|k)} {Y j(k + 1|k)

− ŷ(k + 1|k)}T .

Correction Step

ŝ(k+1|k+1) = ŝ(k+1|k) + K(k+1)[y(k+1)− ŷ(k+1|k)]

P(k+1|k+1) = P(k+1|k)−K(k+1)Pyy(k+1|k)K(k+1)T

where K(k + 1) = Psy(k + 1)P−1
yy

(k + 1).
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