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Abstract— This paper presents a method for detecting in-
dependent temporally-persistent motion patterns in image se-
quences. The result is a description of the dynamic content of
a video sequence in terms of moving objects, their number,
image position and approximate motion. For each detected
motion pattern a local trajectory as well as a confidence level is
provided. The method is based on local motion measurements
extracted from short video segments. These measurements are
mapped in an adequate grouping space where independent
trajectories correspond to distinct clusters. The automatic
cluster detection is handled in an a contrario framework, which
is general and involves no parameter tuning. The method was
validated on real video sequences featuring rigid and non-rigid
moving objects, static and mobile cameras, and distracting
motions. The output of this method could initialize tracking
algorithms. Applications of interest are robot navigation, car-
driver assistance, surveillance and activity recognition.

I. INTRODUCTION

A. Problem setting
A general problem in motion analysis is the early reliable

detection of pieces of trajectories of moving objects in image
sequences. Accurately and efficiently solving this problem is
of crucial interest for applications such as robot navigation,
car-driver assistance, video-surveillance and human activity
recognition. It seems to us that there is a gap to be filled
between two types of issues. On the one hand, there are
motion detection methods. Most methods are actually closer
to change detection, since they make decision on very
local time intervals, with no real search of any spatio-
temporal coherence. As a consequence, significant moving
objects cannot be distinguished from “parasitical” motion.
The temporal content alone is usually very noisy; hence,
local spatial (and possibly temporal) regularity is usually
introduced, which is the simplest mean to enforce temporal
coherence. On the other hand, if the position of a given
moving object is known, efficient methods allow one to
track them. Many algorithms are variations or extensions of
the Kalman filter. Recent progress based on the non-linear
particle filtering approach led to very impressive results able
to handle occlusions and shape deformation. The weak point
of these methods is their usually supervised initialization.

The method proposed in this paper adresses simultane-
ously coherent motion detection and track initialization. The
purpose is to decide on the existence of small pieces of
trajectories on short durations (typically 10 or 20 frames).
Detection thresholds for extracting these pieces of trajec-
tories are automatically computed. It is clear that such
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thresholds exist also from a perceptual point of view. As
an example, a slowly moving object has to be observed
for a long time to be detected. Hence, there should be
a relation between the size of an object, its velocity, the
duration of observation and its detectability. When dealing
with digital image sequences, detectability is also influenced
by image quality. The method described in this paper uses a
detection principle, intuited by Helmholtz and formulated by
Desolneux, Moisan and Morel [1]. It states that a particular
configuration is perceptually relevant if it cannot occur by
chance, i.e., it contradicts a general random structure of the
observations.

B. Overall strategy

The purpose of this work is to extract geometrical evidence
for moving objects from a set of successive digital images
(about 10-20). More precisely, is it possible to decide that
image parts along a sequence display locally a coherent
motion, and define a piece trajectory? With what degree of
confidence?

The strategy is the following. First, local motion measure-
ments are extracted from successive pairs of images. These
measurements are based on characteristic image features
such as affine invariant pieces of level lines [2], SIFT
descriptors [3] or KLT features [4]. These features have to
be local enough, because of partial occlusions, shadows, etc.
If the duration of observation is short enough, the motion of
objects is approximately rectilinear with a constant velocity.
This velocity, as well as the position of the shape element at
time t = 0 is, in this simple case, completely determined by
the displacement between two images. This results in a point
in R

4: two real coordinates for the velocity and two for the
initial position. Now, if these pairs correspond to the same
moving object in different frames, then the corresponding
points form clusters in R

4. As a consequence, the detection
of pieces of trajectories results in a grouping problem.

Let us consider M data points, X1, ..., XM in R
4, each

corresponding to a couple (initial position,velocity), possibly
detected at different instants. Following the same argument as
in [5], an a contrario method is adopted: assume all the pairs
are casual, and do not correspond to a coherent trajectory.
Then, it is sound to assume that the Xi are independent and
identically distributed according to a law to be specified.
It is very unlikely that an important proportion of the Xi

can be observed in a single small region of R
4. Whenever

this is actually observed, then the hypothesis that the Xi

are random is certainly false, and some of them should be
grouped. Natural questions arise, that are answered in this
paper: how many groups are there (if any)? Which groups
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are relevant ? Is it possible to quantify the meaningfulness
of a group of points? How to select among nested groups?

The paper is organized as follows. In Sect. II, a few related
works are reviewed. Section III briefly describes how the data
to be clustered are extracted. Section IV is the technical core
of the paper, describing the a contrario detection of clusters.
The theory is validated on experiments in Sect. V.

II. RELATED WORK

Yuille and Grzywacz [6] also proposed a clustering ap-
proach after suitably representing visual patterns, and at-
tempted to classify the typical configurations of visual mo-
tion. A complex observation would be a combination of
these elementary motion templates, which should be detected
by a grouping procedure. However, their work remains
formal with no computational theory. More applied works
are [7], [8] in which some motion structures are sought
in spatio-temporal slices. Still more recently, Gryn, Wildes
and Tsotsos [9] have specified even more precise motion
templates, driven by the application, in other words trading
generality for better computational efficiency.

The similarity of the ingredients involved in our method
with those involved in Structure From Motion (SFM) meth-
ods might be misleading. The focus of SFM methods is
more on characterizing the 3D geometry of the scene than
on detecting coherent motion patterns [10]. The presence of
one or several moving objects is assumed and therefore the
detection issue is not addressed. Furthermore, the features
detected in the image sequences need to be tracked through
all the sequence. This requirement is obviously difficult to
meet in the presence of occlusions or noisy image sequences.
Factorization methods usually rely on spectral clustering for
the clustering step. This clustering method based on algebraic
matrix manipulations is known to be very sensitive to noise.
Other methods rely on iterative optimization methods to
build clusters, for example Expectation-Maximisation or K-
means [11]. These methods require the number of clusters
to be specified. Moreover, the results are sensitive to ini-
tialization. An alternative is to resort to model selection to
determine the number of moving objects. Torr and Mur-
ray [12] propose a stochastic clustering method to group
local motion measurements from several moving objects
based on 3D geometry. They address the different issues of
clustering, namely cluster validity assessment and merging
of clusters. Their method relies on the combination of several
heterogeneous criteria involving several parameters. Their
method is based on two frames and the clustering is therefore
rather based on shape than on motion coherence in time.

III. EXTRACTING LOCAL MOTION MEASUREMENTS FROM
IMAGES

The features to be extracted from images must be local
(because of possible partial occlusion), stable, and invariant
enough to the deformations an object may encounter through
a sequence (approximate rigid motion, contrast change...).
Different type of features meet these requirements: Affine

Invariant Pieces of Level Lines (AIPLL) [2], SIFT descrip-
tors [3] or KLT features [4]. The reader is referred to these
articles for details. Given a pair of successive images of
the sequence at time instant t and t + 1, any of these
features enables to compute local motion measurements.
In the case of AIPLL or SIFT descriptors, a displacement
measurement is obtained by matching a feature in the first
frame with its best corresponding feature in the next frame.
The difference between the position xt at time instant t and
xt+1 at time instant t + 1 provides the displacement v. For
KLT features, the displacement v is directly computed by an
optimization process involving both frames [4]. Let us define
the vector (xref, v) ∈ R

4 by xref = xt − t v. By first order
approximation, the velocity v is constant and xref would be
the initial position of feature at time instant t = 0. This
hypothesis is sound if the duration of observation is short.

Now, a part of the same object at different time instants,
or different parts of the same object should lead to approxi-
mately the same values of initial position and velocity. Fig-
ure 1 displays the two-dimensional projections of the couples
(xref, v) ∈ R

4 extracted from 10 successive frames. The plot
in the middle corresponds to xref, i.e., the vertical position
vs. the horizontal position. The right plot corresponds to
the polar coordinates of v, orientation vs. magnitude. Three
clusters in R

4 can be distinguished corresponding to the three
moving objects that appear in the scene displayed in the
left image. Local motion measurements corresponding to the
background of the scene are scattered in position and velocity
direction but highly concentrated at velocity magnitude 0.
Automatically detecting clusters in this four-dimensional
grouping space allows us to extract the independent motion
patterns that are temporally coherent, in other words the three
moving objects.

In order to deal with mobile cameras, dominant motion
estimation and motion compensation is applied. A general
and robust dominant motion estimation algorithm is used
[13]. The dominant motion is identified with camera motion.
This identification is possible under some hypothesis such as
the size of the moving objects in the image and the absence
of significant depth discontinuities in the background. These
hypotheses are usually verified in typical surveillance videos.
Once the camera motion is compensated, local motion mea-
surements corresponding to the background display almost
null velocity exactly as in the static camera case.

Since the computational load of the grouping procedure
directly depends on the number of considered local motion
measurements, discarding local motion measurements that
obviously belong to the background dramatically saves com-
putation time. Two simple strategies to discard background
measurements can be adopted. If, for each image of the
sequence, a detection map is available that indicates which
regions of the image belong to the background and which
regions are moving, only features corresponding to moving
regions are processed. For example, such a detection map
is obtained by applying an automatic moving region detec-
tion as proposed in [14]. This strategy is preferred when
working with AIPLL or SIFT descriptors. The other strategy
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Fig. 1. Left image : three moving objects are perceptible, in
the left lane a white van, in the right lane a white van and a
gray truck. Middle and right plots : two-dimensional projections
of four-dimensional couples (xref, v), column vs. line of the initial
position and velocity direction vs. velocity magnitude. The three
moving objects form three distinctive clusters in R

4 (green, red and
yellow). Elements belonging to the static background appear as a
large elongated cluster (blue) with almost zero velocity magnitude
and no distinct direction.

consists in discarding all features with an estimated inter-
frame velocity magnitude v smaller than a given threshold,
typically 1 pixel. This threshold is not very demanding.
This second strategy is preferred when working with KLT
features. Features remaining after discarding those belonging
to the background are termed moving features. When applied
to moving features, the task of the clustering procedure is
to detect groups of features corresponding to each object
moving independently and consistently over time.

IV. A CONTRARIO DETECTION OF SPACE-TIME
COHERENCE

Let us now consider a set of points {X1, ..., XM} in
R

4. Does this set contain any group? How many, and how
meaningful are they? This problem is one of the numerous
forms of cluster analysis. The above questions do not have
a definitive answer. In particular, it is difficult to make a
robust decision about the existence of a group (known as
the problem of validity), or whether it should be cut into
subgroups or not. This is precisely the problems this section
deals with. Some ideas presented here have been inspired by
Bock [15]. A parallel work [5] develops a theory of grouping
for planar shape recognition. The main results of this theory
are developed here and extended to motion analysis.

A. Number of false alarms of a group and validity

The fact that some of the Xi’s may constitute a group
reveals a lack of independence of these points. Since the
cause of the dependence is unknown, modeling the proba-
bility of such an event is difficult. Hence, the following a
contrario point of view is adopted. Let us assume that the
Xi’s are identically distributed variables in R

4, following a
probability distribution π specified later. Assume also that
there is no group in the data. In this case, the Xi’s are
assumed to be independent. Let R ⊂ R

4, independent of
the Xi’s. The probability that at least k out of the M data
points {X1, ..., XM} belong to R is given by the tail of a
binomial law with parameters k, M , and π(R)

B(M,k, π(R)) =

M
∑

j=k

(

M

j

)

π(R)j(1 − π(R))M−j . (1)

Assume that a region R containing k data points is observed.
If the probability above happens to be very low, the observed
data points certainly contradict the i.i.d. hypotheses. Of
course, R must be given before observing the data points.
From now on, an a priori finite set of regions R with cardi-
nality |R| is considered, typically hyper-rectangles, assumed
centered on the origin.

Let us introduce the following measure of meaningfulness.
Definition 1: Let G be a subset of {X1, ..., XM} of car-

dinality k, 2 6 k 6 M . The Number of False Alarms (NFA)
of a group G is defined as

NFA(G) = M2 · |R| min
x∈G,R∈R

G⊂x+R

B(M − 1, k − 1, π(x + R)).

(2)
A group G is said to be ε-meaningful if NFA(G) 6 ε.

Before giving a mathematical result explaining why this
number is introduced, let us explain how it is computed. Let
us examine the term in the minimum: x + R is one of the
possible regions of R, after centering at x, which is a point
of G. Hence, B(M − 1, k − 1, π(x + R)) is the probability
that at least k points (including x) are inside x + R under
the hypotheses of the a contrario model. Then, x and R are
chosen to minimize this probability. Let us remark that there
are at most M |R| possible choices of the couple (x,R). The
second factor M is explained in the following.

B. A set of candidate groups

There are 2M subsets of {X1, ..., XM}. It is not possible
to compute the NFA of every possible group. Most of them
are anyway certainly irrelevant. In order to drastically reduce
the number of candidate groups, a classical single linkage
hierarchical clustering procedure is applied. The result is a
binary tree, each node being a candidate group. The root of
the tree contains all the M data points.

Remark This does not solve the two problems at hand: num-
ber of clusters, meaningfulness or validity of each cluster. It
only proposes a hierarchy of partitions of the data set. From
this procedure, M−1 candidates with more than 2 points are
proposed. It is then possible to prove the following result.

Proposition 1: If X1, ..., XM are i.i.d. points following π,
then the expectation of the number of ε-meaningful groups
among any set of M candidate groups is less than ε.

In particular, the result holds for the set of candidate
groups provided by the clustering procedure, since there are
less than M candidates. We refer the reader to [5] for a
complete proof.

The interpretation of this result is more important than
its proof. Set ε to a small value, less than 1. If an ε-
meaningful group is observed, then chance alone is certainly
not a good explanation for it, since there are less than ε < 1
such meaningful groups on average. The lower the NFA, the
less likely it is that such a group has been generated by
the a contrario model. Hence, the NFA provides a validity
measure. In general, the NFA of a meaningful group is much
lower than 1 (see Sect. V).
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C. Merging criterion

The hierarchy provided by the tree of candidate groups
allows us to simplify the problem of merging small groups
into a larger one. Indeed, since the tree of clusters is binary,
this question can be answered for two sibling nodes. The
merging method is then applied recursively. Following an
a contrario argumentation, the two groups G1 and G2 are
separated if it is more unlikely to observe two groups G1

and G2 than a single group containing them. It is natural to
define a number of false alarms for a pair of sibling groups:
NFAg(G1, G2). For technical details and exact definition of
NFAg , the reader is referred to [16]. Using the same kind
of arguments as for Proposition 1, one can prove that, on
average, there are less than ε pairs with NFAg less than
ε. More interestingly, the normalization of probabilities into
NFAs makes it possible to compare events of different nature,
such as groups and pairs of groups, because the numbers of
false alarms have comparable magnitudes.

Definition 2: Let G be a subset of the M data points. A
group G is said indivisible if, and only if, for all pairs G1

and G2 such that G1 ∩ G2 = ∅ and G1 ∪ G2 ⊂ G,

NFA(G) < NFAg(G1, G2).

D. Practical algorithm

So far, a group validity criterion and a merging criterion
have been defined. The last point is that a group can be
slightly enlarged by adding a few points. Again, what is best?
This question is easily answered by comparing the NFAs of
the groups through the inclusion tree.

Definition 3: A group G is said to be maximal ε-
meaningful if

1) G is ε-meaningful.
2) G is indivisible.
3) G is more meaningful than all its indivisible descents.
4) for all indivisible ascent G′, either

NFA(G) < NFA(G′) or there exists another
indivisible descent G′′ of G′ such that
NFA(G′′) < NFA(G′).

The last condition only reflects that the tree is an asymmetric
graph and ensures that a group can eliminate smaller groups
in the tree only if it is more meaningful than all of them.

All these definitions may seem a bit formal. Actually,
the implementation basically reduces in counting points
in hyper-rectangles. Let us sum up the meaningful group
detection algorithm.

1) Clustering step. Given M data points, compute the
binary tree by a single linkage algorithm. Each node
corresponds to a candidate group.

2) Validity step. For each candidate group G,
a) compute the region x + R, x ∈ G, R ∈ R

containing all the points of G and such that
π(x + R) is minimal.

b) compute NFA(G) and tag G as valid if
NFA(G) 6 ε.

3) Merging step. For each sibling pair G1 and G2:

a) Compute the intersection of x1+R1 and x2+R2,
obtained in the computation of NFA(G1) and
NFA(G2).

b) Remove the points of G1 and G2 in this intersec-
tion.

c) Compute NFAg(G1, G2).
4) Final step. Explore the tree and detect maximal mean-

ingful groups according to Def. 3.
The last details to be specified are the choice of the a
priori distribution π and the set of regions R. Although
the grouping method described so far is generic, the choice
of π is more problem-specific. In the case at hand, the
position and velocity of objects are considered independent.
Of course this is not true for real objects. However, the a
contrario hypotheses describe the absence of correlation of
all the observations. Moreover, unless it has been specified by
the application, the position of a moving object is arbitrary,
hence the position distribution is assumed to be uniform. No
direction plays a particular role either. Hence, the velocity
direction distribution is taken uniform in (0◦, 360◦). The
only problem is the norm of the velocity. A simple solution
is to learn it on the data itself: the distribution of the
velocity magnitudes is given by the empirical histogram
of the observed velocities. This provides the right order
of magnitude and a fair enough distribution profile. The
distribution of the data points is simply the product of
these four marginal distributions. Since these dimensions are
assumed uncorrelated, it does make sense to consider regions
whose main directions are parallel to the axes of coordinates.
This results in a set R of hyper-rectangles with quantized
sizes in each dimension.

V. EXPERIMENTAL RESULTS

We report experimental results for the proposed coherent
motion detection method applied to various image sequences.
The first experiment illustrates the grouping of local motion
measurements obtained with SIFT descriptors. Results with
AIPLL are very similar and not displayed here. The se-
cond experiment relies on local displacement measurements
computed with the KLT technique. The last experiment
shows how the method enables to group local displacement
measurements corresponding to the same moving object
undergoing occlusion. The framerate for all experiments is
25 frames/second.

A. Experiments with SIFT descriptors

This typical surveillance sequence (Fig. 2) figures rigid
and non-rigid moving objects, respectively a car and a
pedestrian. Local motion measurements are computed by
matching SIFT descriptors. The automatic cluster detection
procedure described in the previous section is applied once
to all local motion measurements (second row) and once to
moving features only (cf. Sec. III) (lower row). In both cases,
a structured description of the dynamic content of the scene
is correctly recovered: two coherent motion patterns are
detected. Both are located in the left part of the image. The
lower group (pedestrian) displays a leftward slightly upward
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Fig. 2. First row: first (t=1) and last (t=10) input frames. In the left image, the black rectangles delineate the regions associated to the
clusters when grouping moving SIFT descriptors. In the right image, the regions (black rectangles) extracted in the first frame are simply
moved according to the mean motion of the cluster points. They correctly fit the moving content of the image sequence. The second row
presents the two-dimensional projections of the four-dimensional motion space when considering all the SIFT descriptors of each image.
The third row contains the clustering results when considering only moving SIFT descriptors. The confidence levels − log(NFA) of the
detected groups appear in the legend on the right.

motion at about 3 pixels per frame. The upper group (car)
moves rightward at about 8 pixels per frame. The method
adapts to the presence of moving objects with different
speeds. The lower speed limit for detection is approximately
1 pixel/frame. Here, the confidence levels reflect the nature
of the moving objects. The cluster corresponding to the car
which is a large rigid object has a confidence level, given by
− log10(NFA), close to 100. This high confidence value is
due to the large number of points in the cluster and the steady
velocity direction. The cluster corresponding to the smaller
non-rigid moving pedestrian contains less points. Moreover,
their corresponding directions are less steady. Therefore, the
confidence level is only about 10. Let us point out that the
trees in the background of the scene are moving because
of a strong wind. This motion is correctly not detected as
coherent when applying the clustering to all features.

Applying the algorithm to all features or only to moving
features impacts only the computation time. Computation
time greatly depends on the number of features involved
which usually increases with the size of the image. As an
example, for 10 frames of size 352 × 288, it takes about 3
seconds to extract the moving SIFT descriptors and to cluster
the moving features. Extracting all the SIFT descriptors and

clustering takes about 20 seconds (Pentium, 3Mhz).
Discarding features corresponding to the static background

of the scene decreases the computational cost of the cluster-
ing procedure in reducing the number of considered obser-
vations. It has almost no impact on the performance of the
method but greatly simplifies the grouping task.

B. Experiments with KLT features with background subtrac-
tion

In this section, KLT features provide the local motion mea-
surements. These features are less descriptive than AIPLL
or SIFT descriptors. However, their simplicity and the low
computational complexity of KLT features are very attrac-
tive. The sequence (Fig. 3 and Fig. 4) contains a pedestrian
walking on a sidewalk and illustrates the behavior of the de-
tection method on non-rigid objects. The camera is tracking
the pedestrian. The tree and the bushes in the foreground are
moving due to the wind. Local motion measurements are
accumulated over 10 frames.

In the first part of the video, the unoccluded torso of
the pedestrian is detected as a moving region. The NFA is
rather low and thus the confidence in the detection is high
(− log10(NFA) = 168). In the second part of the sequence,
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the pedestrian is partially occluded by the branches of the
tree. Only a few motion measurements are still available.
However, the pedestrian is still detected. Of course, the confi-
dence in the detection is then smaller (− log10(NFA) = 24)
reflecting the fact that there is less evidence in favour of
coherent motion. Computation time for processing a video
segment of 10 frames is about 3s.

C. Occlusions

The last part of this experimental section is concerned with
moving objects undergoing severe occlusion. The proposed
coherent motion detection method succeeds in grouping
together local motion measurements before and after occlu-
sion. The number of frames involved in this experiment is
larger (15 frames) in order to observe the objects before
and after occlusion. The image sequence, Fig. 5, shows a
pedestrian crossing another one and getting occluded. The
camera is hand-held and is tracking the first pedestrian. Local
motion measurements are accumulated through 15 successive
frames. Both pedestrians are detected as undergoing coherent
motions. The local motion measurements belonging to each
of them are clustered into two separate groups. Outliers
correspond to measurements due to noise or measurements
on the arms and legs having a periodic motion that does not
display sufficient coherence.

D. Number of frames involved in the detection process

The number of frames during which motion information
is accumulated can vary. Part of this work was to study
how long an image sequence has to be examined in order
to detect groups of coherent motion. The conclusion is that
several factors influence the minimal observation time for
detection: size of objects, image quality, quality of the first
order approximation (constant velocity). It turns out that
under favorable conditions, the required number of frames
can be as small as 3 or 5. The number of frames involved in
the coherent motion detection process can be tuned according
to the specific application and the experimental conditions:

• 3-5 frames: “instantaneous” motion detection while
ensuring motion coherence;

• 5-10 frames: short-term coherent motion detection;
• 10-30 frames: long-term coherent motion detection,

especially in the case of occlusions.
In all cases the observation time remains short: about one

second for 25 frames/second videos.

VI. CONCLUSION

This paper presents a method to detect independent co-
herent motion patterns in image sequences. The automatic
clustering of local motion measurements leads to a gene-
ral coherent motion detection algorithm. The result is a
structured description of the dynamic scene content: number
of moving objects, position, magnitude and direction of
their displacements, i.e., local trajectories. The proposed
framework enables to control the number of false alarms and
associates a confidence level to each detected independent
motion pattern. The local motion measurements are extracted

by means of characteristic image features. Possible types
of image features are: affine invariant pieces of level lines,
SIFT descriptors and KLT features. Results on various real
image sequences illustrate the ability of the method to detect
temporally consistently moving objects (cars, pedestrians)
without being distracted by moving textures (water, leaves).
Future work will aim at extending the proposed method
to 3D motion models. If the scene geometry is known it
could be incorporated into the model to take into account
variation of the projected velocity due to depth changes of
moving objects. As for the local trajectories provided as an
output of the method, they could become useful for long term
trajectory analysis. Further work on the clustering algorithm
itself consists in processing partial trees in order to reduce
computation time. The description of the scene provided by
this method could become useful for surveillance, activity
recognition, as well as robot navigation.
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Fig. 3. Pedestrian sequence. Local motion measurements are accumulated on 10 successive frames. The pedestrian is detected as a coherent moving
region. The oscillating motion of the twigs of the tree and of the bushes is not detected as coherent in time

Fig. 4. Pedestrian sequence. First row, 4 frames out of the 10 processed. The pedestrian is now partially occluded. However, sufficient evidence for coherent
motion is still available. The confidence in the detection decreases by a factor 10 from −log10(NFA) = 168 without occlusion to −log10(NFA) = 24
when the pedestrian is partially occluded by twigs.

Fig. 5. Pedestrians crossing sequence. One pedestrian gets completely occluded by another. The camera is hand held and is tracking the further pedestrian.
Local motion measurements are computed from 15 successive frames. Two clusters corresponding to the two pedestrians are detected with very high
confidence, −log10(NFA) = 154 and −log10(NFA) = 253. Computation time for 15 frames: about 10s.
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