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Abstract— Designing algorithms for multi-robot systems can
be a complex and difficult process: the cost of such systems
can be very high, collecting experimental data can be time-
consuming, and individual robots may malfunction, invalidat-
ing experiments. These constraints make it very tempting to
work using high-level abstractions of the robots and their
environment. While these high-level models can be useful for
initial design, it is important to verify techniques in more
realistic scenarios that include real-world effects that may have
been ignored in the abstractions. In this paper, we take a
simple, coordinated, multi-robot search algorithm and illustrate
problems that it encounters in environments which incorporate
real-world factors, such as probabilistic target detection and
positional noise. We compare the performance to that of several
simple randomized approaches, which are better able to deal
with these constraints.

I. INTRODUCTION

Locating one or more targets within an unknown environ-
ment is a task well-suited to mobile robotics. Robots can be
equipped with sensors to detect targets and programmed to
explore the area in search of their goal(s). The automated
nature of this approach may save much time and effort as
compared to other search methods. Performance may be
further improved by use of multiple robots in the process,
which will decrease the time needed to complete the search
task and increase robustness to failures of individual robots.
Robotic search is especially preferable when the area is either
hazardous or inaccessible to humans. Examples include
locating mines for de-mining [8], [1], finding victims in a
disaster area [11], and planetary exploration [13]. Although
search has been well-explored in the past [2], using multi-
robot systems for search is a more recent development and
has not yet been studied extensively.

Algorithms for multi-robot systems can be roughly clas-
sified in a spectrum based on the level of coordination
involved. At one end of this spectrum are completely coor-
dinated algorithms; these techniques use strict rules to direct
the behavior of the individual robots, typically assigning each
robot a specific task in order to maximize the efficiency. At
the other end of the spectrum are completely randomized
algorithms; these minimize explicit control of the robot’s
actions and instead behave in a directed random fashion,
with the expectation that the task goals will eventually be
completed. While coordinated approaches tend to accomplish
their objectives more quickly than randomized approaches,
randomized approaches are often easier to design and may
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be more robust to disruptions due to their simplicity. Many
algorithms lie somewhere in the middle of the spectrum,
incorporating both coordinated and randomized aspects in
order to (hopefully) exploit the best of both worlds.

Because of the cost and effort required to run experiments
using real multi-robot systems, it is often desirable to design
algorithms using a simulation or model of the actual robotic
group. This allows for fast and easy measurement of the
performances of different techniques. The potential problem
with this approach is that often these abstractions do not
incorporate many factors which may be present in a real-
world scenario. Examples might include sensor noise, wheel
slip, and limited communication ability. Depending upon the
algorithm, these factors may have a significant impact on
the system performance. If design is only done using these
high-level abstractions without verification in a more realistic
environment, techniques may be developed which have very
poor real-world performance. This is especially true of highly
coordinated algorithms, where the complexity provides more
opportunities for things to go wrong.

Although it has long been believed that simple, random-
ized algorithms are more robust to malfunctions and unex-
pected factors than highly coordinated ones, there has thus
far been few experiments which clearly exhibit this effect.
The impact of introducing real-world aspects in multi-robot
search was partially covered by Douglas W. Gage [7], with
an analysis of coordinated approaches versus randomized
ones in the presence of probabilistic target detection. This
paper aims to expand upon that work and demonstrate
some potential pitfalls of coordinated multi-robot search
approaches and to show that randomized algorithms are able
to overcome these challenges.

Section II introduces our techniques, analyzes their ex-
pected performances, and simulates them in a mostly noise-
less environment. In Section III, we observe how sensor
noise affects the different algorithms. Section IV studies how
uncertainty in position impacts the performance. In Sections
V and VI, we discuss the implications of our results and
conclude.

II. ANALYSIS AND SIMULATION IN IDEAL

ENVIRONMENTS

In order to locate a search target in an environment, robots
must move about the environment until they are able to detect
the presence of the target. Detection typically occurs when a
robot is within some close proximity to the target’s location.
Depending on the type of target, additional searching may
be necessary after the initial detection in order to precisely
ascertain its location (e.g., following an odor plume to an



odor source). For our case study, we consider detection to
be equivalent to localization (such as would be the case with
a visual detection).

We focus here only on the localization of immobile targets;
this is the case for many search tasks (e.g., demining, finding
wounded victims in a disaster area). Effective techniques for
this type of search can be fundamentally different than those
used for tracking of multiple mobile targets (see for example
[15]) where robots typically must monitor the locations of
the targets over time instead of only obtaining a single
detection. If targets are immobile, the most effective method
of searching is systematically sweeping unvisited areas of
the environment until all targets are discovered.

In high-level abstractions of search scenarios, target de-
tectors are often modeled as fixed-range perfect sensors.
A popular approach to modeling search is by using “ap-
proximate cellular decomposition” where the environment is
described by a discrete grid of cells (as described in [6]
and employed in [5] and [16]). In these scenarios, robots
are capable of detecting all targets located in some fixed
configuration of nearby cells. However, real-world search
rarely occurs in discrete space, and in order to more closely
model reality, we will confine our analysis and simulations to
continuous space. In continuous space, a fixed-range perfect
sensor might be able to always detect any target within some
radius r of its position, and we will use this definition for
our analysis.

A. Coordinated Multi-Robot Search

In a fully coordinated multi-robot approach to a cover-
age/search task, the environment is typically divided up into
distinct regions of equal area, and each robot is responsible
for covering a different region (for example, in [3], [12], and
[18]). In this way, there will be minimal overlap between
sensor coverage of the robots, which will maximize the area
covered over time and therefore minimize the time needed for
complete coverage. If we also assume that robots cover their
area such that they never sweep any area more than once,
the fraction of the environment covered over time, C(t), can
be expressed as:

C(t) =
2rvNt

A

where v is the constant velocity of the robots, N is the
number of robots, and A is the total area in which the target
may be located. Because this expression is deterministic,
we can solve for the time needed to completely cover the
environment by setting C(tc,max) = 1:

tc,max =
A

2rvN

Because detection is perfect and every point in the environ-
ment has been swept by time tc,max, we are guaranteed to
have detected all targets by this time. If we assume all targets
are distributed independently with uniform probability, the
chance of having detected all targets by time t can be

expressed as:

Pc(t) = C(t)M

= (
2rvNt

A
)M

where Pc(t) is the cumulative distribution function and M is
the number of targets. Using this, we can take the derivative
to get the probability distribution function and calculate the
expected time to completion:

E[tc,end] =
∫ tc,max

0

tpc(t)dt

=
M

M + 1
A

2rvN
(
2rvNtc,max

A
)(M+1)

=
M

M + 1
tc,max

In the case of a single target (M = 1), we get E[tc,end] =
tc,max

2 .

B. Random Multi-Robot Search

In a randomized multi-robot approach to a search task,
robots will move about the environment without any explicit
plan for where they are going. While this is easier to
implement than the coordinated approach, it quickly becomes
very likely that the same or different robots will sweep
areas of the environment multiple times, due to the lack of
navigational skills and inter-robot coordination, respectively.
With perfect sensors, covering an area more than once is a
waste of time, and therefore the search will typically take
longer to complete. Also, because there exists no plan to
explicitly explore all areas in the environment, there is no
finite bound on the time it will take to achieve complete
coverage, and hence no maximum time to completion of
search.

For a single robot, we can express the probability of
detecting a single target over some small time step ∆t as:

p∆t =
2rv∆t

A

if we assume that ∆t is small enough that the robot will
not cover the same area more than once in that period. The
cumulative probability over some time period t is therefore:

Pr(t, ∆t) = 1 − (1 − 2rv∆t

A
)

t
∆t

Taking the limit as ∆t goes to 0, we get a cumulative
distribution function of:

Pr(t) = 1 − e
−2rvt

A

In the case of M different targets, the probability of detecting
all targets is:

Pr(t) = (1 − e
−2rvt

A )M



We can take the derivative to get the probability density
function and calculate the expected completion time as:

E[tr,end] =
∫ ∞

0

tpr(t)dt

= tPr(t)|∞0 −
∫ ∞

0

Pr(t)dt

=
A

2rv

M∑
i=1

1
i

In the case of multiple robots, the performance depends
on how they interact while searching. If N different robots
are all exploring different parts of the environment, we can
assume the sensor coverage is effectively multiplied by N .
This could be achieved with inter-robot repulsion by allowing
robots to detect the relative location of nearby other robots,
which can be accomplished using a simple on-board relative
positioning system [17]. The expected value then becomes:

E[trr,end] =
A

2rvN

M∑
i=1

1
i

The expected time to completion therefore decreases as 1
N

as the number of robots increase, just as it does in the
coordinated algorithm. For the case of M = 1, or a single
target, the expected time would be A

2rvN or twice that of the
coordinated search.

If robots move independently of one another and may have
overlapping coverage, this will decrease the average coverage
at any time. Let us assume that amount of non-overlapping
coverage for a robot is dependent upon the proximity of the
nearest other robot and is given by:

c∆t(d) =
(0.5d + r)v∆t

A

where d is the distance to the nearest robot and d < 2r.
This means that at a range of 2r, coverage is full, while at a
range of 0, coverage is halved because of complete overlap.
Assuming a uniformly random independent distribution of
robots in the environment, the probability of a robot having
a neighbor robot within range d is:

P (d) =
πd2

A

and therefore the probability that any of N − 1 other robots
are within distance d is:

P (d) = 1 − (1 − πd2

A
)N−1

If we assume that the detection area is much smaller than
the environment size, we can approximate P (d) as:

P (d) =
(N − 1)πd2

A

and therefore:

p(d) =
2(N − 1)πd

A

We can use this to calculate the expected coverage of a robot
by combining the expected diminished coverage with the
expected non-overlapping coverage:

E[p∆t] =
∫ 2r

0

c∆t(x)p(x)dx + c∆t(2r)(1 − P (2r))

=
20(N − 1)πv∆tr3

3A2
+

2rv∆t

A
(1 − 4(N − 1)πr2

A
)

=
2rv∆t

A
(1 − 2(N − 1)πr2

3A
)

This is the non-overlapping coverage minus a penalty that
grows linearly with the number of robots. Let us denote:

η =
2(N − 1)πr2

3A

Then the expected completion time becomes:

E[tr,end] =
A

2r(1 − η)vN

M∑
i=1

1
i

This results in a larger expected completion time than for the
randomized algorithm without sensor overlap. However, if
the area of the environment is much larger than the detection
radius, the penalty will not have a major effect.

C. Simulation

To observe how these techniques actually perform, we
simulate them using the realistic simulator Webots [14]. For
our case study, we take the most simple scenario: a single
target within a rectangular arena, with robots having prior
knowledge about the geometry. The arena is 8.0m x 8.0m,
and we use simulations of the e-puck1 robot [4] as our
searching robot. We allow robots to sense targets that are
within 20 cm of their position. We use three techniques
which closely match those described above:

Coordinated: Robots initially begin arranged with left-
aligned equal spacing along the bottom of the arena. Each
robot follows a pre-prescribed path which takes it straight up
to the top of the arena, followed by a short step to the right,
then back down to the bottom, another short step right, and
repeats (see Fig. 1). In this way, robots cut swaths through
the unexplored space with their detection sensors, and they
can deliberatively cover the entire arena. Path following is
accomplished by robots always moving directly towards a
current target point until it is reached (within 2 cm), then
continuing on to the next one. The space in the arena is
divided to give an equal portion to each robot present. If a
robot finishes sweeping its area without finding the target
(due to unreliable target detection), it will backtrack along
its path to sweep the same area again and repeat the process
until the target is found.

Random: Robots are initially placed randomly within the
arena. Throughout the experiment, they continually try to
move forward, turning to avoid any obstacles (i.e. walls and
robots) they may encounter. In order to increase randomness,
Gaussian noise is added to the speed values given to each

1http://www.e-puck.org



Fig. 1. Paths of 10 Robots in Coordinated Approach

wheel at every time step. This should theoretically cause
them to move to any region in the arena with approximately
equal probability.

Random-Repulse: The same setup and technique as Ran-
domized, but robots use relative positioning to create a
potential field repulsion between one another, which causes
them to rarely to come within overlapping detection range
of each other.

Because the detection area of the robots is circular and
the arena is rectangular, if the robots use a swath width of
the full detection range 2r with the back-and-forth sweeping
pattern, there will be small detection gaps not covered by the
sensors along the arena bounds. Initial simulations showed
that using this techniques caused the robots to never find
the target on some rare occasions. In order to remedy this,
we inscribe a square within the detection circle and use this
sensor geometry for our path planning. This results in swath
widths of r

√
2, which covers the entire arena with some

overlap, but increases the path length by a factor of
√

2 on
average, which should increase the expected coverage time
by the same factor. While it would be possible to completely
cover the arena more quickly using other approaches, these
require heuristic changes which may bias the analysis.

For a single search experiment, a target was placed ran-
domly at some location within the arena. Robots move at
6.44 cm/s and continue searching until the target is found,
or until a timeout of 128,000 seconds has passed.

D. Results

A bar chart of the average search time for the different
techniques over 100 runs using different numbers of robots
can be seen in Fig. 2. All techniques completed the search
before timeout in all scenarios. We can see that Coordinated
outperforms both Random approaches in all cases, though
not by a significant margin. There is no clear distinction in
performance between Random and Random-Repulse.
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Fig. 2. Search performance of different techniques over 100 runs; asterixes
represent analytical expected values and error bars represent 95% confidence
intervals assuming an Exponential distribution

We can compare the results obtained with what we cal-
culate analytically. The expected time for each technique
with different numbers of robots can be seen in Fig. 2 as
asterixes overlaid upon the bars. The expected time for the
Coordinated search matched very closely to the simulated
time. The simulated times for Random search, though close,
were slightly higher than expected. This suggests that the
robots’ behavior for the Random techniques may not actually
be entirely random, and certain areas of the arena may be
covered less often than others, resulting in higher search
times for certain target positions. This issue was previously
discussed in [7], and several potential solutions were sug-
gested, but the implementation of them is beyond the scope
of this work. The difference in performance between Random
and Random-Repulse techniques was not significant in either
simulation or expected completion time; this is due to the
very small value of η in these scenarios.

III. NOISY DETECTION OF TARGETS

We have thus far assumed that robots have perfect de-
tection of targets within a fixed radius. In reality, this is
not a realistic assumption. Most sensors have a probabilistic
response, where the likelihood of correctly detecting a target
decreases as the distance to the target increases. Using a
fixed radius perfect sensor is a rough approximation of this
response, since it does limit the detection range, but possible
anomalies due to this approximation should not be ignored.
We therefore compare our techniques using noisy detection
of targets.

There exists two types of incorrect detections due to sensor
noise: false negatives, where a target is within sensor range
but none is detected, and false positives, where no target is
within range but one is incorrectly detected. We ignore the
case of false positives here, as we assume that any target
detection will be immediately verified after (e.g., the robot
could more closely examine the area to double-check the
detection), and focus our efforts on false negatives.

For many types of detection (e.g., sound, radio), the
important value to consider for detection is the signal-to-



noise ratio (SNR) of target emission to background noise.
The probability for detection might be reflected by:

pdet =
Ps

Ps + N0

where Ps is the received signal power, and N0 is the
background noise, which we assume to be uncorrelated with
the received signal. Ps would be determined by:

Ps(d) =
P0

d2

where d is the distance between the robot and the target. The
full expression for the detection probability would then be:

pdet(d) =
P0
d2

P0
d2 + N0

=
1

1 + N0
P0

d2

=
1

1 + ( d
dh

)2

where dh =
√

P0/N0 is the distance at which the probability
of detection becomes 0.5, which we denote as the half-power
distance. We also assume that we have some maximum
detection range, dmax, and targets farther than this distance
have zero probability of being detected by the robot, since
even though our model might give a small probability of
detection, it is unrealistic to “locate” a target which is far
from the robot.

If we assume that robots move approximately straight most
of the time, we can calculate the probability of detection of
a target based on its lateral displacement from the robot as it
passes. Targets with lateral displacement greater than dmax

have no chance of being detected. Targets with very small
lateral displacement are in sensor range for more time and
have a larger probability of being detected since they are
closer to the robot. The probability of detecting a target with
lateral displacement x and front/back displacement y is:

pdet(x, y) =
1

1 + ( x
dh

)2 + ( y
dh

)2

for
√

x2 + y2 ≤ dmax. Let us also assume that the probabil-
ity of detection given is the probability of detecting a target
over one time step, and if we shrink the size of the time step,
we get:

pdet(x, ti, tf ) = 1 −
tf /∆t∏

t=ti/∆t

(1 − pdet(x, y(t))∆t

for the probability of detecting from time ti to tf . Taking
the limit as ∆t goes to zero, we get:

pdet(x, ti, tf ) = 1 − exp
(∫ tf

ti

ln(1 − pdet(x, y(t)))dt

)

If we assume constant velocity v to get y(t) = vt and
input the time bounds of ti = −√d2

max − x2/v and tf =

√
d2

max − x2/v for the period when the robot will be within
detectable range of the target, the equation becomes:

pdet(x) = 1 − exp

(∫ √
d2

max−x2/v

−
√

d2
max−x2/v

ln(1 − pdet(x, vt))dt

)

For the Coordinated algorithm, robots always follow the
same path, so if a target is on the path periphery with a
low probability of detection, it will have that same low
probability every time the robot repeats the search. The
expected number of misses for a target can be calculated
based on its lateral detection probability as:

m(x) =
1 − pdet(x)

pdet(x)

If we assume that the target has uniform probability of
assuming any lateral displacement along any robot’s sweep
path, we can calculate the overall expected number of missed
passes m by:

m =
1

2rs

∫ rs

−rs

1 − pdet(x)
pdet(x)

dx

where rs is the detection sweep radius, and the expected
time then becomes the lost time from missed passes plus the
original expected time:

E[tc,end] = mtmax +
tmax

2
= (m +

1
2
)tmax

For randomized search, because robots do not follow any
path, the probability of detection is independent of the target
position. Instead, if we also assume that robots move straight
most of the time, we only need to adjust the detection
probability by a multiple ρ given by:

ρ =
1

2dmax

∫ dmax

−dmax

pdet(x)dx

which is the probability of detecting a target within the
sensor coverage area, and the expected completion times then
become:

E[tr,end] =
A

2rρ(1 − η)vN

M∑
i=1

1
i

E[trr,end] =
A

2rρvN

M∑
i=1

1
i

for Random and Random-Repulse, respectively.

A. Simulation

We now resimulate our different techniques using our
probabilistic sensor. The sensor probabilistically checks for
targets every 128 ms. We choose our half-power distance
to be 0.01 m; this gives the robots a probability of 53%
of detecting an obstacle at a range of 10 cm and 32% of
detecting an obstacle at 20 cm over the course of 1 second.
We use a dmax of 20 cm.



B. Results

A bar chart of the average search time for the different
techniques over 100 runs using different numbers of robots
can be seen in Fig. 3. All techniques completed the search
before timeout in all scenarios, but the average completion
time is significantly higher than in the perfect sensing case.
All three approaches achieve comparable results now. There
are two likely reasons for this change. First, noisy detection
increases the benefit of redundant coverage, as the target
may not have been detected in the first pass, which nullifies
much of the advantage of the Coordinated approach, since it
may have to retrace its path multiple times. Second, because
targets on the path periphery require a large number of
expected passes with the Coordinated technique, there will
occasionally be much higher completion times that increase
the average.
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Fig. 3. Search performance of different techniques with noisy detection
over 100 runs; asterixes represent analytical expected values and error bars
represent 95% confidence intervals assuming an Exponential distribution

We can numerically calculate the expected completion
times for the different algorithms. We find that m ≈ 2.8
and ρ ≈ 0.33. The adjusted expected completion times can
be seem in Fig. 3 as asterixes overlaid upon the bars. There
is close agreement between the Randomized simulations and
analytical results. For the Coordinated approach, the simu-
lated time was somewhat less than expected. This is likely
because in the analysis, sensorial overlap between swaths
was not taken into account, and therefore our expected
estimate is higher than it should be. We can also compare the
two strategies with varying values of dh; Fig. 4 shows the
expected completion time for 10 robots using probabilistic
sensors with different half-power distances (all other parame-
ters remain the same). The Coordinated approach does better
for large half-power distances, where detection is similar to
that of the ideal case, but its performance deteriorates more
quickly than Random-Repulse, which does better for small
dh.

IV. UNCERTAINTY IN ROBOT POSITIONS

Robots in the Coordinated technique require knowledge
of their position within the arena in order to effectively
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Fig. 4. Expected completion time for 10 robots using probabilistic sensors
with Coordinated and Random-Repulse algorithms

navigate their prescribed path. Up until now, they have been
given perfect positional knowledge. However, it can be very
difficult to achieve very precise positioning depending on the
environment. We consider several possible forms of position
uncertainty.

Noisy Global Positioning: If robots are being informed of
their position by some global system (e.g., GPS), there may
be noise in the position they receive. This noise is often
approximately Gaussian in nature and can vary over time. In
order to simulate this effect, we add Gaussian noise to the
perceived positions of the robots.

Cumulative Positional Noise: Depending on the scenar-
ios, robots may not have access to a global system to provide
them with positional information. In these cases, it may be
necessary for robots to use their initial position knowledge
and dead-reckoning with their odometry in order to main-
tain a position estimate over the course of the experiment.
With dead reckoning, the uncertainty in position gradually
increases over time as errors from wheel slip accumulate.

A. Simulation

The impact of positional noise on algorithmic performance
is strongly affected by the geometry of the search environ-
ment (e.g., more confined environments would suffer more
degraded performance than open ones). This increases the
complexity of theoretical analysis, and we therefore only
consider simulation of these effects here. We rerun our
experiments (using perfect sensors) with positional noise.

Noisy Global Positioning: Every 4 seconds in the simula-
tion, we generate a new error in the X position, Y position,
and angle of each robot. These errors are sampled from a
Gaussian distribution, with standard deviations of 40 cm, 40
cm, and 0.4 radians, respectively. This error is continuously
applied to positional values until a new error is generated.

Cumulative Positional Noise: For each robot, the error
in position is initially zero at the start of the simulation. At
every time step of 128 ms, we add an adjustment to the
error, sampled from a Gaussian distribution with standard
deviations of 2 mm, 2 mm, and 0.002 radians for X position,



Y position, and angle, respectively. This gradually increases
the error in perceived position on the robots.

B. Results

A bar chart of the average search time for the Co-
ordinated techniques with noisy positioning compared to
the Randomized techniques over 100 runs using different
numbers of robots can be seen in Fig. 5. Not all runs were
completed before timeout in this case with the cumulative
noise Coordinated algorithm; 1 robot was only able to find
the target 80% of the time, and 2 robots had a 96% success
rate. In experiments with few robots, the Randomized ap-
proaches outperform the Coordinated approaches, especially
with cumulative noise which takes very long to find the target
on average. The poorer performance is due to positional
noise causing robots wandering from their prescribed paths
and therefore requiring multiple passes to detect the target.
As the number of robots increases, the completion time
increase factor remains approximately constant for noisy
global positioning, but decreases significantly for cumulative
positional noise, with 20 robots performing approximately as
well as in the case with no positional noise. This is because
cumulative positional noise has more drastic effects on robots
which travel a long distance; if few robots participate in
the search, the distribution of regions requires each robot to
move farther, which increases the effect of the noise. In some
cases, the robots believe their path leads to outside the arena
bounds, which leads to deadlock and catastrophic failure,
since they are never able to reach their next path point. The
initial placement of robots in this scenario likely has a major
impact on performance. If robots were required to align
themselves from different initial positions, the performance
would probably be much poorer, especially in the case with
many robots.
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Fig. 5. Search performance of different techniques with noisy global
positioning (Coordinated 1) and cumulative positional noise (Coordinated
2) over 100 runs; error bars represent 95% confidence intervals assuming
an Exponential distribution

V. DISCUSSION

The analytical models presented here were able to predict
with reasonable accuracy the performances of different algo-

rithms with different numbers of robots. These could be used
to assist in the analysis and development of other multi-robot
search scenarios, giving initial predictions of performance
without needing to run full simulations. They could also
serve as a basis for further analytical work on multi-robot
search or other similar areas.

In many experiments that have been presented, the coor-
dinated algorithm was still able to perform at least as well
as the randomized one. This, however, does not necessarily
mean that a coordinated algorithm is a better choice. By
using a randomized algorithm, one opens the possibility of
working with much simpler robots, which may not need to
have as much sensorial capability or as much computing
power. Design effort may also be saved, as it may take
a substantial amount of time to produce a coordinated
algorithm which works well for a given scenario. The benefit
of faster performance must be weighed against these factors.

The coordinated algorithm used here is very simple, and
could easily be improved in numerous ways. For example,
robots with noisy detection could vary their paths on repeat
coverage to better detect targets on the path periphery, and
robots with cumulative positional noise could use a time-
out/reset to prevent deadlock. However, even if safeguards
are added to the algorithm to deal with potential pitfalls,
it can be quite difficult or even impossible to predict every
real-world problem that may arise. This is especially true
for robots operating in dynamic or unknown environments
(some algorithms may not even be able to function if the
environment geometry is not known a priori).

One issue not dealt with here was the effect of robot
failure. For randomized algorithms, other robots in the group
simply continue their progress unhindered. For a coordinated
approach, the group strategy must be recalculated to ensure
that the area assigned to the broken robot is covered. This
can be very difficult for the system and can even lead to
catastrophic failure if the technique is not well-designed.

VI. CONCLUSION

Research on multi-robot systems often takes place using
highly abstracted representations of the robots and their
environment. While this can prove a valuable technique for
speeding the design process, it is crucial to verify techniques
using real experiments or simulations which incorporate
real-world artifacts. We have shown that a high-performing
coordinated approach to multi-robot search suffers degraded
performance and sometimes even catastrophic failure when
different real-world constraints are introduced. We have
presented several randomized approaches which are much
more robust to these affects.

While our randomized approaches showed superior robust-
ness to the coordinated one presented here, this should not
be taken as a blanket recommendation for purely randomized
algorithms. Although the randomized algorithms used were
able to eventually locate the target in all scenarios presented
here, this may not occur in all cases. Some environments
may be comprised of multiple convex regions connected by
narrow passages. In cases like these, it would be necessary



to add some coordinated features to the algorithms in order
to explicitly reach all areas of the environment. Our results
should therefore be taken as a cautionary point on the design
of highly-coordinated algorithms and as a demonstration of
the need for realistic simulation/experimentation in multi-
robot system design.
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