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Abstract. Many successful indoor mapping techniques employ frame-to-frame 
matching of laser scans to produce detailed local maps, as well as closing large 
loops.  In this paper, we propose a framework for applying the same techniques 
to visual imagery, matching visual frames with large numbers of point features.  
The relationship between frames is kept as a nonlinear measurement, and can 
be used to solve large loop closures quickly.  Both monocular (bearing-only) 
and binocular vision can be used to generate matches. Other advantages of our 
system are that no special landmark initialization is required, and large loops 
can be solved very quickly. 

1. Introduction 
Visual motion registration is a key technology for many applications, since the sen-

sors are inexpensive and provide high information bandwidth.  In particular, we are 
interested in using it to construct maps and maintain precise position estimates for a 
mobile robot platform indoors and outdoors, in extended environments over loops of 
> 100m, and in the absence of global signals such as GPS – this is a classic SLAM 
(simultaneous localization and mapping) problem.  

In a typical application, we gather images at frame rates, and extract hundreds of 
features in each frame for estimating frame to frame motion.  Over the course of 100 
m, moving at 1 m/sec, we can have a thousand images and half a million features.  
The best estimate of the frame poses and feature positions is then a large nonlinear 
optimization problem.  In previous research using laser rangefinders, one approach to 
this problem was to perform frame-to-frame matching of the laser scans, and keep 
only the constraints among the frames, rather than attempting to directly estimate the 
position of each scan reading (feature).  This technique is used in the most successful 
methods for large-scale LRF map-making, FastSLAM [11][17] and Consistent Pose 
Estimation [8][12][15][16].  Using matching instead of feature estimation reduces the 
size of the nonlinear system by a large factor, since the features no longer enter into 
it. 

In this paper, we present a frame-to-frame method for constructing maps from vis-
ual data.  The main purpose of the paper is  

• To show that precise realtime estimation of pose is possible, even in difficult 
outdoor environments, by visually matching frames that are spatially close (and 
not just temporally close, as in visual odometry). 

• To show that a nonlinear frame-frame system is capable of quickly solving 



large-scale loop closure from visual information. 
Precise estimation of frame pose is important in constructing good maps.  In visual 

odometry, the pose is estimated by matching image features across several consecu-
tive frames [1][18][19].  Current techniques achieve very precise results, but pose 
errors grow unbounded with time, even when the camera stays in the same area, be-
cause there is no matching of frames that are close in space, but not time.  In contrast, 
the frame-frame matching techniques for LRF maps look for matches between frames 
that are spatially close, and obtain very precise floorplan results (see Figure 1).  In a 
similar manner, our system computes the structure of spatially-coherent frame-frame 
visual constraints, and optimizes incrementally for realtime performance. 

Recent research in vision-based SLAM has concentrated on solving the pose esti-
mation problem for small areas by keeping track of feature positions.  Davison’s 
innovative technique [2] used a combined EKF over a small set of features.  More 
recently, several approaches use a large number of features, each with its own inde-
pendent EKF [4][23][21][22].  These methods rely on novel techniques for matching 
against a large database of features to achieve realtime performance.  In both cases, 
the pose estimation accuracy suffers because of mismatches and imprecision in fea-
ture localization.  We are investigating the relative performance of these techniques in 
small areas against our frame-frame matching, but do not yet have results to report 
here. 

One advantage of the frame system is that no special initialization is required for 
landmarks, even in the monocular case, since we do not track the 3D position of 
landmarks.  Instead, we use standard techniques in structure from motion to match 
image features and solve a projective system for the optimum local registration of 
frames and features [19][10][25].  Our novel technique is to derive a synthetic nonlin-
ear measurement among frames alone that summarizes the registration.  One obstacle 
to frame-frame constraints in the monocular case is that they are only partially con-

 
Figure 1  Frames linked by matching laser scans.  Red arrows are frames, lines are links.  
Whenever there is a significant overlap of scans, a link is inserted, e.g., when the LRF sees 
through a doorway into the hall from separate rooms. 



strained (up to scale) – current laser scan systems, for example, cannot handle this 
case [13].  Our technique is more general, and can handle projective or even less-
constrained cases. 

 The frame-frame constraints are linked into a nonlinear system that mimics the 
much larger frame+landmark system.  One of the weaknesses of current visual SLAM 
techniques with large numbers of landmarks is closing larger loops.  In the course of 
a 100 m loop, there can be significant drift even with good frame-frame matching – in 
typical outdoor terrain our system has 2-4% error.  After finding a loop-closing 
match, the frames in the loop can experience significant dislocation from their initial 
values.  Our system computes the optimal nonlinear solution to the frame poses, in a 
fraction of a second, for large frame sets (> 1K frames).   

Similar work in large-scale loop closure has recently emerged in undersea mapping 
using cameras [20][24] [26], although not in a realtime context.  This research also 
uses frame-frame matching of images that are spatially close, but then filters the 
frame constraint system using a sparse information filter.  In contrast, we construct an 
approximate nonlinear system, which can better conform to loop-closing constraints.  

2. Visual Matching and Nonlinear Systems 
Our approach derives from structure from motion theory of computer vision, in 

particular Sparse Bundle Adjustment (SBA).  Of necessity we will present a short 
overview to introduce notation, and then apply it to frame-frame matching and the 
construction of the frame constraint system.  Readers are urged to consult the excel-
lent review in [25] for more detailed information.   

2.1. Sparse Bundle Adjustment 

We wish to estimate the optimal values of a set of parameters x, given a set of 
measurements z .  A measurement function )(xz  describes the expected measure-
ment from a given configuration of parameters x.  The error or cost induced by a 
given parameter set is  

(1) )(xzz −=ε  . 
If there are a set of independent measurements zi, each a Gaussian with covariance 

1−
iW , then the MLE estimate x̂  minimizes the cost sum 
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Since (2) is nonlinear, solving it involves reduction to a linear problem in the vicinity 
of an initial solution.  At a value x, f can be approximated as 

(3) xxxxxx δδδδ Hgff TT
2
1)()( ++≈+  , 

where g is the gradient and H is the Hessian of f with respect to x.  The minimum of f 
is found by equating the derivative to zero.  A further approximation gets rid of the 
second-derivative Hessian terms in favor of the Jacobian xz ∂∂≡J  (the Gauss-
Newton normal equations): 

 (4) 0εδ WJWJJ TT −=x  , 
with W the block-diagonal matrix formed from all the individual Wi.  In the nonlinear 



case, one starts with an estimate x0, and iterates the linear solution until convergence 
to an estimate x̂ .  The Hessian has been approximated by 

(5) WJJH T≈ . 

It should be noted that Ĥ  is also the inverse of the covariance of x̂ , that is, the in-
formation matrix. 

The general linear system (4) can be solved using a variety of methods, paying at-
tention to step size to insure that there is a reduction in the total cost.  In the applica-
tion of (4) to camera frames and point features, SBA takes advantage of the sparse 
structure of H to derive an efficient decomposition.  Consider a set of camera frames 
p and features q.  The measurement functions ),( jiij qpz  are the projection of fea-

tures qj onto the frames pi.  Since only a small, bounded number of all features are 
seen by any camera frame, the pattern of the Jacobian xz ∂∂  is very sparse (the pri-
mary structure).  If we reconstruct (4) by ordering the frames first and the features 
second, we get the following block structure: 
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where Hpp and Hqq are block-diagonal.  Figure 2 shows a small example of three 
frames and two features. 

 Since the number of features is normally much larger than the number of 
frames, (6) would be easier to solve if it consisted just of the Hpp section.  In fact, it is 
possible to reduce (6) to the form 
 (7) gH pp −=pδ , 

where  

 (8) 
qq

T
qqqpqpp

T
p

qpqqpqpppp

WJHHWJg
HHHHH

εε 1

1

−

−

−≡

−≡
 

After solving the reduced system (7) for the p’s, the results can be back-propagated to 
find the q’s, and the process iterated.  Note that ppH  is the inverse covariance of the 

frame pose estimate. 
 It is important that in our application, the Hessian of the reduced system 
remains sparse as the number of frames grows (Figure 2, bottom).  This is because 
each feature is seen by only a small, bounded number of frames, and so the number of 
elements of ppH  grows only linearly with the number of frames. 

 Another characteristic of the system (7) is that the choice of origin is arbi-
trary.  All of the measurements are relative to a frame, and are preserved under arbi-
trary rigid transformations.  So we can take any solution of (7) and transform it to a 
particular coordinate system, or equivalently, fix the pose of one of the frames.  In 
fixing the pose, we eliminate the frame parameters, but keep it in the measurement 
equation as a fixed value for projection errors. 
 
 



2.2.  Frame-Frame Matching 

So far, the development has been a standard exposition of SBA.  We will use (8) to 
calculate an incremental bundle adjustment [5] when adding a new camera frame to 
the system.  For a large system, however, full SBA becomes computationally expen-
sive, and more importantly, unstable when closing loops with significant offset.  By 
using the idea of frame-frame matching from the LRF SLAM literature, we can con-
vert a large nonlinear system of frame and feature measurements into a simpler (still 
nonlinear) system of frame-frame constraints.  This conversion is only approximate, 
but we will show in a series of experiments that it produces good results. 

Consider a simple system consisting of two frames p0 and p1, along with a large set 
of features q that are visible in both frames.  Fix p0 to be the origin, and calculate the 
estimated value 1p̂  and its inverse covariance 11H

)
 (from  (8)) using SBA.  These 

two values summarize the complicated nonlinear relationship between p0 and p1 (con-
structed from the feature measurements) as a Gaussian PDF.  This is exactly the PDF 
we would get from the measurement and its associated function 
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with inverse covariance 11H
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 (see Appendix I).  Here the measurement itself is 1p̂ , 
the estimated position of 1p .  So we have compressed the effect of all variables q and 
their projections z  into a simple synthetic linear measurement on 1p . 

Unfortunately (9) only holds when 0p  is the origin.  What we would like is a 
measurement function that characterizes the relationship of 0p  and 1p  no matter 
where 0p  is located.  The easiest way to do this is to measure the position of 1p  in 

 
 

 

 

Figure 2  Top left: Three frames (arrows) and three features (dots).  The dotted lines indicate 
that a feature is viewed from a frame.  The Hessian is on the right, with the nonzero elements 
marked.  Bottom left: reduced Hessian Hpp, showing banded structure. 
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the frame 0p .  Changing from the global frame to 0p ’s frame is accomplished by a 

homogenous transformation (see [3]); the value of 1p  in 0p ’s frame is denoted 1
0 p .  

Now the measurement and its function are  
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again with inverse covariance 11H
)

.  This measurement function is no longer linear in 
the frame variables, but it is easy to see that when 0p  is the origin, it reduces to (9).   
More importantly, (10) produces exactly the same PDF for 1p  as does SBA, when 
both use the same (arbitrary) fixed value for 0p  (see Appendix I for a proof). 

It is worth emphasizing the import of going from the large set of projective meas-
urements ),( jiij qpz  to the single measurement 1

0
10 ),( pppz = .   

• The nonlinear system is reduced from several hundred variables (the features plus 
frames) to two variables (the frames).   

• The nonlinear nature of the system is preserved, so that it is invariant to the abso-
lute orientation and position of 0p  and 1p .  This is in contrast to working with a 
reduced linear system (as in [20]), where re-linearization to correct bad initial an-
gles is not possible. 

• The measurement function (10) is a good approximation of the original system, as 
long as 1

0 p  is close to 1
0 p̂ . 

•  The measurement function (10) can be over-parameterized – the obvious case is 
for a monocular camera, in which the relation between 0p  and 1p  can be deter-

mined only up to a scale factor.  The inverse covariance 11H
)

 has a null space and 
is not invertible, but is still useable in finding an ML estimate.  This property is a 
great benefit, since we don’t have to worry about finding a minimal representation, 
and can use frame-frame measurements even when they are only partially con-
strained, e.g, in the monocular case. 

There is nothing that restricts frame-frame matching to working with just two frames 
– the reduction to pose differences works with any number of frames that have fea-
tures in common.  One frame must be chosen as the origin (say 0p ); the general form 
is 
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with inverse covariance ppH

)
.  If all frames have at least one feature in common, then 

ppH
)

 has no nonzero elements, and the frames are fully connected. 



3. Implementation 
The goal of this research is to implement a system that builds a map in realtime from 
visual information.  The map system has the following elements:  

1. Map state is the estimated pose p̂  of a set of frames that are extracted during 
camera motion.   

2. Frame measurements are a set of measurements of the form (10) or (11).   
3. Image features are point features extracted at each frame, associated with the 
frame.  Image features do not enter into the map structure, and are kept only to per-
form image-to-image matching. 

When a new frame is acquired, the system augments the map state p̂ , and computes 
new frame measurements based on visual matching with other frames that are near in 
time and space.  Then, a portion of the system is optimized using a subset of the 
frames and measurements.  Where only local matches are made, a local area is opti-
mized; for larger loops, the whole system may be involved.  The optimization then 
updates the estimated pose p̂ . 

3.1. Visual Matching 

The system expects calibrated cameras, and can use either monocular or binocular 
matching.  For the binocular case, we match two frames; for monocular, three frames 
are used to preserve the relative scale.  In either case, we use simple Harris points, 
and find putative matches by normalized cross-correlation of a small patch around the 
point.  A robust RANSAC method [6] is used to find a good motion hypothesis.  In 
the binocular case [18][1], three matched points are triangulated and then an absolute 
orientation step is used to estimate the 3D motion.  The estimate is scored by project-
ing all features back onto the images and counting the number of inliers. 

For monocular motion, the 5-point method of [18] is used to hypothesize an essen-
tial matrix for the first and third frames, and the second frame is estimated from a 
three-point resection [9].  Again projection is used to find the maximum number of 
inliers. 

For the best hypothesis, the SBA method of Section 2.1 optimizes the whole sys-
tem, and at the same time computes the Hessian for the frame-frame constraint (10) or 
(11).  Note that in the monocular case, the Hessian has a null space of dimension one, 
since the overall scale is indeterminate.  This exactly characterizes the relative place-
ment of the three frames, while leaving open the scale. 

3.2. Data Association 

Visual matching takes place independent of the state of the map system, producing 
frame-frame measurements.  One of the critical system choices is deciding which 
measurements to add when a new frame is added.  For this paper we adopted a simple 
scheme that is efficient and produces reasonable results.  First, we add a set of meas-
urements that connect to the previous N frames, where N is a small number, typically 
1 to 5.  Then, we add at most one measurement to any close, non-recent frame.  These 
additions keep the map estimate consistent locally.  Finally, we search for longer-
range measurements that close larger loops, and add one of these if appropriate. 



For short-range motion, spatially nearby frames can be identified if they are close 
in the graph of measurements [8].  For longer-range loops, we are investigating the 
use of more invariant features to reliably identify closure hypotheses, e.g., the method 
of [24]. 

3.3. Computation 

The more demanding case is binocular, because features must be extracted from 
two images, and matched across the images as well as with previous images.  Figure 3 
presents a breakdown of the computation on a 2 GHz Core Duo Pentium M, using 
512x384 images and approximately 500 points in each image.  For each new frame, 
the first three computations must be performed to connect to the previous frame.  For 
more matches to previous frames, only the motion estimation step needs to be done; 
for matches to close frames, both feature tracking and motion estimation are needed.  
The system can perform several visual matches within a 15 Hz cycle, with visual 
matching partitioned between the two cores.  Updating the map system takes very 
little time compared to the matching stage:  Figure 3 also shows some timings for 
medium to large systems.  The system is implemented and runs on an outdoor robot 
that uses stereo to autonomously build maps in off-road environments [14]. 

4. Results 
We performed two sets of experiments, one with simulated data where the ground 

truth is known, and one with a dataset from an outdoor robot moving about 100 m in  
a loop. 

4.1. Simulated monocular system 

In this experiment we compare the frame-frame system to the standard SBA 
method on a local loop, to test its accuracy.  The motion is circular, with the camera 
looking in the direction of motion.  For the frame system, we use 3-frame constraints 
to propagate relative scale.  We varied the density of constraints for each frame, from 
1 to 5.  Figure 4 shows typical results, with the SBA motion in blue, and the frame 
system in red.  For the frame system, the last few frames were matched against the 
first few to create loop constraints.  For SBA, image feature tracks average 7 frames, 

Algorithm CPU time 
Feature extraction and stereo matching 25 ms 
Visual matching  24 ms 
Motion estimation (per constraint) 16 ms 

System optimization 
 

               80 frames   30 ms 
             330 frames 100 ms 
             660 frames 220 ms 
           1330 frames 340 ms 

Figure 3  Computation times for the main parts of the mapping system.  2 GHz Pentium 
M, 512x384 images, ~500 points per image. 



and no loop-closure matching is used.  Note the accuracy of the frame system, even 
though it uses several orders of magnitude fewer measurements. 

 
Figure 5 shows statistics for varying amounts of Gaussian noise on the image 

points.  The error is measured as the rms distance of poses from their ground-truth 
positions, averaged over 20 runs.  Since the scale and placement of the result is not 
constrained, we did a final minimization step, using a rigid transformation and scale 
to bring it into correspondence with ground truth. 

 
Figure 4  Typical circular motion estimate at high noise levels, projected onto the XY 
plane.  Green crosses are the ground truth frame positions.  Blue is full SBA, red is the 
frame system with 2 links (3 pixels image error).   

  

Figure 5   RMS error in pose (mm) for circular motion, for different numbers of links and 
image noise.  Red lines are frame system, blue lines are full SBA.  Bottommost red and blue 
lines are for 0.5 pixels image noise, topmost are for 2.5 pixels noise. 



The key aspect of Figure 5 is that the reduced system results are as good as or bet-
ter than SBA, especially at 4 and 5 links.  As the image noise increases, SBA does 
increasingly worse because it is open-ended, while the frame system degrades less.  
Note that these results are much more accurate than the reduced system in [7], which 
uses an averaging technique between adjacent frames, and neglects longer links.  This 
experiment validates the use of the frame system for high-accuracy motion estimation 
in a local area. 

 

4.2. Outdoor stereo system 

We conducted a large outdoor experiment, using a mobile robot with a fixed stereo 
pair, inertial system, and GPS (Figure 6).  The FOV of each camera was about 1000, 
and the baseline was 12 cm; the height above ground was about 0.5 m, and the cam-
eras pointed forward at a slight angle.  This arrangement presents a challenging situa-
tion: wide FOV and short baseline make distance errors large, and a small offset from 
the ground plane makes it difficult to track points over longer distances.  

The test course covered about 110 m, and concluded at the spot where it started.  
Figure 8 shows the global position, as determined by GPS and inertial systems, and the 
poses computed from the frame system – 1172 frames with average spacing of just 
under 0.1 m.  The run started from the origin, went across and diagonally down to the 
lower right, then came back below the original track.  The frame system did a reason-
able job, with an accumulated error of about 3 m over the run.  The angle gets off a 
bit on the return trip, and consequently the loop meeting point is overrun.  Note that 
the travel distance was very close – 110.9 m for GPS, 110.02 for VO. 

To correct the accumulated error, we closed the loop by matching the last frame to 
the first.  Our visual matching algorithm was used to find the constraint, since the two 
frames were close.  The visual results now track GPS much more closely (Figure 8), 
and in fact are better than GPS right around the origin, where GPS is off by almost 1 
m.  The path length has not changed, but the angular error along the path has been 

 
Figure 6  Outdoor robot in typical terrain.  Robot is part of a DARPA project, Learning 

Applied to Ground Robotics.  Two stereo systems are on the upper crossbar. 



corrected and spread evenly, based on the loop closure. 
Even more interesting is the data from the Z (earth-normal) direction, in Figure 7.  

The GPS/inertial data drifts considerably over the run, ending at almost -7m.  The 
frame data (blue) also drifts, but to much less extent, ending at -3 m.  Adding loop 
closure corrects the drift at the origin, and pulls up the rest of the path as well. 

Given our timing results, it is possible to perform loop closure online.  But we can 
reduce the computational load still further by reducing the number of frame-frame 
constraints.  To do this, we use the same technique as in (6)-(8), but add to the fea-
tures q all the frames between two endframes.  The reduced system (7) then contains 
just the two endframes, and we construct a synthetic  measurement between these 
two, as in (9).  For this experiment, two reductions were chosen, based on 1m and 4m 
distance.  Starting with the first frame, we find the next frame that is greater than this 
distance or more than 10o different in angle.  We then reduce all frames in between, 
add the loop closure constraint, and solve the system.  The reduction leads to systems 
of 126 and 41 poses, respectively.  The results are shown in Figure 9.  The blue 
crosses, for the 126-frame system, recover almost exactly the form of the original 
frame system.  Even with a 10-fold reduction in the number of frames, from 1172 to 
126, the system produces excellent results.  With only 41 poses, errors start to appear 
at a small scale, although the overall shape still remains very good.  

 
Figure 7  Comparison of Z vs. X motion of GPS (green), frame system (blue), and frame 
system with loop closure (red). 

 
Figure 8  Top: Frame system of an extended outdoor run.  Global pose from GPS and inertial 
sensors (green), frame system in blue.  Note the overshoot at the end of the loop.  Bottom: Frame 
system with loop closure, in red. 



5. Discussion 
This paper lays the foundation for an online method of consistent motion estima-

tion, one that takes into account global constraints such as loop closure, while pre-
serving the fine structure of motion.  It is based on proven methods from the laser 
scan-matching SLAM literature, adapted using structure-from-motion techniques. A 
careful analysis of the structure of measurements in SBA shows how to construct 
new, nonlinear frame-frame constraints in a theoretically motivated way. The resul-
tant systems can be almost as accurate as the original system, while enjoying large 
speedups in computation.   

One of the nice properties of the frame-frame system is that it keeps the set of cam-
era frames, so that reconstruction (e.g., dense stereo) can be performed.  This is in 
contrast to EKF methods [1][4][23][21][22], which keep only a current estimate of 
the camera pose.   

While we show that online consistent estimation is possible, we have not yet de-
veloped a full system that exploits it.  Such a system would have a map management 
component, for keeping track of images associated with poses, and deciding when to 
match the current image against others for loop closure.  It would also need more 
robust features for wide-baseline matching.  It is our goal to construct a complete 
system that performs online map-making over large areas, using just visual input.   

Our current system uses the robust VO component to keep track of position in var-
ied outdoor terrain, including under tree cover where GPS does not work very well.  
Our system performed the best in a final evaluation of the DARPA Learning Applied 
to Ground Robotics project in June of 2006, using VO to keep track of its position 
over a challenging course.  

 
Figure 9  Loop-closing with reduced number of poses.  The blue crosses are for 1m distance 
between frames (126 poses), the red circles for 4m (41 poses).  Green is global GPS pose. 



Appendix  I 
Let x0, x1 and q be a set of variables with measurement equation ),,( 10 qxxz  and 
measurement z  and cost function 

(I1) ∑ ΔΔ ii
T
i zWz . 

For x0 fixed at the origin, let 11H
)

 be the Hessian of the reduced form of I1, according 
to (8).  We want to show that the cost function 
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has approximately the same value at the ML estimate *
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1xz =′ .  To do this, we show that the likelihood distributions are approximately the 

same. 
 The cost function (I1) has the joint normal distribution 
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We want to find the distribution (and covariance) for the variable x1.  With the ap-
proximation of f(x+δx) given in (3), convert the sum of (I3) into matrix form. 
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where we have used the result of (7) and (8) on the first term in the last line.  As *zΔ  
vanishes at ** ,qx , the last form is quadratic in x, and so is a joint normal distribution 

over x.  From inspection, the covariance is 1
11
−H

)
.  Hence the ML distribution is 
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The cost function for this PDF is (I2) for x0 fixed at the origin, as required. 
  When x0 is not the origin, the cost function (I1) can be converted to an 

equivalent function by transforming all variables to x0’s coordinate system.  The 
value stays the same because the measurements are localized to the positions of x0 
and x1 – any global measurement, for example a GPS reading, would block the 
equivalence. 

 Thus, for arbitrary x0, (I5) and (I3) are approximately equal just when x1 is 
given in x0’s coordinate system.  This is the exact result of the measurement function 

1
0

10 ),( xxxz =′ . 
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