
 

 Abstract—Calibration techniques allow the estimation of 
the intrinsic parameters of a camera. This paper describes an 
adaptive visual servoing scheme which employs the visual data 
measured during the task to determine the camera intrinsic 
parameters. This approach is based on the virtual visual 
servoing approach. However, in order to increase the 
robustness of the calibration several aspects have been 
introduced in this approach with respect to the previous 
developed virtual visual servoing systems. Furthermore, the 
system is able to determine the value of the intrinsic 
parameters when they vary during the task. This approach has 
been tested using an eye-in-hand robotic system.1 
 

I.  INTRODUCTION 

Nowadays visual servoing is a well known approach to 
position a robot with respect to a given object [5]. However, 
if the camera intrinsic parameters used in the task are 
different to the real ones and if the task is specified as a 
desired pose to reach, the final eye-in-hand camera pose will 
be different from the desired pose. To increase the versatility 
of these systems, a visual servoing system invariant to 
changes in camera intrinsic parameters is proposed in [7]. 
However, by using this approach the task has to be specified 
as a desired image to be observed by the camera and the 
intrinsic parameters during the task are not determined. 
Although the visual servoing systems are robust with respect 
to intrinsic parameters errors, a better behaviour is obtained 
if these parameters are well estimated (the intrinsic 
parameters are needed to estimate the Jacobian matrix which 
relates the camera velocity and the variations of the features 
in the invariant space). This paper describes a visual 
servoing system which takes advantage of the captured 
images during the task to determine the internal camera 
parameters. It allows the task to be achieved, not only 
without any previous camera calibration knowledge, but also 
when the intrinsic parameters vary during the task. 

In the last decades, camera calibration methods have been 
largely investigated (see e.g. [11][13]). Within these 
methods self-calibration systems have been proposed [4]. 
Most of them are concerned with unknown but constant 
intrinsic camera parameters. In this type of systems it is 
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often complicated to obtain good results and the behaviour 
depends on the observed scene. The use of the image data 
measured during the execution of a visual servoing task to 
calibrate the camera is proposed in this paper. Doing so, the 
behaviour of the visual servoing is improved at the same 
time. 

The virtual visual servoing systems are subject of recent 
researches [9]. Using this approach the camera parameters 
are estimated iteratively. This is done so that the extracted 
visual features correspond to the same features computed by 
the projection of the 3D model according to the current 
camera parameters. In [2] a markerless 3D model-based 
algorithm to track objects is presented. These systems are 
mainly used for pose estimation. The extension of these 
systems for the camera calibration requires additional 
considerations [6][8]. In our case a calibration method 
which is able to determine varying intrinsic parameters has 
been obtained. As it is shown in the paper, the proposed 
method presents a precision equivalent to the ones obtained 
using recent statical calibration methods. These require the 
use of a specific calibration rig while in the proposed 
method different kinds of image features can be employed. 

 This paper is organized as follow: Section II recalls the 
basic virtual visual servoing approach. Section III describes 
the visual servoing scheme that uses the camera parameters 
estimated by using the approach described in Section II. In 
Section IV, a multi-image approach is described to improve 
the behavior of the classical virtual visual servoing. Section 
V shows a method to determine the adequate number of 
images to obtain the calibration. In Section VI experimental 
results, using an eye-in-hand system, confirm the validity of 
the adaptive visual servoing. The final section presents the 
main conclusions. 

 

II. CAMERA CALIBRATION BY VIRTUAL VISUAL SERVOING 

This section describes the virtual visual servoing 
approach developed. The observed features in the image are 
denoted pd and p are the current positions of the image 
features projected using the current camera intrinsic 
parameters ξ (principal point, focal) and the extrinsic 
parameters cMo (pose of the object frame with respect to the 
camera frame). In the sequel we denote visual servoing as 
VS and virtual visual servoing as VVS. 

Denoting prξ the perspective projection model according 
to the intrinsic parameters ξ, the projection of an object 
point, oP, in the image will be: 
 

p=prξ( cMo
oP) (1) 
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In order to carry out the calibration of the system, it is 

necessary to minimize iteratively the error between the 
observed data, pd, and the position of the same features p 
computed using (1). Therefore the error is defined as:  
 

e=p-pd (2) 
 
The time derivative of e is nothing but: 
 

d
d d
d d

ξ
ξ

∂ ∂
= = +

∂ ∂
p r pe p - p
r t t

& & &  (3) 
 
where r is the camera pose. Equation (3) can be rewritten as:  
 

 
and: 

 

 
where ϑv  is the instantaneous virtual camera velocity and 

pL  the interaction matrix related to p [8]. 
To make e decrease exponentially to 0 ( 1λ= −e e& ) the 

following control law is obtained: 
 

 
Once e = 0 the intrinsic and extrinsic parameters of the 

real camera are obtained. In Table I different calibration 
experiments using the VVS approach are shown. This table 
indicates the intrinsic parameters obtained (pixel coordinates 
of the principal point (u0, v0) and focal length in the u and v 
directions (fu, fv)) from different initial positions of the 
virtual camera. To develop the calibration the 3D object 
represented in Fig. 2 has been employed (from this object it 
is possible to extract 5 ellipses whose parameters have been 
used to define p and pd). The virtual trajectories obtained 
during the different calibration experiments are represented 
in Fig. 1. The initial intrinsic parameters considered in the 
calibration are the ones provided by the manufacturer (u0, 
v0) = (154, 99) and (fu, fv) = (313, 301). The real camera is 
fixed at position (3.6, 39.7, 303.3) mm. and orientation in 
Euler angles (α, β, γ) = (2.9, 0.8, 1.5) rad. The intrinsic 
parameters obtained using the Zhang’s method [13] and a 
classical rig are (u0, v0) = (168.7, 121.5), and (fu, fv) = 
(412.9, 423.7) respectively (20 images are used to do the 
calibration).  

As is shown in Table I when VVS is employed for camera 
calibration, the intrinsic parameters obtained may vary 
depending on the initial view point. Furthermore, in Table I 
we can observe an experiment in which the obtained 
intrinsic parameters converge to wrong values due to a very 
bad initialization (see the last line). In order to avoid these 
errors the aspects described in Sections IV and V have been 
introduced in the basic VVS approach. 

 
 

TABLE I 
INTRINSIC PARAMETERS OBTAINED IN DIFFERENT MONO IMAGE 

CALIBRATION EXPERIMENTS 
Initial pose 

(px,py,pz)mm., (α, β, γ)rad. 
Obtained intrinsic parameters 

(fu, fv), (u0, v0) 
(116.4, 61.5, 252.8),    

(3.0, 0.8, 1.5) 
(399.5, 404.1),  
(167.1, 120.7) 

(180.5, -10.5, 464.8),       
(-2.9, 0, 1.8) 

(406.6, 415.3),  
(167.3, 220) 

(-124.3, -5.7, 464.8),       
(-2.8, 0.9, 1.8) 

(411.5, 423),  
(168.2, 120.2) 

(78.1, 50.3, 171.2),         
(3, 0.8, 1.5) 

(412.7, 424.7),  
(170.4, 120.8) 

(-29.1, 63.9, 202.4),         
(-2.1, 0.7, 0.7) 

(406.1, 413.1),  
(170.3, 120.9) 

(159.7, 119.9, 418.4),  
(2.5, 0.4, 1.9) 

(411.7, 422.8), 
 (169.7, 121.6) 

(34.1, 27.1, 160),         
(2.3, 0.6, 1.9) 

(412.9, 423.3),  
(169.4, 121) 

(-130.7, 117.5, 418.4), 
(1.9, 0.3, 2.1) 

(905.7, 1053.2),  
(-203.8, -149.3) 

 

 

 
Fig. 1. 3D trajectories in different calibration experiments. 

 

 
Fig. 2. 3D object employed in the camera calibration experiments. 

III. COMBINING VISUAL SERVOING AND VIRTUAL VISUAL 
SERVOING 

In this section the main considerations and notations 
about the VS scheme developed jointly with VVS are 
detailed. A robotic task can be described by a function 
which must be regulated to 0. Such an error function et can 
be defined as: 

 where s is a k x 1 vector containing k visual features 
corresponding to the current state, while s* denotes the 

p=e H v&  (4) 
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visual features values in the desired state. s* depends not 
only on the desired camera location, c

odM , but also on the 
intrinsic parameters,ξ . A simple control law can be defined 
in order to fulfil the task et. By imposing an exponential 
decrease of et ( t 2 tλ= −e e& ), we obtain: 

where +
SL̂  is the pseudoinverse of an approximation of the 

interaction matrix. In the estimation of the interaction 
matrix, sL̂ , the results of the calibration method described 
in the previous section are used. 

Therefore, at each iteration, i, of the VS task, a complete 
VVS is developed. In VVS the desired features, pd, are the 
ones observed at instant i (pd=s). The initial ones, p, are 
computed by projection employing the extrinsic and intrinsic 
parameters determined at instant i-1. At each iteration of the 
VS task, the calibration results are used to update sL̂  and s*. 

 

IV. MULTI-IMAGE CALIBRATION 

As shown in [8] a possibility to improve the behaviour of 
classical VVS systems is to integrate data from several 
images. In this section, we present how to use different 
images obtained during the VS task. First we consider that 
the last w captured images are used. This set of w images is 
called calibration window. We consider that the intrinsic 
parameters do not vary or that in the w images the variation 
of the intrinsic parameters can be considered negligible. 

The global matrix considered for the multi image 
calibration is then: 

In this case, the control action and error in Equation (6) are 
( )1 w, , , ,ξϑ ϑ2 ϑ=v v v v &L , ( )1 1 2 2 w w

d d d, , ,= − − −e p p p p p pL  

respectively. Therefore, in the minimization w virtual 
cameras are considered. A unique set of intrinsic parameters 
are computed which are the same for all the virtual cameras. 

An important aspect of the multi image calibration is 
that it allows the convergence in situations in which mono 
image calibration cannot provide the correct intrinsic 
parameters. To demonstrate this fact, we consider the last 
experiment presented in Table I and the size of the 
calibration window is increased. Table II shows the intrinsic 
parameters obtained and the number of iterations required 
for the convergence depending on the size of the calibration 
window. This table also presents the percentage of error on 
the extrinsic parameters obtained (this value includes the 

position but not the orientation). In this table we can see that 
the greater the calibration window the more iterations are 
required for the convergence, however, the calibration is 
more accurate. Furthermore, the use of a very high number 
of images for the calibration introduces delays and does not 
allow improvements of the value of the intrinsic parameters, 
when they vary during the task. From this table it is possible 
to conclude that it is required the size 6 of the calibration 
window to obtain good results. 

 
TABLE II 

EFFECT OF INCREASING THE NUMBER OF IMAGES TO DEVELOP THE 
CALIBRATION 

Calibration 
window 

Intrinsic parameters 
(fu, fv), (u0, v0) 

% error 
extrinsic Iterations 

1 (905.7, 1053.2),  
(-203.8, -149.3) 

3181 40 

2 (7.9, 757.1),  
(-523.5, 204.5) 

561 55 

3 (409.9, 420.9),  
(166.8, 120.8) 

41.7 50 

4 (410.4, 421.4),  
(164.4, 121.1) 

14 70 

5 (411.6, 422.9),  
(166.73, 120.3) 

8.1 90 

6 (412.7, 423.3),  
(168.4, 121.3) 

3.1 100 

7 (412.9, 423.6),  
(168.5, 120.9) 

3.6 110 

8 (412.9, 423.8),  
(169, 121.5) 

4.2 120 

 
V. CALIBRATION USING A VARIABLE NUMBER OF IMAGES 
 

In this section a method to automatically determine the 
size of the calibration window is described. During the VS 
task a low number of images is adequate to reduce the 
required time processing. However, the use of a very small 
number of images could produce abrupt changes in the 
intrinsic parameters. Therefore, a variable number of images 
is the more adequate approach during the task. During the 
VS task different estimations of the intrinsic parameters are 
obtained. A Kalman filter is applied in order to estimate the 
correct value of the calibration parameters. The vector state 
xk is composed by the intrinsic parameters, ξ, the extrinsic 
parameters ( c

oM  also represented here as kr ) and its 
velocity kr& . The process and measurement model are: 

k+1 k k= +x Fx Gv  (10) 

k k k= +z Hx w  (11) 
 

where kv  is a zero-mean white acceleration sequence and 

kw  is the measurement noise. Considering the velocity 
model defined in (8), Equation (10) is given by: 
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1 0 0
0 0 1
⎡ ⎤
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⎣ ⎦

H  (13) 
 

We have then considered the Generalized Likelihood Ratio 
(GLR) [12] to detect variations in the intrinsic parameters. 
To update the estimation of the state vector the following 
compensation equation is used: 

( ) ( ) ( )
k+1 k+1

k+1 k+1

k+1 k+1n o

k; k; k;θ θ θ
ξ ξ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= + ⋅ ⋅⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

r r
r r F -& & a a j  (14) 

 

where the sub-index n and o refers to the new and original 
state vectors, ( )k;θa  is the amplitude of the step obtained 
using the GLR algorithm, F is defined in (10) and 
( ) ( )k; k;θ θ⋅a j  is the effect (on the value of the estimation 

of the state vector measured at the iteration k) of the step 
that is produced at the iteration θ. This method is applied to 
detect changes in the camera intrinsic parameters. Therefore, 
only the last component of the vector state is updated in 
(14). Details of the implementation of the GLR can be seen 
in [10]. On the one hand, when GLR increases, the size of 
the calibration window is also increased in order to correctly 
estimate the value of the intrinsic parameters. On the other 
hand, if the GLR decreases, we consider that the system has 
correctly converged to the real intrinsic parameters and we 
decrease the size of the calibration window in order to 
improve the behaviour of the system (reducing delays).In 
order to implement this algorithm, the function represented 
in Fig. 3 has been defined to obtain the number of images of 
the calibration window depending on the value of the GLR. 
 

VI. RESULTS 

 In this section, different tests that show the behaviour of 
the proposed adaptive VS system are described.  
 

A. Problems in mono image calibration 
 With respect to the calibration convergence, VVS is 
able to converge when very large errors appear in the 
initialization. However, the obtained intrinsic parameters 
may be wrong depending on the initial extrinsic parameters 
due to local minima (see Table I). Considering the last 
experiment in Table I, once the VVS task ends, the obtained 
intrinsic parameters are: (u0, v0) = (-203.8, -149.3) and (fu, 
fv) = (905.7, 1053.2). The extrinsic parameters obtained are: 
position (-307.2 -250.7 -800.5)mm. and orientation in Euler 
angles (α, β, γ) = (2.9, 0.4, -1.8) rad. These values are far 
from the real intrinsic and extrinsic parameters (see Section 
II). In Fig. 4 and Fig. 5 the evolution of the mean error and 
intrinsic parameters is represented. In these figures we can 
see that aberrant values are obtained during the VVS task 
(see e.g. intrinsic parameters at iteration 7). At this moment 
the VVS should stop on a failure. However, in order to show 
the intrinsic parameters obtained during this experiment, 
more iterations are represented. This convergence problem 
also appears in classical image-based visual servoing 
systems due to the camera retreat problem or local minima 

(see [1]).  The camera trajectory during the task is also 
represented in Fig. 6. 

 

Fig. 3. Function used to determine the number of images from the GLR. 

 
Fig. 4. Mean error in pixel. Test 1. 

 
 

Fig. 5. Evolution of the intrinsic parameters. Test 1. 
 

 
 

Fig. 6. Camera trajectory. Test 1. 
 
 

B. Multi-image Calibration. 
 In order to illustrate the correct convergence of the 
multi image calibration in situations in which the mono 
image does not work correctly a detail of the convergence 
with 6 images is presented (see Table II). In this experiment 
the initial extrinsic and intrinsic parameters employed in test 
1 are used. We have obtained the error and intrinsic 
parameters evolution shown in Fig. 7 and Fig. 8 
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respectively. The obtained intrinsic parameters are: (u0, v0) = 
(168.4, 121.3) and the focal length equal to (412.7, 423.3). 
These values are very close to the ones obtained using 
previous existing methods (see camera calibration using the 
Zhang’s method in Section II). However, the convergence 
velocity has been decreased. The virtual camera trajectory 
during the task is also represented in Fig. 9. 
 
 

 
 

Fig. 7. Mean error in pixel. Test 2. 
 

 
 

Fig. 8. Evolution of the intrinsic parameters. Test 2. 
 

 

 
Fig. 9. Camera trajectory. Test 2. 

 
 

C. Adaptive Visual Servoing. Variable Number of Images. 
 
Now, we consider again the same initial intrinsic and 

extrinsic parameters but the eye-in-hand camera is tracking 
the trajectory shown in Fig. 11 during the VS task (real 
camera trajectory). To do so, the camera is mounted at the 
end-effector of a Mitsubishi PA-10 robot (see Fig. 10). At 
each iteration of the VS task a complete convergence of the 
VVS is applied. Doing so, Fig. 11 represents a sampling of 

the estimated camera trajectory. Fig. 12 and Fig. 13 show 
the evolution of the error and intrinsic parameters when 
variable number of images is considered in the multi image 
calibration. The obtained intrinsic parameters are: (u0, v0) = 
(168.8, 121.5) and the focal length equal to (413, 423.9). 
Once the VS is achieved we have obtained a mean error of 
0,4mm in the determination of the extrinsic parameters (the 
real extrinsic parameters are the ones obtained using a 
classical camera calibration method executed at the final 
pose of the desired trajectory [13]). With respect to the 
previous test we can observe that a more accurate calibration 
is obtained. At each iteration of the VS task a complete 
convergence of the VVS is developed, therefore, at each 
iteration a more accurate calibration is obtained. During the 
first iterations the calibration window is progressively 
increased. From the fourth iteration the system obtains 
intrinsic parameters near to the real ones (see Figure 13). At 
this moment, the calibration window is quickly reduced to 1. 

 

 
 

Fig. 10. Eye-in-hand camera system. 
 

 
 

Fig. 11. Camera trajectory during the VS task. Test 3. 
 
 

 
 

Fig. 12. Mean error in pixel. Test 3. 
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Fig. 13. Evolution of the intrinsic parameters. Test 3. 
 

D. Visual Servoing using varying intrinsic parameters. 
Finally an experiment in which the intrinsic parameters 

vary during the task is presented. In this case, the robot is 
carrying out the VS task described is previous section. 
However, during the task the camera zoom varies. A camera 
calibration has been performed using the Zhang’s method 
[13] obtaining: (u0, v0) = (156, 124.8) and (fu, fv) = (526.5, 
539.8). These values are the initial ones considered by the 
VVS. In Fig. 14 and Fig. 15 the intrinsic parameters and the 
size of the calibration window evolution is represented. 
Once the VS task ends the intrinsic parameters obtained are: 
(u0, v0) = (155.5, 125) and (fu, fv) = (944.9, 966.8) 
(calibrating the camera at the end of the VS task using the 
Zhang’s method, the intrinsic parameters obtained are: (u0, 
v0) = (156.2, 124.7) and (fu, fv) = (945.4, 967.3)). The 
system is thus able to correctly determine the value of the 
focal length when it varies during the task. 

 
 

Fig. 14. Evolution of the intrinsic parameters. Test 4. 
 

 
 

Fig. 15. Evolution of the size of the calibration window. Test 4. 
 
 

VII. CONCLUSIONS 

 We have presented in this paper a method to estimate 
the camera calibration parameters during a visual servoing 
task. With only one image, the calibration parameters 
estimated may differ depending on the initial extrinsic 
parameters and may be far from the real ones. Multi image 
calibration increases the robustness of the system. However, 
in this last approach an important issue is the determination 
of the size of the calibration window. Greater the calibration 
window is, more accurate the calibration will be. However, 
more iterations are required for the convergence of the 
system. In order to automatically determine the size of the 
calibration windows an approach based on the GLR has 
been proposed. It allows the correct convergence of the 
system with less iterations, and with a less oscillating 
behaviour.  

This type of adaptive VS systems has been validated in 
situations in which the intrinsic parameters vary during the 
task. Furthermore, at each moment, the system is also able to 
estimate the camera pose. 
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