Distributed Watchpoints: Debugging Large Multi-Robot Systems

Michael De Rosa Student Member, IEEE, Jason Campbell Senior Member, IEEE
Padmanabhan Pillai Member, IEEE, Seth Goldstein Senior Member, IEEE
Peter Lee, and Todd Mowry Member, IEEE

Abstract— Tightly-coupled multi-agent systems such as mod-
ular robots frequently exhibit properties of interest that span
multiple modules. These properties cannot easily be detected
from any single module, though they might readily be detected
by combining the knowledge of multiple modules. Testing for
distributed conditions is especially important in debugging or
verifying the correctness of software for modular robots.

We have developed a technique we call distributed watchpoint
triggers which can efficiently recognize such distributed condi-
tions. Our watchpoint description language can handle a variety
of temporal, spatial, and logical properties spanning multiple
robots. This paper presents that language, describes our fully-
distributed, online mechanism for detecting distributed condi-
tions in a running system, and evaluates the performance of
our implementation. We found that the performance of the
system is highly dependent on the program being debugged,
scales linearly with ensemble size, and is small enough to make
the system practical in all but the worst case scenarios.

I. INTRODUCTION

Designing algorithms for distributed systems is a diffi-
cult and error-prone process. Concurrency, non-deterministic
timing, and combinatorial explosion of possible states all
contribute to the likelihood of bugs in even the most meticu-
lously designed software. Likewise, these factors also make
detection of bugs very difficult. Several modular robotics
systems, such as Claytronics [1], envision very large dis-
tributed systems consisting of millions of modules, further
exacerbating this problem.

Tools to assist programmers in debugging distributed algo-
rithms are few, and generally inadequate. Most are forced to
fall back on standard debugging methods, such as GDB [2]
or logging through printf. GDB is useful for debugging
errors local to an individual thread or process, but is not
effective for errors resulting from the interactions or states
of multiple threads of execution that span multiple modules.

While printf may be used to detect some of these
errors, this requires logging all potentially relevant state in-
formation at each robot, then centrally collecting, correlating,
and post-processing the data to extract the details of the
error condition. This requires significant effort, skill, and

De Rosa is with the School of Computer Science, Carnegie Mellon
University, mderosa@cs.cmu.edu

Goldstein and Lee are with the School of Computer Science, Carnegie
Mellon University, [seth, petel]@cs.cmu.edu

Campbell and Pillai are with Intel Research Pittsburgh,
jason.campbell@intel.com, padmanabhan.s.pillai
@intel.com

Mowry is with both CMU and
tcm@cs.cmu.edu

Intel Research Pittsburgh,

often luck on the part of the programmer. Additionally, both
GDB and printf must be used very cautiously, or their
file/console I/O can impose unintended serialization, altering
the timing behavior of the robot ensemble, and possibly
masking some bug manifestations.

A. Related Work

In considering the design of a distributed debugging
system for modular robots, there are three relevant ar-
eas of existing research to consider. The first of these is
work on distributed and parallel debugging, including the
Chandy-Lamport global snapshot algorithm [4], and subse-
quent related work on global predicate evaluation [S]-[7].
Snapshotting and global predicate evaluation are valuable
tools, but they are geared towards the problem of finding
a single instance of a particular global configuration, where
the conditions that manifest in modular robots are numerous
and localized. Additionally, global snapshots require the
aggregation of all relevant data at a central point, resulting
in a large communications overhead [8]. Other important
parallel debugging tools include static code analysis tools
such as race detectors [9], [10], which can detect many (but
not all) data races. While race detectors are important tools,
they are not general debugging aids.

Another relevant research area is the development of logic-
based verification/proof tools. Specifically, linear temporal
logic (LTL) [11], a modal temporal logic, is capable of rep-
resenting and reasoning on infinite state sequences, such as
those that might be generated by FSM-style robot programs.
This capability of LTL was exploited by Lamine et al [12],
who developed an LTL-based model verification tool for
single mobile robots.

Finally, declarative overlay network systems, such as
P2 [13], provide a general purpose tool for the computation
of distributed flow functions, which could include debugging
primitives. In fact, P2 includes debugging support which
leverages the system’s ability to compute arbitrary distributed
functions [14]. However, the focus of the P2 project is
not on robotics, and as such it does not explicitly deal
with the rapidly changing topologies inherent in modular
robotics. Additionally, the use of P2 for debugging implies
the adoption of the P2 programming paradigm, which may
not be appropriate for all applications.

(watchpoint) — (module decl.) (bool)
(module decl.) — modules ((string)™)
(bool) — not (bool)
| (bool) and (bool)
| (bool) or (bool)
| neighbor ((module) (module))
| ((compare))
| ((bool})
(module) — (string)
| (module) . last
| (module) .next
(compare) —— (state var) (op) (r val)
(state var) —— (module) . (string)
o) — <|>|=| 1=|>=| <=
(rval) —— (state var)| (numeric constant)

Fig. 1. Extended BNF grammar for watchpoint description language

B. Distributed Watchpoints: Our Approach

The key to enabling effective distributed debugging is to
allow programmers to easily specify and detect distributed
conditions in a multi-robot ensemble. Such conditions con-
stitute logical relations between state variables which are
distributed both temporally and spatially across the ensemble.
Generally, they cannot be detected by observing the state of
any single robot, or even the whole system at any single
point in time. For example, in debugging a distributed motion
planning algorithm, we may wish to detect if two adjacent
modules each initiate motion within four iterations of the
algorithm main loop. A tool which can detect such conditions
can provide insights into the logical and temporal behavior
of the system, and help pinpoint defects in distributed
algorithms.

To this end, we introduced the concept of a distributed
watchpoint in [3]. The present paper extends that work
by formalizing the watchpoint specification language (see
Section II), describing a fully distributed implementation
of the watchpoint mechanism (see Section III), providing
some simple performance-enhancing optimizations (see Sec-
tion IV), and evaluating the performance of our approach
(see Section V).

II. DESCRIBING ERRORS

The first step in detecting distributed error conditions is
to represent them effectively. To that end, we have created a
simple watchpoint description language, based on a fragment
of LTL [11] with the addition of predicates for state variable
comparison and topological restriction (see Figure 1).

In representing distributed error conditions, we make a
key assumption: the error must be able to be represented by
a fixed-size, connected sub-ensemble of robots in specific

Watchpoint Text:
modules(a b c);(a.isLeader = 1) and (c.isLeader = 1)

Fig. 2. Incorrect 2-hop leader election. Conflicting leaders are circled. The
watchpoint text shows the error condition where two leaders exist in the
same two-hop radius.

states. Allowing disconnected sub-ensembles would imply an
exponential search through all subsets of the total ensemble,
and distributing information between the members of these
subsets would require significant multi-hop messaging.

Watchpoint descriptions begin with a list of module names.
This list defines the size of the matching sub-ensemble, and is
implicitly quantified over all connected subgroups of this size
in the ensemble. The language includes the standard boolean
and grouping primitives plus topological restrictions and
state variable comparisons. Topological restrictions take the
form neighbor (a b) and indicate that the two specified
modules are neighbors. State variable comparisons allow
for the comparison of named state variables in one module
against constants, other local variables, or remote variables
on other robots. Additionally, state variable comparisons
may include arbitrary uses of the 1ast and next temporal
modal operators, which provide access to the past and future
states of the robot’s state variables. In the case of the next
operator, this implies that the watchpoint triggers in the
“future”, and that the state of the robots would need to
be rolled back one or more timesteps when the watchpoint
triggers.

These simple primitives give us the ability to represent
very complex distributed conditions. We can reason along
three different axes of configuration: numeric state vari-
ables, topological configuration, and temporal progression.
Topological restrictions allow us to model (in some abstract
fashion) the configuration space of the robots, so that error
states related to the physical positioning of neighboring
modules may be represented. Temporal modal operators can
be used to represent sequences of states, a useful capability
for debugging distributed finite state automata.

We illustrate the utility of the watchpoint description
language with two debugging examples: incorrect leader
election and token passing. As shown in Figure 2, we have
a hexagonally-packed array of robots which are attempting
to select leaders using some (unspecified) leader election
protocol. Each leader must have a path distance of at least
two hops to any other leader. It is obvious from inspection of

Watchpoint Text:

modules(a x b); neighbor(a x) and neighbor(x b)

and (x.tok = 1) and (((last.a.tok = 1) and (last.b.tok = 1))
or ((last.a.tok = 0) and (last.b.tok = 0)))

Fig. 3. Part of a token-passing ring. Previous states shown stacked behind
current ones. The watchpoint text corresponds to error conditions where
zero or two modules previously had the token.

Figure 2 that the algorithm has yielded incorrect results, as
there are two leaders within two hops of each other. While
this is readily discernible from an omniscient perspective,
any single robot will not be able to detect this error condition
without communicating with its neighbors. To represent this
error state, we use the watchpoint in Figure 2. Deconstructing
the watchpoint expression, we see it specifies three modules,
with a linear path from a to c, and where both a and c are
leaders. A match for this watchpoint indicates a violation of
the path-distance criteria given above.

As a slightly more complex example, let us consider the
problem of token passing in a ring network (see Figure 3).
‘We would like to enforce the condition that, if robot x has
the token, then exactly one of its neighbors must have had
the token in the last timestep. We can express the violation of
this condition with the watchpoint shown in Figure 3. Here
the watchpoint again specifies three modules, with module x
currently holding the token. An error occurs if both or neither
of x’s neighbors previously had the token. Note that we do
not need to use topological restriction in this watchpoint, as
the requirement that x, a, b form a connected sub-ensemble
is sufficient.

III. DETECTING ERRORS

We consider a simplified machine model for each modular
robot: each robot is represented by a number of named
integer state variables, and an array of neighbors. We as-
sume that each robot iterates through three atomic phases:
computation, state variable assignment, and communication.
Computation may take an arbitrary amount of time, and each
robot can communicate only with its immediate neighbors.
Furthermore, we assume that each robot has a copy of the
watchpoint, and that each robot has the relevant local state
variables needed by the watchpoint. We explicitly do not
require that all robots have the same code image, merely that
they have compatible state variables. This simplified model
does not entail a large loss of generality, as we can express
most run-loop, finite-automata, and event-driven programs
within it.

The main component in our distributed watchpoint im-
plementation is the PatternMatcher object (Figure 4). A

slots

expression tree

Fig. 4. PatternMatcher object for the watchpoint example in Figure 3.
Empty variables shown with dotted outlines. At each step, the first empty slot
is filled with the local node ID, and corresponding variables filled with local
data. Copies of a partially filled PatternMatcher propagate to neighboring
nodes until the expression tree can be definitively evaluated.

Algorithm 1 Centralized Watchpoint Update
S=10
for all modules m do
create new PatternMatcher p from the watchpoint text
fill p’s first slot with m
S=Sup
end for
while S # () do
T=10
for all PatternMatchers p € S do
if p matches then
execute trigger action for watchpoint
else if p is indeterminate then
for all neighbors n of modules in p’s slots do

p1 = clone(p)
fill p;’s first open slot with n
T=TU P1
end for
end if
S=S5-p
end for
S=T
end while

PatternMatcher consists of two subunits: a set of named
slots that hold robot ID numbers, and an expression tree
that both represents the watchpoint expression and stores
any accumulated state variables. A PatternMatcher may be
empty (with none of its slots filled), partially filled (with
some slots and state variables filled), or completely filled.
A given PatternMatcher may be in one of three states:
matched, failed, or indeterminate. The indeterminate state
occurs when there is insufficient information in a partially
filled PatternMatcher to decide whether its expression is
satisfied.

Once a PatternMatcher has matched, the error condition

Algorithm 2 Distributed Watchpoint Update
create new PatternMatcher p from the watchpoint text
fill p’s first slot with local module m
S=SUp
for all PatternMatchers p € S do
if p matches then
execute trigger action for watchpoint
else if p is indeterminate then
for all neighbors n of m that are not already in p do

p1 = clone(p)
send p; to n via messaging system
end for
end if
S=S-p
end for

has been detected at the final robot added to the sub-
ensemble, and an arbitrary action can be executed. This can
be as simple as halting the robots, or as complicated as
initiating some expensive logging or recovery operation.

A. Centralized Implementation

Our initial implementation, introduced in [3], relied on a
single centralized procedure to update all PatternMatchers
across an entire (simulated) ensemble. The watchpoint sys-
tem maintains a set of vectors for each robot’s state variables.
At each timestep, the current values of all state variables used
by active watchpoints are appended to the vectors, providing
state history for the variables. The simulator also maintains
a single set of PatternMatchers (5), which are updated and
processed every timestep as described in Algorithm 1.

B. Distributed Implementation

For our distributed implementation of watchpoint func-
tionality, rather than having one central state vector and Pat-
ternMatcher array, each robot maintains its own state history
and set of active PatternMatchers. Robots then independently
(and asynchronously) execute two behaviors:

1) When an incoming message is received containing
a PatternMatcher, the robot fills the PatternMatcher’s
next open slot with its information, and adds it to a
local set S of active PatternMatchers.

2) Each timestep, every robot m updates its local state
information and then runs Algorithm 2, to process any
active PatternMatchers.

We note that this algorithm limits the topologies of trig-
gering sub-ensembles to linear chains that match the watch-
point’s variables in order. This is intentional, as it removes
the need for multi-hop communication in trigger ensembles
with non-linear or non-ordered topologies (Figure 5). We
are currently working to remove this limitation, at the cost
of increased latency.

It is interesting to note that, as we store relevant state
information in the expression tree of the PatternMatcher
while it migrates between robots, the above algorithm is
equivalent to a Chandy-Lamport snapshot [4] of bounded

Fig. 5. Non-linear (a) and non-ordered (b) sub-ensembles for the set of
modules (a b c d e).

radius, as the message carrying the PatternMatcher serves
as both a snapshot beacon and data aggregator. The lack of
synchronization between modules implies that we can obtain
only consistent sets of states, not simultaneous sets of states,
as simultaneity is ill-defined in asynchronous distributed
systems.

IV. OPTIMIZATIONS

To reduce the storage, processing, and communications
demands of our watchpoint system, we implement three
optimizations: temporal span detection, early termination of
candidate pattern matchers, and aggressive neighbor culling.

A. Temporal Span Detection

For each state variable, we must determine the minimum
amount of history that must be maintained by each robot.
We call this quantity the temporal span of the variable.
Additionally, we must determine the minimum amount of
total state (all state variables plus neighbor information) that
must be maintained to allow for watchpoints that trigger in
the future. This is the temporal extent of the system. To
calculate the temporal span of a variable, we inspect each
use of that variable in the watchpoint expression. For each
use, we calculate the temporal extent by assigning a value
of +1 to each next occurrence, and a value of —1 to each
last. The sum is then the temporal extent for that particular
use of the variable. The temporal span for the variable is
the maximal difference between any two temporal extents.
This is the amount of history that must be maintained for
that variable. Similarly, the maximum positive extent over
all variables specifies the size of the total state vector that
must be maintained, is it bounds how far the watchpoint must
“rewind” for expressions that use the next operator.

B. Early Termination

To reduce the number of active PatternMatchers, and thus
the bandwidth and processing cost of the algorithm, we
aggressively cull PatternMatchers that have no chance of

modules(a b ¢ d); (a.x1 = 0) and (b.x2 = 0) and (c.x3 = 0) and (d.x4 = 0)
Fig. 6. Performance Evaluation Watchpoint
10,000,000 TABLE 1
—o0—[1:1:1:1]
a2 SUCCESSFUL MATCHES VS. EXECUTION TIME FOR THE 1000 NODE
0 [2:2:2:2] ENSEMBLE DESCRIBED IN SECTION V.
E Program tuple || # matches | time(secs)
§ _1000:000 [L:L:1:1] 6233141 715
O
ET«): [2:1:1:1] 3119538 358
2w [2:2:2:2] 394103 128
5= [1:2:4:8] 96507 183
= 100,000
3} [8:4:2:1] 96390 32
<
10,000 1 2 3 1 PatternMatchers (segmented by number of slots filled), and
Slots Filled number of successful matches.
Fig. 7. Total number of Pattern Matchers generated versus number of

slots filled after 100 timesteps of execution for the 1000 node ensemble
described in Section V. Note that certain host program behavior triggers an
exponential increase in the number of PatternMatchers.

succeeding. Whenever we generate new children, we first
check whether the parent’s expression tree can never match.
This can happen even if the PatternMatcher is not completely
filled, as subclauses of the expression tree may have become
unsatisfiable. If this condition is detected, the parent is
deleted, and no children are created.

C. Neighbor Culling

Finally, we reduce the set of neighbors to which a
given PatternMatcher can spread by examining the topo-
logical constraints of the expression tree. If the constraint
neighbor (a b) exists in the watchpoint, b is the next
open slot, and a is already filled, then the PatternMatcher can
only spread to neighbors of a. In the case of multiple topo-
logical restrictions, we generate a set of possible neighbors
by traversing the tree from the bottom up, treating and as
set intersection and or as set union. To facilitate this, we add
a set of 1-hop neighbors for each slot in the PatternMatcher,
allowing for fast local computation of set operations.

V. EVALUATION

We evaluated the algorithms using DPRSim [15], our
massively multithreaded multi-robot simulator. Evaluation
was performed on dual-core machines under Linux. To more
accurately measure the differential overhead of watchpoint
support, we disabled the physics and graphic rendering por-
tions of the simulator. All tests were performed on ensembles
of 100 to 1000 modules arranged in a cubic lattice packing
in 10 by 10 stacked planes. Simulations were conducted for
100 virtual timesteps, where each timestep allowed for arbi-
trary computation, including message transmission/reception.
Message travel time was 1 timestep. Test configurations
were monitored for total execution time, number of active

A. Host Program Behavior

When evaluating the performance of the algorithms, we
were immediately struck by how dependent runtimes were
on the behavior of the host program being debugged. To
illustrate this, we used the watchpoint shown in Figure 6.
x1 through x4 are four independent uniformly-distributed
integer random variables generated by the host program.
Each variable x,, ranges over the integral values from O
to max,, — 1 but matches the test watchpoint only when
the value is precisely 0. We can thus represent the behavior
of the host program with the tuple [maxz,, : maz,,
Maxz, : MaTy,]. For example, the tuple [2:2:2:2] represents
a host program that causes half of all PatternMatchers to
be discarded after each slot is filled. In contrast, the tuple
[4:1:1:1] describes the case where % of all PatternMatchers
are discarded after filling the first slot, but then all remaining
PatternMatchers survive until they are fully filled, at which
point they match.

With this test case we can now examine how variation
in host program behavior impacts the number of active
PatternMatchers (and thus the execution time). We begin
with the “worst case” tuple, [1:1:1:1], where all generated
PatternMatchers will always survive, leading to an expo-
nential explosion of PatternMatchers as seen at the top of
Figure 7. After 100 timesteps on 1000 robots, over 6 million
successful PatternMatchers have accumulated. We can easily
halve the number of active PatternMatchers by using the
tuple [2:1:1:1], which halves the number of PatternMatchers
that survive having the first slot filled. Halving the number of
active PatternMatchers at each step (as in [2:2:2:2]) results in
the expected decrease by a factor of 16. Finally, comparing
[1:2:4:8] and [8:4:2:1] is quite instructive. Both eventually
generate an almost identical number of successful matches,
but over wildly different trajectories. [1:2:4:8], which culls
most of its PatternMatchers after the last slot has been filled,
is much less efficient than [8:4:2:1]. This can be seen at the
bottom of Table I, where one takes almost 6 times as long as
the other. Continuing to examine Table I, we note a general

O off

[Centralized

M Distributed

Mean Overhead:
Centralized = 118%
Distributed = 105%

3
(=}

Time (seconds)
(=N}
(=}

40

201

100 200 300 400 500 600 700 800 900 1000
Number of Modules

Fig. 8. A medium-intensity workload involving unrelated distributed
algorithms. It runs simultaneously with the watchpoint system to provide
a baseline for the overhead of both the centralize and distributed detection
algorithms.

linear increase in the amount of time taken by the distributed
algorithm as the number of successful matches increases.

The host program behavior dependency that we have illus-
trated above is due to a simple fact: there is an exponential
(in the number of slots) number of PatternMatchers generated
by the spreading of each PatternMatcher to all of a robot’s
neighbors after each slot is filled. And by shifting the criteria
that are least frequently true to early in the watchpoint
evaluation, we can dramatically cut execution time, even
though the total number of successful matches remains the
same.

B. Execution Overhead

We also analyzed the overall execution time of the algo-
rithms, and their scaling behavior as the size of the robot
ensemble grows (Figure 8). In these tests, we used the same
watchpoint expression as above, with the host program gen-
erating random variables according to the [2:2:2:2] scheme.
Each robot also ran a data aggregation and landmark routing
program, to simulate a medium-intensity workload on the
system. Tests were run on ensembles of various sizes, using
the centralized and distributed implementations, as well as
without any watchpoints enabled (for comparison). We note
that all three datasets scale linearly in time as the ensemble
size increases. The centralized algorithm required a mean
overhead of 118%, while the overhead of the distributed
version was only 105%. The distributed implementation must
do at least as much work as the centralized algorithm, plus
the cost of messaging, so the speedup in the distributed
case was quite counterintuitive, until we realized that the
distributed implementation was naturally taking advantage
of the potential for parallel execution on the dual-core test
system. The overhead for both algorithms is well within
the range of other debugging tools like GDB [2] and Val-
grind [16].

TABLE II
WATCHPOINT OVERHEAD AS EXPRESSION SIZE VARIES FOR AN
ENSEMBLE OF 1000 ROBOTS

Frequency
Expression Low Medium High
Size (mazz;, = 100) | (mazy; =8) | (Mmaxy, = 2)
1 7.6% 8.6% 3.6%
2 25.2% 32.4% 54.4%
3 39.2% 33.0% 104.7%
4 42.6% 52.0% 369.8%
5 23.0% 83.4% 1432.5%

C. Varying Watchpoint Sizes

Finally, we analyzed the overhead of the watchpoint
system as the size of the expression grew. Using a similar
expression to that in Figure 6, we varied the number of
modules in the expression from 1 to 5. We executed the
watchpoints on the centralized algorithm, using a cube of
1000 modules over 100 timesteps. For each expression size,
we evaluated the overhead using low- (maz,, = 100)
medium- (mazx,, = 8) and high-frequency (maz,, = 2)
program behaviors. We note that the overhead for the low-
frequency behavior is dominated by the random chance that a
matching sub-ensemble exists, and thus varies only a little as
expression size increases. As shown in Table V-C, medium-
and high-frequency behaviors show a noticeable increase in
overhead as expression size increases, which corresponds to
the exponential increase in the number of PatternMatchers
that one would expect as the expression size increases.

D. Hardware Requirements

The resources required to implement this technique in real,
rather than simulated, modular robots are modest. Memory
needs per module would typically be tens of kilobytes or
less (including storage for pattern matchers plus local state
memory). Likewise code size could be modest: the full
implementation of our distributed implementation is less
than 1500 lines of C++. In many cases the required com-
munications could be piggybacked onto other pre-existing
messages between modules, and since exchanges are limited
to nearest neighbors many designs would be able to take
advantage of neighbor to neighbor wired or infrared links
for such data. The most constrained resource would probably
be processor cycles for systems already operating close to
their computational or communications limits. In those cases,
the additional load of transmitting and processing pattern
matchers could require the system to break potential real-
time constraints. It is increasingly feasible , however to
provision all but the smallest robot modules with powerful
processors.

VI. CONCLUSIONS

We have demonstrated two significant contributions: the
ability to express a large class of distributed error condi-
tions and two algorithms to detect these conditions both in

simulation and in real robotic ensembles. Our watchpoint
description language allows for the expression of complex
distributed conditions along three different axes of config-
uration: numeric state variables, topological configuration,
and temporal progression. We describe two algorithms, a
centralized algorithm and a distributed algorithm, which
evaluate the watchpoints over all connected sub-ensembles
in the system.

Both of the presented algorithms have execution overheads
low enough to make them practical. The main component of
the overheads is directly related to the number of Pattern-
Matcher objects that are generated and propagated through
our system. Thus, we found that the overhead of the system
depends heavily on the host program being monitored and
the structure of the watchpoint. The sooner it can be shown
that a particular PatternMatcher object cannot trigger the
watchpoint, the fewer PatternMatcher objects are spawned.
In the worst case, an exponential number of PatternMatchers
will be spawned which can lead to a significant slowdown
(on our most extreme example a slowdown of about fourteen
times). Note, however, that the user can control the amount
of overhead introduced by structuring the watchpoint to fail
early. We have found that reasonable watchpoints introduce
overhead of 100% or less. This is on par with overheads from
such powerful (and heavily used) tools as Valgrind [16] and
a small price to pay for the power of finding bugs which
involve multiple robots in the ensemble.

ACKNOWLEDGMENTS

This research was sponsored by the National Science
Foundation (NSF) under grant number CNS 0428738 (ITR:
Synthetic Reality). The views and conclusions contained
in this document are those of the author and should not
be interpreted as representing the official policies, either
expressed or implied, of any sponsoring institution, the
U.S. government or any other entity. The authors wish to
thank Casey Helfrich and Michael Ryan for developing the
simulator, Benjamin Rister for providing a sample workload,
Deepak Garg and Frank Pfenning for a tutorial on LTL,
and David O’Halloran and TianKai Tu for an insightful
discussion on current practices in parallel debugging.

[1]
[2]
[3]

[6]

[7]

[8

=

[9]

[10]

(11]

[12]

[13]

[14]

[15]
[16]

REFERENCES

S.Goldstein, J. Campbell, and T. Mowry, “Programmable matter,”
IEEE Computer, vol. 38, 6, pp. 99-101, May 2005.
GDB: The GNU Project Debugger. [Online].
http://www.gnu.org/software/gdb/

M. DeRosa, S. Goldstein, P.Lee, J. Campbell, and P. Pillai, “Dis-
tributed watchpoints: Debugging very large ensembles of robots (ex-
tended abstract),” in RSS’06 Workshop on Self-reconfigurable Modular
Robotics, August 2006.

K. M. Chandy and L. Lamport, “Distributed snapshots: Determining
global states in distributed systems,” ACM Transactions on Computer
Systems, vol. 3, no. 1, pp. 63-75, February 1985.

C. M. Chase and V. K. Garg, “Detection of global predicates: Tech-
niques and their limitations,” Distributed Computing, vol. 11, no. 4,
pp. 191-201, 1998.

E. Fromentin, M. Raynal, V. K. Garg, and A. I. Tomlinson, “On
the fly testing of regular patterns in distributed computations,” in
International Conference on Parallel Processing, 1994, pp. 73-76.
M. Hurfin, M. Mizuno, M. Raynal, and M. Singhal, “Efficient
distributed detection of conjunctions of local predicates,” Software
Engineering, vol. 24, no. 8, pp. 664-677, 1998.

Z. Yang and T. A. Marsland, “Global snapshots for distributed debug-
ging,” in International Conference on Computing and Information,
1992, pp. 436-440.

S. Carr, J. Mayo, and C.-K. Shene, “Race conditions: A case study,”
The Journal of Computing in Small Colleges, vol. 17, no. 1, pp. 88—
102, October 2001.

S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson,
“Eraser: a dynamic data race detector for multithreaded programs,”
ACM Trans. Comput. Syst., vol. 15, no. 4, pp. 391411, 1997.

A. Pnueli, “The temporal logic of programs,” in Proceedings of the
18th IEEE Symposium on Foundations of Computer Science, 1977, pp.
46-67.

K. B. Lamine and L. Kabanza, ‘“Reasoning about robot actions:
A model checking approach,” Advances in Plan-Based Control of
Robotic Agents, pp. 123-139, 2002.

B. Loo, T. Condie, J. Hellerstein, P. Maniatis, T. Roscoe, and I. Stoica,
“Implementing declarative overlays,” in Proceedings of ACM Sympo-
sium on Operating System Principles (SOSP), 2005.

A. Singh, T. Roscoe, P. Maniatis, and P. Druschel, “Using queries
for distributed monitoring and forensics,” in Proceedings of EuroSys
2006, 2006, pp. 389-402.

[Online]. Available: http://www.pittsburgh.intel-research.net/dprweb/
N. Nethercote and J. Seward, “Valgrind: A program supervision
framework,” Electronic Notes in Theoretical Computer Science, 2003.

Available:

