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Abstract— In this work we examine the control of center
of mass and swing leg trajectories in LittleDog, a point-foot
quadruped robot. It is not clear how to formulate a function
to compute forward kinematics of the center of mass of the
robot as a function of actuated joint angles because point-foot
walkers have no direct actuation between the feet and the ground.
Nevertheless, we show that a whole-body Jacobian exists and is
well defined when at least three of the feet are on the ground.
Also, the typical approach of work-space centering for redun-
dancy resolution causes destabilizing motions when executing fast
motions. An alternative redundancy resolution optimization is
proposed which projects single-leg inverse kinematic solutions
into the nullspace. This hybrid approach seems to minimize
1) unnecessary rotation of the body, 2) twisting of the stance
legs, and 3) whole-body involvement in achieving a step leg
trajectory. In simulation, this control allows the robot to perform
significantly more dynamic behaviors while maintaining stability.

I. INTRODUCTION

The Jacobian is a powerful tool to linearize the inverse

kinematics of a robot, and can be used to achieve velocity

commands in the direction of the correct kinematic solution.

In redundant systems, such as many quadrupeds and humanoid

robots, the nullspace of the Jacobian spans the infinite solu-

tions that define the gradient of the specified task. Redundancy

resolution is often attempted by finding a solution that tends to

bring the system to some desirable position, e.g. workspace-

centering. In this work we examine the inverse kinematics

redundancy resolution problem for LittleDog, a point-foot

quadruped robot developed by BostonDynamics.

Typically, Jacobians are calculated by differentiating the

forward kinematics of the system. However, for a point-foot

walker, there is no actuation at the ankle, therefore no direct

control over the foot angle with the ground. It is not clear

how to specify the forward kinematics defining the center of

body (COB) position as a function of actuated joint angles.

The derivation for the whole-body Jacobian of the COB

is therefore not trivial. One approach to control the body

position is to treat each leg as a separate robotic arm, and

move each leg in the opposite direction of the desired body

motion. This single-leg inverse kinematic solution was found

to perform reasonably well in simulation, but the approach

suffers from a limited workspace as it does not take advantage

of rotations of the body that could extend reach. In this work

we show that the whole-body COB Jacobian does exist, and

is well defined when three or four of the feet are on the

ground. Whole-body Jacobians associated with the tasks of

controlling 1) center of mass (COM) trajectory and 2) swing

foot trajectory are derived based on the COB Jacobian. A

moving robot by definition violates the assumptions of static

stability. Using the usual method of work-space centering for

redundancy resolution with a whole-body Jacobian seems to

compound the problem, as it utilizes all limbs to execute

any motion producing more joint movement than necessary.

In simulation, this caused the robot to fall over fairly easily

when executing fast movements. It turns out that projecting the

single-leg inverse kinematic solution into the nullspace of the

whole-body Jacobian produces a solution which improves the

dynamic stability of the system. We refer to this approach as

dynamic redundancy resolution. This hybrid approach seems

to minimize 1) unnecessary rotation of the body, 2) twisting of

the stance legs, and 3) whole-body involvement in achieving

a step leg trajectory. This offers a significant performance im-

provement over either approach taken separately, as measured

experimentally in simulation.

II. BACKGROUND

Achieving stable locomotion over irregular terrain has

proven to be a challenging problem. The main difficulty comes

from the fact that legged robots are inherently underactuated,

as there is limited control of the body position and orientation.

The DARPA Learning Locomotion project sponsors several

development teams with the intent of developing a robust

walking controller to enable a position controlled quadruped

robot, LittleDog, to traverse very rough terrain by applying

machine learning algorithms.

Point-foot walkers, such as LittleDog, have the advantages

that it is easier to select placements for feet contacts on the

terrain, and significantly simplifies simulation, as one does

not have to worry about the surface of the foot. However,

point-foot walkers exemplify the underactuation problem. In

addition, LittleDog has many redundant degrees of freedom

(DOF); each leg can act to push the body in different direc-

tions, so care must be taken to coordinate the actuators of

all legs. Foot planning and maintaining stability margins are

crucial for the success of a walking vehicle, but lower level

inverse kinematics algorithms must do the necessary work

of coordinating available actuators while also maximizing

stability. Further, the lower level control can be useful for

reducing the dimensionality of the system. LittleDog has

18 DOF, including six unactuated degrees specifying body



position and orientation, a two DOF universal joint at each

hip and a hinge joint at each knee. The sheer number of DOF

in this system can be prohibitive for many learning tools. To

achieve a crawl gait, one may attempt to control the robot

whole-body center of mass and the position of a foot. This

cuts the controlled degrees of freedom to six, or potentially

even fewer1, and makes learning algorithms more plausible.

Walking and even standing-humanoid controllers typically

take into account some metric of stability. The notion of

true stability for locomotion is difficult to quantify precisely

(see [1]), so heuristics are often utilized for this purpose.

These often include: maximizing the static stability margin

[2], maximizing the ZMP margin [3], Resolved Momentum

Control (RMC) [4], and Zero Spin Center of Pressure (ZSCP)

Control [5], etc (see [6] for review). Essentially all of these

approaches try to control the center of mass of the entire robot,

so we pay particular attention to this issue in this work. This is

true even for ZMP, where a COM trajectory can be computed

to implement a desired ZMP trajectory [7].

The RMC framework for humanoid robots attempts to

control a humanoid robot’s whole-body linear and angular

momentum (or components of these), using a framework

similar to the whole-body Jacobian, while constraining feet

movement to specified trajectories [4]. Linear momentum

divided by mass of the system translates to COM velocity,

so the high level objective of RMC is similar to this work.

However, RMC assumes actuated ankles, and is primarily

concerned with how to utilize free DOFs of a humanoid, for

example the arms and torso, to help keep the robot stable.

The quadruped robot does not have such flexibility. Further,

the work developed here allows for hierarchical control with

priority given to the COM velocity rather than to the feet

velocities, whereas RMC does not allow for this.

This paper is organized as follows: 1) Background 2)

Derivations of the partial inverse kinematics control of the

COB; 3) Derivations of the whole-body Jacobians associated

with the tasks COM control and swing foot control; 4) Re-

sults are presented from running three resulting controllers in

simulation, and limited results are presented from experiments

on the actual robot.

III. SINGLE-LEG INVERSE KINEMATICS CONTROL

A first approach to developing a walking controller for

the position controlled walking robot might be to treat all

of the legs separately, and control the center of body and

the orientation of the body by moving the legs appropriately.

When considering each leg separately, we utilize the relation:

FPG = XB4 + RB · FPL (1)

where FPG ∈ R
3×4 contains the feet positions in the global

frame; FPL ∈ R
3×4 contains the feet positions in the robot

1Note, in this framework it is intuitive to further reduce dimensionality in
higher level controllers, for example by constraining the height of the COB or
COM. The swing leg may also be constrained to operate in a plane, reducing
the system to only 4 DOF.

relative frame; XB ∈ R
3 is the center of body position

and XB4 ∈ R
3×4 is [XB XB XB XB ]; RB ∈ R

3×3 is the

rotation matrix of the body. Differentiating and solving for the

feet velocities in the relative frame we obtain:

˙FPL = RT
B · ( ˙FPG − ẊB − ṘB · FPL) (2)

Note that ˙FPG is assumed to be zero for stance feet, and is

otherwise the velocity command of the swing foot. ẊB and

ṘB are the commanded COB and orientation velocities.

For each leg, i, we may compute the single-leg Jacobians,

Jlegi
∈ R

3×3, of the foot position w.r.t. the robot frame.

The joint velocities corresponding to each leg can then be

computed:

q̇legi
= J−1

legi
· ˙FPLi

(3)

The results is a control for COB, not COM. Further, it may

be useful to allow the body rotation to be left unspecified. This

increases the workspace of the system by allowing the robot

to rotate the body to help reach places that would otherwise be

kinematically infeasible. To deal with these issues, we utilize

whole-body Resolved Motion Rate Control [8].

IV. WHOLE-BODY JACOBIAN CONTROL

In general, forward kinematics, transforming joint angles

q ∈ R
n into some task space x ∈ R

m, and the differentiation

of this relation is given by:

x = f(q) (4)

ẋ = J(q) · q̇ (5)

where J(q) ∈ R
m×n is the whole-body Jacobian associated

with the task space of x. The inverse kinematics with nullspace

optimization for redundancy resolution can be solved as in [9]:

q̇ = J+ · ẋ + α(I − J+ · J) · q̇ref (6)

where J+ = (JT J)−1·JT is the Moore-Penrose pseudoinverse

of J, α is a scalar weighting, and q̇ref ∈ R
n is a low priority

command in joint space. For the redundant case where m < n,

the solution, q̇ should achieve the commanded ẋ while also

minimizing ‖q̇ − q̇ref‖.

Note, we may have multiple tasks, and control them in a

hierarchical manner [10], for example:

q̇1 = J+
low · ẋlow + α1(I − J+

low · Jlow) · q̇ref

q̇ = J+
high · ẋhigh + α2(I − J+

high · Jhigh) · q̇1 (7)

where xhigh represents a “high priority task” with associated

Jhigh Jacobian, and conversely xlow is a “lower priority task”

with associated Jlow Jacobian. q̇1 is the joint level command

that would be assigned by the low priority task, and is passed

on as a “suggested” command to the high priority task.

Typically, the lowest priority task in joint space consists of

specifying q̇ref to move down a potential to bring the posture

to some standard “favored” position, as in [11]. Note that it is

possible to differentiate (5), which would allow for control at

the acceleration or force level (for review see [12]). Because

the LittleDog robot is position and velocity controlled, we will

limit our discussion here to controllers that resolve kinematic

redundancies at the velocity level.



A. Jacobian of Center of Body

Here we attempt to compute the Jacobian, JXB
(q) = ∂XB

∂qa
,

of the center of body, XB ∈ R
3, where q ∈ R

18 describes all

18 degrees of freedom, and qa ∈ R
12 is the actuated subset

of q, not including the 6 unactuated degrees of freedom of the

body position and orientation.

The typical approach for computing the Jacobian would

be to define forward kinematics and then differentiate w.r.t.

actuated joint angles. It is not obvious how to do this for the

center of body of the robot, and some assumptions must be

made. First, note that given q, we may compute the position of

all feet in both relative and absolute coordinate systems. Given

absolute positions of three feet, and three leg lengths, we may

compute the position of the center of body by performing

trilateration, e.g. by finding the intersection of three spheres,

centered at the feet positions with radii corresponding the

distance between the foot and COB. However, this derivation

is bulky and, is not well defined for cases with four feet.

In order to get around the problem of underactuation, we

specify that the feet on the ground do not move. Consider

what happens when changing the leg lengths; first note that

the leg lengths, L ∈ R
4, are simply the distance between the

center of body and the feet position. This is defined in either

the global coordinate frame, or the robot coordinate frame for

each foot, i:

Li = ‖FPLi‖
= ‖XB − FPGi‖ (8)

Let us assume that all feet are on the ground (otherwise use

the subset of three feet which are on the ground), and the feet

are not moving: ∂FPG

∂qa
= 0. Then we differentiate L w.r.t. qa:

∂L

∂qa
=

∂L

∂FPL

∂FPL

∂qa

=
∂L

∂XB

∂XB

∂qa
(9)

Note that all of these derivatives are well defined, and have

geometrically understandable meanings. For example, ∂L
∂XB

is

the change of leg lengths given a movement of the body

(imagine a table with springs for legs; the springs change

length in a well defined way if the table is moved around or

rotated). We can now solve for ∂XB

∂qa
using the Moore-Penrose

pseudoinverse:

∂XB

∂qa
=

[
∂L

∂XB

]+
∂L

∂FPL

∂FPL

∂qa
(10)

where

∂L

∂XB
=

∂||FPG − XB ||
∂XB

=
XB − FPG√||XB − FPG||

∂L

∂FPL
=

∂||FPL||
∂FPL

=
FPL√||FPL||

∂FPL

∂qa
=

∣∣∣∣∣∣∣∣

Jleg1 0 0 0
0 Jleg2 0 0
0 0 Jleg3 0
0 0 0 Jleg4

∣∣∣∣∣∣∣∣
B. Jacobian of Body Rotation

By Differentiating (1) w.r.t. qa, for the stance feet, and

assuming that these feet are not slipping so that ∂FPG

∂qa
= 0,

we find that:

∂RB

∂qa
· FPL = −∂XB

∂qa
− RB · ∂FPL

∂qa
(11)

The Moore-Penrose pseudoinverse is applied to solve for

JRB
= ∂RB

∂qa
:

JRB
= −

(
∂XB

∂qa
+ RB · ∂FPL

∂qa

)
· (FPL)+ (12)

C. Center of Mass Jacobian

The conversion from local coordinates (L) to global coor-

dinates (G) for the center of mass, XM is specified by:

XMG
= XB + RB · XML

(13)

Then we can solve for JXM G
= ∂XMG

∂qa
:

JXM G
=

∂XB

∂qa
+ RB · ∂XML

∂qa
+

∂RB

∂qa
· XML

(14)

D. Swing Foot Jacobian

The conversion from relative to global coordinates for the

position of a specific foot, XSW , is specified by:

XSWG
= XB + RB · XSWL

(15)

Then we can solve for JXSW G
= ∂XSW G

∂qa
:

JXSWG
=

∂XB

∂qa
+ RB · JlegSW

+
∂RB

∂qa
· XSWL

(16)

where JlegSW
is the swing-foot Jacobian relative to the body.
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Fig. 1. Simulation Results: Case 1. COM figure-8 Trajectory with four
legs. Left: Partial IK. Performance is reasonably good. Center: Whole-body
Jacobian with Work centering. The centering appears to interfere with this
task. Note, it is possible to reduce gains on the centering, but this results
in worse performance in other tests. Right: Hybrid approach. The trajectory
following appears very good, and results in the lowest RMS Error. Bottom: red
line is the commanded trajectory (2 seconds), blue line is the actual trajectory.

E. Hierarchical Controller

As shown in (7), the Jacobians and associated nullspaces

can be “stacked” in a hierarchical manner. Given the goal

of enabling stable walking over rough terrain, it is logical

to give the control of ẊMG
the highest priority. Of second

priority, then, is ẊSW G
. The final step in developing the full

control law is choosing an appropriate q̇ref to plug into (7).

Workspace centering is established by choosing q̇ref along the

gradient of the potential: ‖qa−q0‖ for some favored position,

q0 ∈ R
12.

A proposed alternative to workspace centering is to compute

the partial IK solution, as in section III:

q̇ref =

∣∣∣∣∣∣∣∣∣

J−1
leg1

· ˙FPL1

J−1
leg2

· ˙FPL2

J−1
leg3

· ˙FPL3

J−1
leg4

· ˙FPL4

∣∣∣∣∣∣∣∣∣
Note that using the single-leg inverse kinematics represents

a dynamic redundancy resolution method, as opposed to the

static method of workspace centering which always tries to

move the robot back to the q0 position.

The final control is specified by:

q̇1 = J+
SW G

· ẋSW G
+ (I − J+

SW G
· JSW G

) · q̇ref

q̇ = J+
MG

· ẋMG
+ (I − J+

MG
· JMG

) · q̇1 (17)

Note, kinematic joint limits can also be included as a task.

This control is only activated when joints are close to their

limits, and is thus not included here for clarity.

V. RESULTS

A. Simulation

In this section we explore the performance of these three

controllers by looking at a simulation of a quadruped robot

with parameters similar to the LittleDog robot. The physics

based dynamics simulation was constructed with SDFast,

and the controller was implemented in Matlab. A spring-

damper ground model is utilized with point-feet contacts, with

reasonable ground reaction forces. The simulation has 4 test-

cases to illustrate the performance in sample COM and swing

foot trajectory tasks.

• CASE 1: Figure 8 trajectory for COM, with 4 feet on

ground. In this case, a figure 8 desired trajectory is

tracked with the whole robot center of mass. Four feet

remain on the ground.

• CASE 2: Figure 8 trajectory for COM, with 3 feet on

ground. In this case, a figure 8 desired trajectory is

tracked with the whole robot center of mass. Three feet

remain on the ground, and one foot is raised in the air.

Figure 3 shows the ZMP and center of mass, comparing

the work-centering and hybrid approaches. The whole-

body Jacobian with work-centering utilizes more drastic

motions, with the involvement of all limbs, which results

in the ZMP straying far from the COM projection. This

undermines the static stability assumption that we made

when selecting the figure 8 COM trajectory to follow, and

results in the robot eventually toppling over. On the other

hand, the ZMP corresponds fairly well with the COM

projection in the hybrid controller, as this controller min-

imizes drastic movements. Thus, even though the robot

is moving fairly quickly (executing the figure 8 motion

in 3 seconds), the static stability margin is reasonable

to use with the controller using the dynamic redundancy

resolution. This illustrates why the hybrid controller is

more stable when executing fast movements.

• CASE 3: Small, fast, figure 8 trajectory for swing leg.

In this case, a small figure 8 is to be tracked by the front

right leg, while the COM is to remain over the centroid

of the support polygon. In this test, the entire figure 8

trajectory is completed quickly (in 1 sec.).

• CASE 4: Very large, slower, figure 8 trajectory for swing

leg. In this case, a very large figure 8, requiring the robot

to pitch its body up and down to complete it accurately,

is to be tracked by the front right leg, while the center

of mass is to remain over the centroid of the support

polygon. In this test, the figure 8 trajectory is completed

fairly slowly, over a period of 15 seconds.
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Fig. 2. Simulation Results: Case 2. The red leg designates the swing foot in
the air. Left: Partial IK. The robot is unable to follow the specified trajectory
at the speed given.Center: Whole-body Jacobian with Work centering. The
robot can not finish the task as he rotates forward and eventually flips over.
Right: Hybrid approach. This is the only approach that is able to follow
the trajectory even somewhat closely. Bottom: red line is the commanded
trajectory (3 seconds), blue line is the actual trajectory.

B. Real Robot

Joint trajectories were generated by using the simulator with

the hybrid controller for the test cases presented above. These

trajectories were recorded, and passed to the actual LittleDog

robot as a feedforward command. The performance in cases 1-

3 was quite good, and resembled the performance seen in the

simulators. Case 4, where joint-limits play a larger, role still

requires some more work. When we tried to run the controller

using feedback on the real dog, Case 1 (with all four feet on the

ground) looked good. The other cases, which involve a foot in

the air, did not perform well because stance feet were slipping,

which violated our Jacobian assumptions that grounded feet

were not moving. This was enhanced by oscillations due to

feedback latencies. We are working on further developing

the feedback controller; for the purpose of walking, we are

also working on generating open-loop trajectories between

each step, so that feedback is incorporated between steps,

while each step is executed using the feedforward trajectory

generated with the hybrid controller.

VI. CONCLUSIONS

This work presents derivations for whole-body Jacobians

for center of mass and swing foot trajectory control of a

point-foot quadruped robot, despite the fact that the forward

Fig. 3. ZMP (red) vs COM (blue) for Case 2 with work-centering (bottom)
and hybrid control (top). The triangle depicts the support polygon. This figure
illustrates that ZMP more closely follows the COM trajectory in the hybrid
control, which is the reason why the hybrid control is less likely to fall when
executing fast motions under static stability assumptions.

kinematics for center of body are ill-defined. Three control

methods were explored, including 1) a partial IK solution;

whole-body solutions using either 2) work-space centering and

3) a hybrid controller which utilizes the partial IK solution for

dynamic redundancy resolution. The controllers were tested on

several test cases in simulation, designed to force the robot to

move dynamically or to the edge of kinematic feasibility. The

hybrid controller minimized any violation of static stability

assumptions, while also following the commanded trajectories

with the least error on all four tests.

Future work will address the implementation issues encoun-

tered when trying to run the hybrid control on the real robot,

as discussed above. Open loop trajectory generation appears

to be a good method to handle this problem. Additionally we

will explore using stability metrics as potentials for the COM

controller to follow, rather than specifying exact trajectories.

For example, one may define a static stability potential which

has a flat region over a portion of the support polygon. This is

in contrast to the typical notion of the static support margin,

the potential function of which would look quadratic (and

thus not have a flat region). While the COM is in the flat

region, the [x,y] coordinates of the COM would essentially

not be commanded, and thus would be free to move. This

could extend the workspace of the robot, and could alleviate
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Fig. 4. Simulation Results: Case 3. The red leg designates the swing foot,
which is executing a figure-8 trajectory. Left: Partial IK. Performance is poor
particularly because joint limits are reached. Center: Whole-body Jacobian
with Work centering. Rapid twisting (jerking) motions cause the robot to
loose footing and topple over; the trajectory at this speed can not be achieved
with this controller. Right: Hybrid approach. The robot seems to minimize
twisting and turning motions, and achieves reasonable trajectory following
performance. Bottom: red line is the commanded trajectory (1 second), blue
line is the actual trajectory.

higher level controls from having to control the body during

a step.

ACKNOWLEDGMENT

This work was supported by the DARPA Learning Loco-

motion program (AFRL contract # FA8650-05-C-7262), and

by a Graduate Research Fellowship from the NSF.

REFERENCES

[1] R. Tedrake, K. Byl, and J. E. Pratt, “Probabilistic stability in legged
systems: Metastability and the mean first passage time (FPT) stability
margin,” In progress, 2006.

[2] R. McGhee and A. Frank, “On the stability properties of quadraped
creeping gaits,” Mathematical Biosciences, vol. 3, pp. 331–351, 1968.

[3] K. Hirai, M. Hirose, Y. Haikawa, and T. Takenaka, “The development
of Honda humanoid robot,” in Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), 1998, pp. 1321–1326.

[4] Kajita, S. Kanehiro, F. Kaneko, K. Fujiwara, K. Harada, K. Yokoi,
K. Hirukawa, and H., “Resolved momentum control: humanoid motion
planning based on the linear and angular momentum,” Intelligent Robots
and Systems (IROS), Proceedings, 2003.

[5] M. B. Popovic, A. Hofmann, and H. Herr, “Zero spin angular momentum
control: definition and applicability,” Proceedings of the IEEE-RAS/RSJ
International Conference on Humanoid Robots, pp. 478–493, 2004.

[6] J. E. Pratt and R. Tedrake, “Velocity based stability margins for fast
bipedal walking,” in Proceedings of the First Ruperto Carola Symposium
on Fast Motions in Biomechanics and Robotics: Optimization and
Feedback Control, September 2005.

1.35 1.4 1.45

0

0.05

0.1

0.15

0.2

0.25

0.3

RMS Error: 0.014

Ti
m

e 

1.35 1.4 1.45

0

0.05

0.1

0.15

0.2

0.25

0.3

RMS Error: 0.0034

ired 
dash) 

actual 
e solid) 
ctory of 

jected 
plane), 
RMS 
r 

1.35 1.4 1.45

0

0.05

0.1

0.15

0.2

0.25

0.3

RMS Error: 0.0052

Fig. 5. Simulation Results: Case 4. The red leg designates the swing foot,
which is executing a figure-8 trajectory. Left: Partial IK. Performance is poor
particularly because joint limits are reached. Center: Whole-body Jacobian
with Work centering. Tracking of the figure 8 is good, but COM tracking
is affected here, and the robot goes though twisting motions. Right: Hybrid
approach. The robot seems to minimize twisting and turning motions, and
trajectory following has lowest RMS error. Bottom: red line is the commanded
trajectory (15 seconds), blue line is the actual trajectory.

[7] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiware, K. Harada, K. Yokoi,
and H. Hirukawa, “Biped walking pattern generation by using preview
control of zero-moment point,” in ICRA IEEE International Conference
on Robotics and Automation. IEEE, Sep 2003, pp. 1620–1626.

[8] Whitney and D.E., “Resolved motion rate control of manipulators
and human prostheses,” IEEE Transactions on Man-Machine Systems,
vol. 10, no. 2, pp. 47–53, 1969.

[9] Liegeois and A., “Automatic supervisory control of the configuration and
behavior of multibody mechanisms,” IEEE Trans. Syst. Man Cybern.,
vol. SMC-7, no. 12, pp. 868 – 871, December 1977, multibody mecha-
nisms;adaptive control;kinematics;robots;manipulators;automatic super-
visory control;two level control;.

[10] O. Khatib, “A unified approach for motion and force control of robot
manipulators: The operational space formulation,” IEEE Journal of
Robotics and Automation, vol. 3, no. 1, pp. 43–53, February 1987.

[11] O. Khatib, L. Sentis, J. Park, and J. Warren, “Whole-body dynamic
behavior and control of human-like robots,” International Journal of
Humanoid Robotics, vol. 1, no. 1, pp. 29–43, 2004.

[12] J. Nakanishi, R. Cory, M. Mistry, J. Peters, and S. Schaal, “Compar-
ative experimental evaluations of task space control with redundancy
resolution,” August 2006.


