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Abstract— Self localization and mapping with vision is still an
open research field. Since redundancy in the sensing suite is too
expensive for consumer-level robots, we base on vision as the
main sensing system for SLAM. We approach the problem with
3D data from a trinocular vision system. Past experience shows
that problems arise as a consequence of inaccurate modeling
of uncertainties; interestingly enough, we found that accuracy
in modeling the robot pose uncertainty is much less relevant
than for the uncertainty on the sensed data. To overcome
the severe limitation of linear and Gaussian approximations,
we applied a particle-based description of the inherently non-
normal probability density distribution of the sensed data; the
aim is to increase the success rate of data association, which
we see as the most important problem. The increase in correct
data associations reduces the uncertainty in the model and,
consequently, in the robot pose, respectively estimated with a
hierarchical map decomposition and a six degree of freedom
extended Kalman filter. In this paper, we present approaches
for particle-based sensor modeling and data association, with
a comparative experimental evaluation on real 3D vision data.

I. INTRODUCTION

In many real-world applications, e.g. autonomous world
model building by a mobile robot (a.k.a. the SLAM prob-
lem), modeling the uncertainty of the data is of uttermost
importance, as it heavily affects the system performance;
see e.g. [1] for applications that were successful because of
the appropriate modeling of uncertainties. In this problem,
the observer mobility implies the integration of data that,
for its nature, is very noisy. Every perception system suffers
for its own, usually non-gaussian, noise; the gaussian/normal
distribution is often used to model it and often this turns out
to be a limitation.

In the SLAM problem, it is nowadays usual ([1], [2]) to
model the non-normal robot pose with the particle approach.
This has been proven successful in robots based on Laser
Range Finders as the main sensing system. In many mobile
robots applications (outdoor navigation, indoor navigation
with ramps and/or obstacles not perceivable at the LRF
height, door opening with door handle, etc.) such sensing
system cannot be the only complex sensing system of the
robot. On the other hand, a vision-based sensing system,
which could leverage on the huge amount of computer
vision algorithms, could be the main sensing system of a
mobile robot. This is also pushed by economical constraints:
“extensive market analyses show that a complex sensing
system for a mobile robot cannot cost more that 10US$, for
a consumer-level robot” [3]. Today a multi-camera system
still does not match such target on cost, but the difference,

w.r.t 3D LRFs, is impressively large in favor of multi-camera
systems; moreover, it is fast-reducing.

In this work we show that, for vision-based SLAM, the
accurate modeling of the uncertainty on the sensed data
allows to reach excellent results, without any particular atten-
tion to the uncertainty on the robot pose. Section II briefly
introduces the state of the art in SLAM while the issues
in uncertainty modeling of 3D data from a stereo-vision
systems are discussed in Section III. Section IV describes a
novel approach to data association exploiting a particle-based
description of data uncertainty. The effectiveness of such idea
is presented, on real data, in Section V. Conclusions and
future work are presented in the last section.

II. STATE OF THE ART

A non-linear function of normally distributed variables is
usually approximated with a gaussian model; this dates back
to the work of [4] and has been widely used in the literature.
EKF can be seen as a similar approach, as it also bases on
linearization. EKF is also state-of-the-art in SLAM. In the
recent years we could appreciate the affirmation of other
Bayesian information processing, from Unscented Kalman
Filter [5] and (Sparse Extended) Information Filter [6], to
Particle Filter [7]. The state of the art in uncertainty modeling
for SLAM is to use the normal distribution for the sensed
data and a more accurate, particle-based, approximation for
the robot pose [2]. For each value of the robot pose a recon-
structed world is computed, basing on a normal distribution
of the sensed data, given that pose. In these approaches we
have a gaussian distribution, to approximate the noise on the
observations of the features, and a particle filter to model
the robot pose. In this way the different hypotheses on data-
association (and therefore on world reconstruction) can be
kept under consideration as long as they could turn to be
correct (a not greedy approach). In grid-based approaches
we have a discretization of the state, the robot location, into
cells (histogram filter) and a gaussian distribution is used to
model the features [8] This filter represents the cumulative
posterior, for each region, with a single probability value.

III. 3D SENSOR DATA FROM VISION

The perception system we used follows a consolidated
approach, i.e. trinocular stereo, and reconstructs the scene
in terms of 3D segments [9]. This makes the robot able
to capture part of the 3D nature of the environment. Such
systems are quite widespread in the computer vision and
robotics communities. In order to give out 3D segments
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Fig. 1. 3D segment-based reconstruction for a trinocular stereo-system.

the system has to deal with segments since the very first
(image) processing steps. The segments are represented by
the 3D coordinates of their extrema. The trinocular approach
exploits the trinocular epipolar constraint to speed up the
search for triplets corresponding 2D segments in the 3 images
of the system. Our implementation differs from the original
only in the use of the Fast Line Finder [10], in the polygonal
approximation phase.

The last step, the most interesting for this work, is the
computation of the parameters of the 3D segment, repre-
sented by the 3D coordinates of the endpoints. In Fig. 1,
D is the 3D scene segment, Ci and di are respectively the
projection center and the projection of D on image i. The
cameras are calibrated with a standard DLT technique, which
models the uncertainty on the camera projection matrix as
normally distributed. The 2D segments are also measured
in the image space as normally distributed. The system
therefore produces the 3D extrema of each scene segments
as well as an associated covariance matrix, intended to
represent the measurement uncertainty of the 3D data as
a normal probability distribution. As making evident the
limitations of modeling the data uncertainty with a normal
distribution is the aim of this work, we developed a particle
approximation for the uncertainty of the 3D segments. The
normal distributions (expected value and covariance matrix)
of the independent variables, i.e. the projection matrixes and
the 2D segments on the image plane, are used to generate
the samples to which we apply the triangulation process.

3D reconstruction systems based on stereo-vision generate
data affected by uncertainties that strongly depend on the
observer-to-feature distance. This is due to the triangulation
relationship. This uncertainty is relevant in order to correctly
associate different measures of the same world feature. Let’s
consider, for the sake of simplicity, the binocular stereo-
system in the plane as in Fig. 2; two cameras are placed at
known positions (baseline distance = b). A point N projects
in the images; we measure its projections at xN

L and xN
R .

xN
L and xN

R are affected by noise, due to many sources,
e.g. space and intensity image quantization, etc. The noise
on xN

L and xN
R , in turn, cause the location of N to be

reconstructed with error. The uncertainty induced by the
triangulation, i.e. the intersection of the two interpretation
lines of xN

L and xN
R , is not a simple scalar function of

the distance to N, it is also skewed and oriented. Nearby

Fig. 2. Uncertainty diamonds for points at different distances

(to the observer) points are affected by a fairly compact
uncertainty distribution, whereas farther points are affected
by an elongated uncertainty distribution, that is roughly
aligned with the line of sight to the point. We want to
evaluate and represent this uncertainty, in order to take it into
account in any further reasoning, e.g. in a SLAM system.

A. Gaussian Modeling

The image coordinates and the projection parameters are
here considered as corrupted by a normally distributed noise.
The parameters of the distribution have to be determined. As
triangulation is a non-linear operation, the distribution is non-
gaussian, but in the most used approach it is approximated to
a normal. This makes much easier dealing with the errors in
the subsequent phases, e.g. data association and integration
of the different measures. This approach dates back to [4]
and to the work of O. Faugeras’s group at INRIA.

Let L = [xL, yL]T and R = [xR, yR]T be the projections
in the left and right images, respectively. Their coordinates
are normally distributed random vectors with mean µL and
µR, and covariance matrices VL and VR, respectively

N = f tri(L,R) =




X = b(xL + xR)/(2 (xL − xR))
Y = b(yL + yR)/(2 (xL − xR))
Z = b/(xL − xR)

(1)
where b is the baseline, and a unit focal length is assumed.

Although f tri is nonlinear the approach stipulates that N
can be approximated by a normal distribution with average
N = f tri(L,R) and covariance computed basing on J , the
Jacobian of f tri.

VN = J |
L,R

[
Vl 0
0 Vr

]
J |T

L,R
(2)

B. Particle-based Modeling

We sample the normally distributed independent variables
(projection parameters and 2D features) with n particles. We
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Fig. 3. Shape of the distributions (normal in dark and the unknown in
light grey) w.r.t the position of N; baseline is from 0 to 500

then propagate the (2D) particles through the triangulation
process as if they were 2D image points. We can exploit (1)
for each sample. The results are shown in Fig. 3. Note that
the differences, between the gaussian approximations and the
sampled ones, increase as N moves away from the observer.

IV. DATA ASSOCIATION

The key point of the SLAM process, from a robustness
perspective, is data association. The goal of such activity
is to map uncertain information coming from sensors to
uncertain information in the map. In our case the data
association algorithm has to map 3D segments in the current
view with 3D segments in the current submap. A correct
association is obtained when the algorithm is capable to
map a pair of segments (one in the view and one in the
map) corresponding to the same real segment, perceived from
different points of view.

The two different approaches in uncertainty modeling (i.e.,
gaussian approximation and our proposal of particle-based
modeling), can be applied. We claim our proposal increases
the data-association success rate. In both approaches the
association is based on three geometric criteria, for find-
ing matches between view and map. These criteria use a
Mahalanobis distance to evaluate the matches, and has been
described with more detail in [11].

A. Gaussian Data Association Method

In the following we introduce a simple formalization of the
data association, to be used in the rest of the paper. Suppose
we measured a set of features V = {vi} from a certain robot
position. Each feature is represented by its coordinates and
its uncertainty. We have also the set of features M = {mj}
observed and integrated in the map up to that moment. The
purpose of a data association algorithm is to find a proper
hypothesis of correspondences between them (list of pairs
vi and mj) Hk = {< v1,mj1 >,< v2,mj2 >, . . . , <
vV ,mjV >}. To generate this hypothesis we must explore
an interpretation tree, where each node represents a pair of
corresponding features < vi,mj >. In [11] we discussed

Map   j

View   i

Fig. 4. The “moving window” problem.

some algorithms for data association and the importance
of using proper criteria to match features in the view with
features in the map. Usually the point-to-point (extremum-to-
extremum) distance is considered as an appropriate criterium
for single segment matching and much of the effort is
devoted in finding a good association strategy for dealing
with the exponential complexity of finding the best match for
the whole view. In that paper we showed how better criteria
for 3D segment matching result in a better data association,
almost independent from the algorithm for interpretation tree
traversal (i.e. data association). The approach we proposed is
based on a multi-criteria evaluation for associating segments
in the View with segments belonging to the Map. The reason
for the poor performance of the point-to-point criterium is
mainly due to the problem of moving-field-of-view in the
sensing system, which turns in a moving window on the
world feature, see Fig. 4. The segments extrema could be
due to the reduced field of view and not always related to
real extrema in the world; this can easily become a problem
for the classical point-to-point distance1. The vi segment
is moved into the Map reference frame by means of an
estimate of the robot pose, e.g. the one provided by odometry.
Such estimate is known altogether with an estimate of its
uncertainty, which is propagated to the segment in the Map
reference frame. The data association criteria are based on
uncertain Mahalanobis distance.

We propose three criteria to validate an hypothesis of
match between vi and mj :

1) 1st criterium: Mahalanobis distance between the sup-
port line of the map segment and the extrema of the
view segment;

2) 2nd criterium: Angle between the support lines of the
two segments: this constraint complements the previ-
ous criterium and it is also based on a statistical test
that considers the uncertainty in the angle computation;

3) 3rd criterium: this is not a probabilistic one; it is related
to the projections of the segment extrema on the other
segment; one of the following two conditions has to
hold to get an association:

a) at least one of the extrema of the view segment
has to project onto the map segment;

b) both the extrema of the view segment project
outside the map segment, but the extrema of the

1Our proposal is of interest also for 2D-3DoF SLAM systems which
groups data points into 2D lines, because this moving-field-of-view issue
applies there too.
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map segment project inside the view segment.
At the end of the process we have a list of possible matches

between vi and mj . We consider only one possible match
(mj) for each vi segment and use two algorithms to perform
this task: Multi-Criteria Nearest Neighbor and Multi-Criteria
Joint Compatibility.

Multi-Criteria Nearest Neighbor is a variation on the
nearest neighbor data association algorithm that bases on the
classic ICP (Iterative Closest Point) algorithm [12] and the
multi-criteria approach. Moreover, it orders the list of all
potential matches, after each association decision. We call
this approach Full-Order (FO), and the whole NNFO.

The Multi-Criteria Joint Compatibility (JCBB) integrates
the three criteria in the joint compatibility branch and bound
technique [13]. To reduce the computational time required
to explore one branch of the interpretation tree, we first
compute the 3rd criterium on the couple < vi ,mji > because
it is very selective and fast. We then compute the 2nd

criterium on the same couple, to decrease the possibility
to compute in vain the next step. Finally, we use the 1st

criterium, in the joint compatibility test.

B. Particle-based Association Method

Our claim in this paper is that a further improvement in
data association can be obtained using a proper uncertainty
modeling; to support such claim, we modified the data
association algorithm to consider a particle-based model of
the uncertainty in the sensed data. Particles represent hy-
pothesis for the real position of 3D extrema of reconstructed
segments; each particle, in this approach, represents a single
possible extremum of the segment and it is known precisely.

We sample a particle from the two distributions, of the two
extrema. This pair of samples is the vk

i sample for segment
vi. We move then vk

i into the map reference frame (as for
the previous method) by means of an estimate of the robot
pose, e.g. odometry. The uncertainty on the particle depends
only on the error on the robot pose, which we model with
a gaussian distribution. This uncertainty is computed with
a classic error propagation. This approach contrasts state-
of-the-art SLAM methods, that use particles to model pose
uncertainty.

We now apply the three criteria to each particle-segment
vk

i , w.r.t. all the map segments. If vk
i passes the tests with

a map segment mj , then a specific counter for mj is
incremented. If the number of particle-segments vk

i for some
mj is larger than a threshold, then the match < vi ,mj > is
admissible. The process is repeated for all view segments.
This approach can be seen as the empirical computation of
the matching probability integral using particles distribution.
At the end a full-order algorithm is executed to extract a list
of valid matches:

1) for all mj from Mj and vi from Vi

a) sample a set of K particles for each extrema of
vi and move these segments vk

i s into the Map
reference frame

b) compute the number of vk
i that pass the 3 tests;

this count is then compared with a threshold (α),

relative to the total number of particles for vi; if
larger, then vi can be associated to mj

2) order the matches < vi,mj > in decreasing order
3) select as match the fist pair < vi,mj >
4) erase any other pair that involves vi or mj from the

list, and order the list
5) repeat from the selection of the best match until no

match is possible

The method (PFO) is therefore depending on n, the
number of particles, and the threshold α (PFOnα

V. EXPERIMENTAL ACTIVITY

For the experimental activity we used a mobile robot
from Robosoft, which computes odometry as a 3DoF pose
[x, y, θ]T ; this datum reaches a PC via serial line. On the
PC we have an Eltec frame grabber capable to grab three
704x558x8 pixels images at the same time. Each channel
of the frame grabber is connected to a Sony XC75CE
camera. Cameras have been calibrated with a standard DLT
approach. The robot has been moved inside the 4th floor
of building U7, Univ. Milano - Bicocca, Milano, Italy. The
robot travelled about 100m, activating its perception system
every few centimeters, for a total of 1000 views (activations),
with about 15 segments per view.

To generate the 3D particles (segments extrema) we sam-
pled 100 or 1000 (depending on the experiment) particles
from the normal uncertainty of each 2D extremum. This
is repeated for the 6 extrema (3 segments, 1 per image);
we also sample the projection matrix from the 11-variate
normal given out by our calibration tool. Next, we compute
the 3D segment extrema with the triangulation process. This
procedure is repeated 100 or 1000 times, for each extremum
of each 3D segment. Subsequently, we use this information
to reconstruct the scene with a SLAM process. We need to
clarify what happens currently, when a view segment vi is
associated to a map segment mj , in order to integrate, i.e.
fuse, the 2 measures. If both vi and mj are modeled with
normal distributions, then the usual fusion applies. On the
other hand, when vi is represented by a particle distribution,
we use the fist two moments of it to update the normal
distribution of mj .

Table I shows the comparison between the different data-
association methods. The leftmost (NNFO) is a frequently
used approach, based on normal distributions to describe
the extrema of the segments. The second is the state-of-the-
art JCBB, again with normal distributions. The others are
based on the new method, with distributions approximated
by particles. PFO100 stands for 100 particles per extremum,
PFO1000 for 1000 particles. The percentage is the threshold
mentioned before (α), i.e. the minimum number of particles,
w.r.t. the total number of vk

i , which have to match with mj ,
in order to associate vi to mj .

Being un-available the ground truth of the explored en-
vironment, we performed the comparison looking at the
number of matches generated during the view-integration
phase, before any loop-closure. Also the number of submaps,
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TABLE I

1000 VIEWS, NO LOOP CLOSURE

. NNFO (norm) JCBB (norm) PFO100 50% PFO100 10% PFO1000 50% PFO1000 10%
# matches 1153 1338 1545 1585 1545 1599
# submaps 15 11 7 6 7 6
time (min) 30 62 201 189 1740 1980

created during this exploration, is reported because it con-
tributes to shed light on the amount of correct associations
performed by each approach.

It has to be stressed that by not caring of data-association
problems the overall map results into larger number of false
segments, all apparently independent, but actually referring
to the same scene features. On the other hand, approaching
the issue by simply increasing the normally modeled uncer-
tainty turns into a large number of wrong associations.

We are very excited about the results obtained with our
proposal and do not think the processing time to be really
relevant at the moment, given that current techniques were
indeed unable to reach the goal of building a good map.
Nevertheless, we reported the time taken for the processing
on a P4 laptop, starting from images on files, and including
stereo-matching, just for giving an idea on this aspect of our
preliminary results. We also note that particle approaches can
be easily and effectively implemented on parallel architec-
tures.

Fig. 5. A view of the map obtained with normal modeling of uncertainty

Fig. 6. A view of the map obtained with particle modeling of uncertainty

By looking at the table we can observe that our proposal
allows about 34% more matches w.r.t. NNFO (norm) and
about 14% w.r.t. JCBB (norm). If looking at the number
of submaps (size limit was set at 50 features for all ap-
proaches) the reduction appears even larger: about 26%
w.r.t. NNFO (norm) and about 36% w.r.t. JCBB (norm).

Fig. 9. Two reconstructed scene segments

a b

.

Fig. 10. Segment 1, extremum 2; see text for details.

The effectiveness of the approach can be further appreciated
by looking at Fig. 5 and 6; they show a similar view
on the NNFO (norm) and PFO1000 10%, respectively, 3D
reconstructions. Notice the large reduction in the number of
un-matched segments when going from the normal to the
particle approach. A view from the top of the two maps is
presented in Fig. 7 and 8.

In order to support our claim about the need for ac-
curate modeling of uncertainties in the sensed data we
present a couple of real extrema; in Fig. 9 notice 2
scene segments: the green endpoints have coordinates
[2.9, 8.6, 2.8], [1.6, 9.2, 2.9], while the extrema of the red are
[1.4, 9.0, 2.8], [0.8, 9.0, 2.8]. Fig. 10a shows the uncertainty
(in the x,y plane) for an extremum of the green segment,
using the particle model, while the Fig. 10b shows the
comparison between this uncertainty model and the uncer-
tainty computed using the Jacobian method, along the line
connecting the extrema of the uncertainty diamond. The
direction of the arrow, in the left figure, corresponds to
direction of the abscissa in the figure on the right . Fig. 11a
and b presents the same for the first extrema of the red
segment. Notice the differences between the shape of the
normal and the sampled distributions.

FrE7.3

4805



Fig. 7. A view from the top of the map (normal modeling of uncertainty)

Fig. 8. A view from the top of the map (particle modeling of uncertainty)

a b

Fig. 11. Segment 2, extremum 1; see text for details.

VI. CONCLUSIONS

In this paper we presented a particle-based approach to
uncertainty modeling of 3D data sensed through a stereo
vision system. Our claim in doing this is that it is possible
to obtain a better data association exploiting such modeling,
with respect to the classical gaussian approximation. Impres-
sive results have been obtained on real data, confirming that
a proper uncertainty model is a key factor in data association
and in SLAM in general. It is worth noticing that this
approach apparently contrasts with the state of the art in
SLAM algorithms, which usually base on a non gaussian
(particle-based) estimate of the robot pose, while perceptions
are treated as normally distributed.

We are currently working to reduce the time required to
compute a particle-based representation and to improve the
speed of the method.
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