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Abstract— We present a strategy for generating real-time
relative depth maps of an environment from optical flow,
under general motion. We achieve this using an insect-inspired
hemispherical fish-eye sensor with 190 degree FOV, and a de-
rotated optical flow field. The de-rotation algorithm applied is
based on the theoretical work of Nelson and Aloimonos [10].
From this we obtain the translational component of motion, and
construct full relative depth maps on the sphere. We examine
the robustness of this strategy in both simulation and real-
world experiments, for a variety of environmental scenarios. To
our knowledge, this is the first demonstrated implementation
of the Nelson and Aloimonos algorithm working in real-time,
over real image sequences. In addition, we apply this algorithm
to the real-time recovery of full relative depth maps. These
preliminary results demonstrate the feasibility of this approach
for closed-loop control of a robot.

I. INTRODUCTION

Essential to autonomous navigation is the ability to per-
ceive depth. While absolute measures of distance are useful,
they are not necessary for achieving most navigation tasks.
Relative measures of distance to surfaces have been shown
to be sufficient for autonomously navigating corridors [12],
avoiding obstacles [13], [2], and docking with objects in
the environment [9], [12]. In addition, obtaining depth maps
across a wide field of view provides a means of perceiving
environmental structure, which in turn may be used for
higher level navigation tasks such as invoking appropriate
navigational subsystems and mapping.

It is well known that biological vision systems perceive
depth from a variety of cues, depending on the configuration
and the geometry of the eye. Among the potential cues
are (a) stereo information (b) depth from focus (c) depth
from convergence and (d) depth from optical flow [16].
Insects, with their immobile, fixed-focus eyes and low in-
terocular separation, rely heavily on optical flow cues to
obtain depth information [17]. Information from the optical
flow that is generated in the eyes by the insects’ motion
in the environment is used to (i) navigate safely through
narrow gaps (ii) detect and avoid collisions with objects
(iii) distinguish objects from their immediate backgrounds
and (iv) orchestrate smooth landings [17]. Estimating depth
from optical flow is simpler, computationally, than estimating
depth from stereo, and is thus an attractive strategy for the
relatively simple nervous systems of insects. Given many
robotic vision systems are equipped with only a single
camera, much attention has been given to those cues that
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do not rely on two or more simultaneous views of the scene,
such as optical flow.

In computer vision, the use of optical flow for scene
reconstruction has been problematic. While a significant
body of theoretical work exists [7], [1], [11], [5], in practice,
these approaches generally lack the speed and robustness
required for a real-time navigation system. One issue is the
intolerance of such strategies to noisy flow estimates in local
regions [18]. Optical flow estimation is notoriously noisy, and
difficult to compute accurately under real-world conditions.

An additional issue for depth map recovery is the reli-
able extraction of the translational component of flow (de-
rotation), from which relative depth can be inferred. Many
current flow-based depth perception strategies either assume
pure translational motion (e.g. [3]), or apply planar models
to extract surfaces from the scene (e.g. [13], [14]). While de-
rotation algorithms exist, these are largely constrained to a
single rotation, or are not fast or robust enough for real-time
depth mapping. To generate 3D depth maps from optical flow
under general motion, a de-rotation strategy is required for
each rotational component. To obtain workable depth maps
for navigation from flow, this algorithm must be sufficiently
accurate, and must run in real-time. There currently exists no
system capable of achieving this in real-world conditions.

There is a growing body of theoretical work suggesting a
spherical projection model, rather than a perspective model,
may offer distinct advantages when inferring scene structure
and self-motion from optical flow [4], [10]. Nelson and
Aloimonos [10] highlight specific advantages gained through
the existence of both a focus of expansion (FOE) and
focus of contraction (FOC) in a single spherical image.
From such observations, a potentially real-time de-rotation
algorithm is derived for the complete recovery of rotational
velocity components from the optical flow on a full view
sphere. While some theoretical analysis of the algorithm’s
likely robustness in real-world conditions is provided, to our
knowledge there exists no published results to date reporting
the algorithm’s performance in real-time, and over real image
sequences. Given the potential of this algorithm to support
a variety of navigation tasks, it is of interest to examine its
feasibility for the recovery of 3D depth maps in real-time.

In this paper, we report preliminary results obtained
from the application of the Nelson and Aloimonos de-
rotation algorithm to the task of generating 3D relative
depth maps from a spherical sensor. In simulation, we show
its application over a full view sphere undergoing general
motion. We also present preliminary results over two real
image sequences captured during the ground-based motion
of a hemispherical view fish-eye camera. We show that the
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Fig. 1. Optical flow on the view sphere.

recovery of 3D relative depth maps can be achieved in real-
time, without the need for camera calibration.

II. GENERATING DEPTH MAPS FROM SPHERICAL FLOW

We briefly outline the theory for recovering 3D depth maps
from the spherical projection of optical flow. For the purposes
of de-rotation, it is of interest to consider the component
of flow in the direction of great circles about each axis of
rotation [10].

We define the position of any point on a view sphere in
terms of its angular location on three great circles lying in
orthogonal planes perpendicular to each axis, such that:

θ =
[

θx θy θz

]

, (1)

where θx, θy and θz are angles in the direction of each
orthogonal great circle, Ex, Ey and Ez, in the range [0, 2π],
as shown in Figure 1. Using this representation, we may
express the component of motion, e(θ), in the direction of
these equators as (defined here for Ex):

ex(θ) =
vcos(α)

R(θx)
sin(φx − θx) + ωx, (2)

where ωx is the rotational velocity component about the X
axis, R(θx) is the radial depth to the scene point projecting
to θx, v is the translational velocity of the sphere, α is the
angle of the translation vector from the plane of Ex, and φx

is the direction of the projection of this vector on Ex.
It is important to note that the above equation may be

defined for any great circle, and is not limited to equators
about the X , Y and Z axis. From this we note that flow in
the direction of any great circle is effected by only a single
rotation about the axis perpendicular to that great circle’s
plane. This observation has led to the development of a full
de-rotation algorithm for optical flow on the sphere.

Algorithm 1 Nelson and Aloimonos De-rotation Algo-
rithm [10]

1: for ωc = ωmin to ωmax do
2: D[ωc] = 0
3: for θc = 0 to 2π do
4: a = e(θc) − ωc

5: β = φ − θc

6: if a < 0 and 0 ≤ β < π then
7: result = −a

8: else if a > 0 and π ≤ β < 2π then
9: result = a

10: else
11: result = 0
12: end if
13: D[ωc] = D[ωc] + result

14: end for
15: end for
16: ω = min index(D[ωmin : ωmax])
17: return ω

A. De-rotating flow on the sphere

In the late 1980s, Nelson and Aloimonos [10] proposed an
algorithm for recovering the full 3D rotational velocities of a
view sphere, in real-time, by exploiting three key geometric
properties of optical flow on the sphere:

1) the component of flow parallel to any great circle is
effected only by the rotational component about its
perpendicular axis, thus decoupling it from rotations
about orthogonal axes.

2) under pure translation, both the FOE and FOC will co-
exist at antipodal points on the sphere, and will evenly
partition flow along any great circle connecting these
two points, into two distinct directions of motion (i.e.
clockwise and counter-clockwise).

3) the existence of any rotational motion along a great
circle causes the FOE and FOC to converge, thus
ensuring the two points will only lie at antipodal
locations under pure translation.

The first observation indicates that each component of rota-
tion can be resolved independently, and thus each may be
considered in turn. From the second and third observations,
Nelson and Aloimonos propose an algorithm for recovering
the rotational component of flow, ω, about any great circle
of flow e(θ). For reference, we reproduce the algorithm in
pseudo code (see Algorithm 1).

In words, the algorithm describes a simple search-based
strategy for resolving rotation. For each discrete point, θc,
on a circle of flow, e(θ), a range of rotations are searched
through, where each candidate, ωc, is used to de-rotate flow
along the circle. After de-rotation, the sum of the residual
flow on the circle is taken. Note that the sign of the flow
indicates its direction on the circle, therefore, a perfect split
of clockwise and counter-clockwise flow will yield a sum of
0. Accounting for noise and quantisation errors, the chosen
rotation is therefore the one which yields the smallest sum



TABLE I

SIMULATION ERROR MEASURES

Gauss noise Rotational error Trans dir Depth
(std dev) ωx ωy ωz error error
0o 0.003 0.003 0.003 5.9o 8.9%
2

o 0.003 0.003 0.004 9.0
o 13.0%

4o 0.006 0.005 0.007 10.0o 25.3%
10o 0.009 0.008 0.012 16.6o 39.2%

of flow on the circle after de-rotation.
By applying this algorithm to great circles about each

rotational axis, the complete recovery of the sphere’s rotation
is achieved. After de-rotation, the direction of translation is
also given by the line passing through the FOE and FOC.

Notably, the algorithm’s run time performance is dictated
primarily by the quantisation of discrete locations on the
great circle, and the range of possible rotations for each great
circle. Given reasonable choices, the algorithm should pro-
vide fast execution [10]. Given encouraging results reported
by the authors in simulation, it is of interest to consider
the feasibility of this approach to real-time navigation tasks,
under real-world conditions.

B. Generating relative depth maps

After de-rotation, all flow vectors follow great circles
passing through the FOE and FOC. Thus, we may express
the magnitude of the residual translational flow at a discrete
location on the great circle as (θ) as:

f(θ) =
v

R(θ)
sin(φ − θ), (3)

and from this, define the relative distance to any scene point:

R(θ)

v
=

sin(φ − θ)

f(θ)
. (4)

If we know v, then we may obtain an absolute measure of
distance, however, for most navigation tasks, a relative depth
estimate is sufficient. Notably, (4) is only defined where
optical flow exists (i.e. f(θ) 6= 0). Thus, range cannot be
reliably measured where a lack of texture exists, or where
flow magnitude tends to zero such as at the FOE and FOC.

C. Simulation results

Simulation tests were conducted to examine the robustness
of depth map estimates obtained using the strategy outlined
above. For this, a model of a unit view sphere was defined,
and immersed in a virtual 3D boxed space. A ground truth
depth map was then obtained over the whole sphere, from
which accuracy could be measured. Optical flow fields were
computed on the view sphere for multiple sets of twenty ran-
domly chosen translation directions, with randomly chosen
components of rotation about each principle axis. Rotational
velocity values were within the range [−0.5, 0.5] (rad/unit
time). To examine robustness, increasing levels of Gaussian
noise were added to the direction of each flow vector for each
set of twenty trials. On each equator, 112 discrete points,
and 100 possible rotations were used for de-rotation. Table I
provides mean errors obtained during each simulation run.

Fig. 2. Sample frame shows the circle used to de-rotate the flow. Blue
pixels indicate clockwise flow and yellow counter-clockwise. The yellow
line indicates the estimated direction of translation after de-rotation.

Rotational errors are given as the mean of the absolute dif-
ference between the estimated and true rotation velocities for
each simulation run. The translational direction error is given
as the mean angular error between the estimated translational
direction and ground truth. Depth map estimation errors are
given as the mean of relative errors against ground truth.

From Table I it can be seen that rotational errors remain
stable, despite increasing noise levels. Translational direction
errors also appear to remain stable. It is important to note
that image resolution dictates that estimates of translational
direction can only estimate the true direction of motion to
within 3.2o of the actual direction, hence the presence of
non-zero errors when no noise is introduced.

It is clear that depth estimation errors increase with noise,
and with errors in the estimated translational direction.
Notably, large errors were also found to occur around the
FOE and FOC, where flow magnitudes approach zero. Under
less precise, real-world conditions, this issue is less likely
to influence accuracy due to noise levels preventing flow
magnitudes from diminishing to such small values.

III. REAL-WORLD EXPERIMENTS

The 3D depth map algorithm was implemented for use
with a single fish-eye camera (Unibrain Fire-i BCL 1.21)
undergoing ground-based motion. Given motion was approx-
imately planar, only a single hemispherical view was required
to account for rotation on the ground plane. The fish-eye
camera has a 190 degree FOV, and thus provides a suitable
approximation to a hemispherical projection of the scene.

In all experiments, full estimates of optical flow were ac-
quired using Lucas and Kanade’s gradient-based method [6],
in combination with Simoncelli’s multi-dimensional paired
filter [15] for pre-filtering and gradient estimation. This
combination was chosen on the basis of strong performances
in a recent comparison of optical flow methods for real-time
robot navigation [8].

Two image sequences were constructed for the depth map
experiments. In both experiments, the camera’s forward ve-
locity was kept approximately constant, while rotation about
the axis perpendicular to the ground plane was introduced.
No camera calibration was performed or post-filtering of flow

1Omni-tech robotics



−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−3

−2

−1

0

1

2

X pos

Y
 p

os

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

X pos

Y
 p

os

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

X pos

Y
 p

os

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

X pos

Y
 p

os

original image relative depth map projected structure map

(a)

(b)

(c)

(d)

Fig. 3. Sample depth maps obtained on-board the mobile platform (camera facing up). The left column shows the original image, and estimated direction
of translation obtained from de-rotation. The middle column shows grayscale relative depthmaps computed from the translational flow. The right column
shows structure maps, obtained by projecting relative depth estimates into 3D space, and then flattened out.

estimates, translational direction or relative depth estimates.
On a 2.1 GHz computer, depth maps were generated at a
rate of 1.2 updates per second over circular image regions
of radius 110 pixels, with an input frame rate of 15Hz.

A. De-rotation

Given ground-based motion, the Nelson and Aloimonos
de-rotation algorithm was implemented for a single rotation,
using a circle of evenly distributed points (radius 110 pixels)
around the estimated projective centre of the camera. Due to
limitations imposed by the size of the camera’s image plane,
the true great circle could not be used. For planar motion,
any concentric circle about the projective centre is sufficient.

Figure 2 provides a sample frame showing the output

of the de-rotation algorithm over a real image sequence
(described later). The blue and yellow points indicate the
locations on the circle used for de-rotation. Blue points
indicate clockwise flow, and yellow, counter-clockwise. The
yellow line signifies the estimated direction of translation
after de-rotation is applied. The imbalance of partitioned flow
indicates the presence of rotation.

B. Corridor navigation experiment

The first image sequence was obtained by mounting
the camera on-board a mobile robot platform, with omni-
directional motion. The camera was fixed as close as possible
to the robot’s rotation axis, facing upwards. Figure 3 shows
sample depth maps obtained during the corridor experiment.
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Fig. 4. Sample frames and depth maps from ”Belco” kitchen sequence (hand held camera facing towards ground plane). The left column shows the
original image, and estimated direction of translation obtained from de-rotation. The middle column shows grayscale relative depthmaps computed from
the translational flow. The right column shows structure maps, obtained by projecting relative depth estimates into 3D space, and then flattened out.

The first column shows the central image (320×240 pixels)
from the buffered frames used to compute the optical flow for
the corresponding depth map. The second column shows a
grayscale map of the relative depths of objects in the scene
(brighter being closer) estimated from the de-rotated flow
field. The third column provides a top-down view of the
relative depths of scene points, projected onto the ground
plane (we refer to these as structure maps). The centre of
the structure map gives the location of the camera. For this,
thresholding was applied to extract only the closest surfaces
in the scene (and thus omit depth estimates from the ceiling).

The relative depth maps obtained over the corridor naviga-
tion sequence provide a good qualitative representation of the
environment. An abundance of clear structural cues resulting

from the motion of surface boundaries such as corners,
doorways and windows can be seen. This is particularly
evident in Figures 3(c) and (d) where the wall edge in (c),
and column and fire hydrant in (d) are the brightest objects.

The structure maps in Figure 3 further support the ac-
curacy of the relative depth measures for inferring scene
structure. Most evident is the extraction of free space in the
local area about the robot. Notably, some surface areas have
only a few depth measures associated with them due to a
lack of measurable flow in the area.

C. Cluttered environment experiment

A second sequence was constructed depicting the camera’s
motion through a cluttered kitchen environment. For this, the



camera was hand-held, facing toward the ground plane as it
was walked through the kitchen. Figure 4 shows four samples
from the results obtained for this sequence.

The depth maps obtained exhibit less structural definition
than the corridor sequence. This is unsurprising given the
unstructured nature of the environment, and the greater
abundance of objects in close proximity to the camera.
The camera’s orientation towards the ground plane appears
to significantly improve the extraction of free space from
obstructed space due to the abundance of visual texture. In
the corridoe sequence, fluro lights, and significantly more
distant surfaces reduced the amount of visual texture avail-
able. While the improvement is evident in the grayscale depth
maps, it is made particularly clear in structure maps like that
shown in Figure 4(a), where a detailed map of free space is
provided over the viewing area.

D. Discussion

The quality of depth maps obtained in both these prelim-
inary experiments is encouraging. While more quantitative
testing is needed, these experiments show that basic 3D scene
structure can be reliably inferred from optical flow in real-
time. At the very least, these results suggest clear distinctions
between free and obstructed space can be obtained, thus
supporting the feasibility of this strategy for closed-loop
control.

For a ground-based mobile robot, the entire viewing angle
may not be needed to generate depth maps sufficient for
navigation. In the case of the corridor sequence, only the
peripheral view area need be examined to avoid obstacles
around the robot. Consideration of both the robot’s physical
height, and constraints on its motion maybe exploited to
improve the speed and accuracy (through higher resolution
images) of the depth maps generated.

These results suggest the Nelson and Aloimonos de-
rotation algorithm is performing well over real-world images.
Both sequences depict significant rotations, yet no ill-effects
of this appear evident in the depth maps obtained. While
a thorough examination of the algorithm’s accuracy over
real-image sequences is still needed, it is evident from these
experiments, that the algorithm provides sufficient accuracy
to facilitate the real-time recovery of both the direction of
ego-motion, and complete 3D relative depth maps.

IV. CONCLUSION

In this paper, we have presented a strategy for generating
3D relative depth maps from optical flow, in real-time. In
so doing, we have demonstrated for the first time to our
knowledge, the use of the Nelson and Aloimonos de-rotation
algorithm in real-time, over real images, depicting real-world
environments. Results from simulated full general motion
of a sphere, and from real-world experiments suggest this
strategy may be a useful base for many navigational sub-
systems. In addition, these results further support theoretical
arguments in favour of a spherical projection when attempt-
ing to infer scene structure and self-motion from optical flow.
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