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Abstract— This paper presents a vision-based approach for
mobile robot localization. The environmental model is topolog-
ical. The new approach uses a constellation of different types
of affine covariant regions to characterize a place. This type
of representation permits a reliable and distinctive environ-
ment modeling. The performance of the proposed approach is
evaluated using a database of panoramic images from different
rooms. Additionally, we compare different combinations of com-
plementary feature region detectors to find the one that achieves
the best results. Our experimental results show promising
results for this new localization method. Additionally, similarly

to what happens with single detectors, different combinations
exhibit different strengths and weaknesses depending on the
situation, suggesting that a context-aware method to combine
the different detectors would improve the localization results.

Index Terms— Affine Regions Detectors, Harris Affine, Hes-
sian Affine, MSER, SIFT, GLOH, Topological Localization

I. INTRODUCTION

Finding an efficient solution to the robot localization

problem will have a tremendous impact on the manner in

which robots are integrated into our daily lives. Most tasks

for which robots are well suited demand a high degree of

robustness in their localizing capabilities before they are

actually applied in real-life scenarios (e.g., assistive tasks).

Since localization is a fundamental problem in mobile

robotics, many methods have been developed and discussed

in the literature. These approaches can be broadly classified

into three major types: metric, topological and hybrid. Metric

approaches ([1], [2], [3]) are useful when it is necessary for

the robot to know its location accurately in terms of metric

coordinates (i.e. Cartesian coordinates). However, the state

of the robot can also be represented in a more qualitative

manner, by using a topological map (i.e. adjacency graph

representation) ([4], [5], [6]). Because the odometry does

not provide enough and complete data in order to localize a

mobile autonomous robot, laser range finders and/or vision
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sensors are usually used to provide richer scene information.

Furthermore, vision units are cheaper, smaller and more

practical than large expensive laser scanners. Therefore, in

this work, we propose a topological vision-based localization

approach.

In recent years, many appearance-based localization meth-

ods have been proposed [7], [8], [9]. SIFT (Scale Invariant

Feature Transform) features [9] have been widely used for

robot localization. The SIFT approach detects and extracts

feature region descriptors that are invariant to illumination

changes, image noise, rotation and scaling. Se et al. in

[9] used SIFT scale and orientation constraints so as to

match stereo images; least-square procedure was used to

obtain better localization results. The model designed by

Andreasson et al. [10] combines SIFT algorithm for image

matching and Monte-Carlo localization; their approach takes

the properties of panoramic images into consideration. The

work by [11] uses visual landmarks (SIFT features) and

geometrical constraints to perform localization.

Another interesting subset of invariant features are the

affine covariant regions which can be correctly detected in a

wide range of acquisition conditions [12]. Therefore, Silpa-

Anan and Hartley in [13] construct an image map based on

Harris Affine feature Regions with SIFT descriptors that is

later used for robot localization.

The work proposed by Tapus in [5] is closely related to this

work. Tapus et al. defined fingerprints of places as generic

descriptors of environment locations. Fingerprints of places

are circular lists of features and they are represented as a

sequence of characters where each character is an instance of

a specific feature type. The authors used a multi-perceptional

system and global low-level features (i.e., vertical edges,

color blobs, and corners) are employed for localization.

Nonetheless, our current approach has significant differences

from their methodology.

Our novel localization approach uses only panoramic

visual information. The signature of a location consists of a

constellation of feature regions extracted from a panoramic

image at a specific location. We decided to use combinations

of the following three feature region detectors: the MSER

(Maximally Stable Extremal Regions)[14], the Harris-Affine

[15], and the Hessian-Affine [12], which have shown to

perform better when compared to other region detectors.

When a new signature is acquired, it is compared to the

stored panoramas from the a priori map. The panorama with

the highest number of matches is selected as the correspon-

dent. To improve the results and discard false matches, the

essential matrix is computed and the outliers filtered. Finally,
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the panorama with the highest number of inliers is selected

as the best match.

In our approach images are acquired using a rotating

conventional perspective camera. When a set of images

covering the 360 ◦ is acquired, they are projected to cylin-

drical coordinates and the feature regions are extracted and

described. The descriptors constellation is next constructed

automatically.

Hence, by using feature regions to construct the signature

of a location, our methodology is much more robust to

occlusions and partial changes in the image than the ap-

proaches using global descriptors. This robustness is obtained

because many individual regions are used for every signature

of a location and, thus, if some of them disappear the

constellation can still be recognized.

This paper is organized as follows. Section II briefly

describes the different affine covariant region detectors and

descriptors that we used in our work. Section III presents

the localization procedure in detail. Experimental results

obtained with our mobile robot equipped with a Sony DFW-

VL500 camera mounted on a Directed Perception pan tilt

unit are presented in Section IV. Finally, Section V contains

a discussion of the proposed approach and future research

directions.

II. FEATURE REGIONS AND DESCRIPTORS

An essential part of our approach is the extraction of

discriminative information from a panoramic image so it

can be recognized later under different viewing conditions.

This information is extracted using affine covariant region

detectors. These detectors find regions in the image that can

be identified even under severe changes in the point of view,

illumination, and/or noise.

Recently Mikolajczyk et al. [12] reviewed the state of the

art of affine covariant region detectors individually. In this

review they concluded that using several region detectors at

the same time could increase the number of matches and

thus improve the results. Hence, in our work, we have used

all the combinations of the following three affine covariant

region detectors: (1) Harris-Affine, (2) Hessian-Affine, and

(3) MSER (Maximally Stable Extremal Regions), so as to

increase the number of detected features and thus of potential

matches. Examples of detected regions for the three region

detectors can be seen in Fig. 1. These three region detectors

have a good repeatability rate, a reasonable computational

cost and they are briefly detailed below.

1) The Harris-Affine detector is an improvement of the

widely used Harris corner detector. It first detects

Harris corners in the scale-space with automatic scale

selection using the approach proposed by Lindeberg in

[15], and then estimates an elliptical affine covariant

region around the detected Harris corners. The Harris

corner detector finds corners in the image using the

description of the gradient distribution in a local neigh-

bourhood provided by the second moment matrix:

M =

[

I2

x(x, σ) IxIy(x, σ)
IxIy(x, σ) I2

y (x, σ)

]

, (1)

where I(x, σ) is the derivative at position x of the

image smoothed with a Gaussian kernel of scale σ.

From this matrix, the cornerness of a point can be

computed using the following equation:

R = Det(M) − kTr(M)2, (2)

where k is a parameter usually set to 0.4. Local

maxima of this function is found across the scales, and

the approach proposed by Lindeberg is used to select

the characteristic scales.

Next, the parameters of an elliptical region are esti-

mated minimizing the difference between the eigenval-

ues of the second order moment matrix of the selected

region. This iterative procedure finds an isotropic re-

gion, which is covariant under affine transformations.

The isotropy of the region is measured using the

eigenvalue ratio of the second moment matrix:

Q =
λmin(µ)

λmax(µ)
(3)

where Q varies from 1 for a perfect isotropic structure

to 0, and λmin(µ) and λmax(µ) are the two eigenval-

ues of the second moment matrix of the selected region

at the appropriate scale. For a detailed description of

this algorithm, the interested reader is referred to [16].

2) The Hessian-Affine detector is similar to the Harris-

Affine, but the detected regions are blobs instead of

corners. The base points are detected in scale-space as

the local maxima of the determinant of the Hessian

matrix:

H =

[

Ixx(x, σ) Ixy(x, σ)
Ixy(x, σ) Iyy(x, σ)

]

, (4)

where Ixx is the second derivative at position x of the

image smoothed with a Gaussian kernel of scale σ. The

remainder of the procedure is the same as the Harris-

Affine: base points are selected at their characteristic

scales with the method by Lindeberg and the affine

shape of the region if found.

3) The Maximally Stable Extremal Regions (MSER) de-

tector proposed by Matas et al. [14] detects connected

components where the intensity of the pixels is several

levels higher or lower than the intensity of all the

neighboring pixels of the region. Regions selected with

this procedure may have an irregular shape, so the

detected regions are approximated by an ellipse.

Because affine covariant regions must be compared, a

common representation is necessary. Therefore all the re-

gions detected with any method are normalized by mapping

the detected elliptical area to a circle of a certain size.

Once the affine covariant regions are detected and nor-

malized, to reduce even more the effects caused by changes

in the viewing conditions, these regions are characterized

using a feature region descriptor. In our work, we have used

Scale Invariant Feature Transform (SIFT) [17] and Gradient

Location-Orientation Histogram (GLOH) [18]. These two

descriptors were found to be the best in a comparison of
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Fig. 1. Example of regions for the three affine covariant region detectors, from left to right: Harris-Affine, Hessian-Affine and MSER.

various state of the art region descriptors [18]. The SIFT

descriptor computes a 128 dimensional descriptor vector with

the gradient orientations of a detected region. In short, to

construct the descriptor vector the SIFT procedure divides

the region in 16 rectangular sub-regions and then, for ev-

ery sub-region, it builds a histogram of 8 bins with the

gradient orientations weighted with the gradient magnitude

to suppress the flat areas with unstable orientations. The

descriptor vector is obtained by concatenating the histograms

for every sub-region. The GLOH descriptor is similar to

SIFT, with two main differences: the sub-regions are defined

in a log-polar way, and the resulting descriptor vector has

272 dimensions but it is later reduced to 128 with a PCA.

These two descriptors are based on the same principle

but with slightly different approaches. As they have no

complementary properties, our objective in this comparison

is to determine which one achieves the best performance.

Therefore we have not used them at the same time.

III. APPEARANCE-BASED LOCALIZATION

The topological localization schema we propose consists

in a map represented as a graph where nodes are places

visited by the robot, and edges stand for the accessibility

information between them. Each node of the graph has an

associated signature, which, in our case, is a constellation of

affine covariant regions characterized with a feature descrip-

tor.

When a novel panoramic image is acquired, a new constel-

lation of features is extracted with the methods described in

the previous section, and it is compared with those stored

in the map. Finally, the most similar is selected as the

corresponding one. The procedure is depicted in Fig. 2. In

order to find correspondences between the feature regions of

different views, a matching stage is necessary. In this stage

each descriptor from the novel constellation is compared

to all the descriptors of the other constellation using the

Euclidean distance, and the nearest neighbor is selected as

the corresponding one. To reject false matches, the distance

of the first and the second nearest neighbor are compared,

and if they are too similar the match is discarded. The

threshold value used to reject false matches is the one

proposed by Lowe in [17]:

NN2

NN1

> 0.8, (5)

where NN1 is the distance to the first nearest neighbor (the

selected as match) and NN2 is the distance to the second

nearest neighbor. Lowe found in his work that this distance

ratio eliminated 90% of false matches while removing only

5% of correct matches.

The essential matrix [19] is computed using these matches

to enforce the geometrical constraints that relate the two

views and reject the false correspondences that may have

passed the previous stage.

The computation of this matrix is a model fitting process

that gives as output both the model itself (the essential

matrix) and a subset of correspondeces that agree with

the computed model. The bigger the inliers subset, the

more similar the novel constellation and the map node. The

method used to compute the essential matrix from the found

correspondences is the 8-point algorithm with the RANdom

SAmple Consensus or RANSAC to reject false matches.

The matchings are classified as inliers and outliers de-

pending on the distance of the points to the epipolar sinusoid

described by the essential matrix. As well as in conventional

cameras, in cylindrical coordinates the essential matrix ver-

ifies:

p⊤
0

Ep1 = 0, (6)

where p0 and p1 are projections of a scene point in the

panoramic images, and E is the essential matrix relating

the two panoramas. However, contrarily to the case of

conventional cameras, the intersection of the projection plane

with a cylindrical surface does not define a line but an ellipse,

and once the cylinder is unrolled, it appears as a sinusoid.

The equation of this sinusoid is:

z1(φ) = −

nxcos(φ) + nysin(φ)

nz

, (7)

where z1(φ) is the height corresponding to the angle φ in

the panorama, and n1 = [nx, ny, nz] is the epipolar plane

normal, obtained with the following expression,

n1 = p⊤
0

E. (8)

An advantage of the proposed method is that, even though in

this work it is conceived as a topologic localization method,

it implicitly recovers the essential matrix between the actual

view and the reference view. In [20] the authors perform

different experiments to assess the accuracy of the computed

essential matrix against ground truth data. This essential
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Fig. 2. Steps for panorama-based localization.

matrices can be used to compute the metric localization in

reference to the map node using for example the technique

proposed in [21]. This information can be then used for

metric local navigation with no extra computational cost.

IV. EXPERIMENTAL RESULTS

The objective of the present work is twofold: In the first

place we want to validate the proposed method for global

localization and, in second place, we want to experimentally

determine if using at the same time different region detectors

improves significantly the localization results. Therefore, we

acquired multiple panoramas of different rooms and selected

some of them as map nodes. Then we used the remaining

panoramas to perform a localization test as explained in

Section III. Although successive images acquired by the

robot while moving in the room could be used to incremen-

tally refine the localization, in this experiment we have only

considered the worst case scenario, where only one image

per room is available to localize the robot.

The test-bed data used in this work consists in 18 se-

quences of panoramas from rooms in various buildings1.

Each sequence consists of several panoramas acquired every

20 cm following a straight line predefined path. This type

of sequences are useful to check the maximum distance

at which a correct localization can be performed. In order

to make the data set as general as possible, rooms with

a wide range of characteristics have been selected. For

example some sequences correspond to long and narrow

corridors, while others have been taken in big hallways, large

laboratories with repetitive patterns or individual offices.

The panoramas have been constructed by stitching together

multiple views taken from a fixed optical center with a

Directed Perception PTU-46-70 pan-tilt unit and a Sony

DFW-VL500 camera. The camera and pan-tilt unit can be

seen in Fig. 3.

The region detectors and descriptors provided by the

authors of [12] at http://www.robots.ox.ac.uk/

˜vgg/research/affine/ were used to extract the

affine-covariant regions from the images. To construct the

panoramas, the images acquired with the camera are pro-

jected to cylindrical coordinates, and then the displacement

between each pair of images is computed. To compute the

displacements, the same feature points used for localiza-

tion are used and, if not enough points are detected, a

correlation-based approach is employed. This approach finds

the displacement where the highest correlation between the

edges extracted from the images is achieved. The correlation-

based method works well even in the case of very low

1The data-set can be downloaded from http://www.iiia.csic.

es/˜aramisa.

Fig. 3. The camera and pan-tilt unit used to take the images.

TABLE I

AVERAGE PERCENTAGE OF CORRECTLY LOCALIZED PANORAMAS

ACROSS ALL SEQUENCES. FOR CONVENIENCE WE HAVE LABELED M:

MSER, HA: HARRIS-AFFINE, HE: HESSIAN-AFFINE, S: SIFT, G:

GLOH.

Combination Correct Localization

M+G 58.95%

M+S 60.42%

HA+G 68.76%

HA+S 73.55%

HE+G 62.11%

HE+S 58.04%

M+HE+G 59.51%

M+HE+S 57.44%

HA+HE+G 67.18%

HA+HE+S 64.24%

M+HA+G 69.05%

M+HA+S 64.18%

M+HA+HE+G 64.93%

M+HA+HE+S 62.1%

texture, but is more computationally expensive than using

the feature matches. Although the panoramic images were

constructed for validation purposes, the constellations of

feature region descriptors were not extracted from them.

Instead, the regions from the original images projected to

cylindrical coordinates where used. The reason for this is

to avoid false regions introduced by possible new artifacts

created during the stitching process. The panoramas built

with the stitching method where all correctly constructed,

with only some small vertical misalignments, even in the

case of changes in lightning, reflections, multiple instances of

objects or lack of texture. The sequences have been acquired

in uncontrolled environments, with nuisances such as severe

illumination changes, repetitive patterns and areas without

texture in addition to the changes in point of view.

In order to fulfill our two objectives, we tested all possible

combinations of the three selected region detectors with two

different descriptors. As can be seen in the Table I, which

shows the results of the localization test for every com-

bination, most combinations have an average performance

greater than 60% of correct localization across all sequences.

The combinations that achieved the best performance in the

localization test where Harris-Affine with SIFT and with
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TABLE II

AVERAGE PERCENTAGE OF CORRECTLY LOCALIZED PANORAMAS FOR

SOME INTERESTING SEQUENCES. THE NAMING CONVENTION IS THE

SAME AS IN TABLE I.

Combination Lab Corridor1 Corridor2 Conf. Room

M+G 80% 21% 15% 100%

M+S 90% 11% 30% 100%

HA+G 60% 53% 25% 100%

HA+S 30% 68% 25% 100%

HE+G 30% 84% 15% 85%

HE+S 20% 79% 10% 62%

M+HE+G 30% 21% 20% 77%

M+HE+S 10% 16% 30% 54%

HA+HE+G 50% 89% 50% 69%

HA+HE+S 40% 79% 55% 69%

M+HA+G 20% 21% 40% 100%

M+HA+S 70% 26% 45% 69%

M+HA+HE+G 40% 26% 35% 85%

M+HA+HE+S 50% 32% 35% 77%

GLOH, MSER and Harris-Affine described using GLOH,

and Harris-Affine and Hessian-Affine described with GLOH.

These methods correctly classify more than a 67% of the test

panoramas.

The different region detectors achieved varying results

depending on the characteristics of each room. For example

those methods that include Hessian-Affine but not MSER

performed particularly well in narrow and long corridors. On

the other hand, in scenes with numerous repetitive patterns,

MSER outperformed the other methods. Table II presents

results for some particularly interesting sequences. The first

sequence (column ”Lab” of Table II) is from the IIIA

laboratory, which has a considerable number of repetitive

textures due to the barcodes of some artificial landmarks.

As can be seen, in this sequence the best performance

is achieved by MSER. Another important factor for the

superiority of MSER in this sequence is that it is not

very long, just about two meters. The second sequence

(”Corridor 1”) is from a long and narrow corridor of the

IIIA. In this sequence the best performance is achieved by

the combination of Hessian-Affine and Harris-Affine with

the GLOH descriptor, and closely followed by the Hessian-

Affine alone. The third sequence (”Corridor 2”) is from

another corridor, but in this case one of the walls is made out

of glass and therefore the exterior can be seen. However, in

this sequence bright sunlight has burned the images and only

some texture remains. As can be seen in the table, due to the

lack of texture, the results for individual methods are very

low, but the combinations of different methods (especially

Harris-Affine and Hessian-Affine) increase the performance

quite a bit.

Finally, the fourth sequence (”Conf. Room”) is from the

conference room of the IIIA. In this room individual methods

had a very good performance, better than the combinations.

The conference room has many repetitive textures and a

considerable amount of texture, and therefore combinations

of different methods have a higher outlier ratio than the cases

of just one detector. Another interesting result obtained in

this work is the maximum distance at whitch a reliable recog-

nition is possible. This information is useful, for example, to

avoid building a too sparse or too dense topological map.

As can be seen in Fig. 4, up to approximately 2.5 meters

away from the original point the probability of recognizing a

panorama is quite high for all the combinations of methods

that achieved the best performance (i.e. Harris-Affine with

both GLOH and SIFT; Harris-Affine, Hessian-Affine and

GLOH; and MSER, Harris-Affine and GLOH). To compare

the results of the chosen detectors and descriptors to another

state-of-the-art feature region detector, we performed the

same experiments using the method proposed by Lowe in

[17]. This method uses as initial points the local maxima

of the Differences of Gaussians (DoG), defines a circular

region around these initial points, and then SIFT is used

to describe the selected regions. For our tests we used the

demo program provided by Lowe at http://www.cs.

ubc.ca/˜lowe/keypoints/.

On average, using points detected with the DoG and

SIFT, the correct location was selected 51.87% of the times.

However, the results were pretty irregular depending on the

room. For example, the results from the corridor 1 sequence

had only 5% of the panoramas correctly localized, while

the conference room of the research center achieved 85%

of correct classifications. In most of the sequences, all the

affine-covariant region detectors outperformed the results of

this detector.

In terms of computational complexity, the current im-

plementation of the method implies comparing all the de-

scriptors from all the panoramas with the descriptors of the

new panorama and performing a RANSAC step for every

panorama in the database. In order to use this localiza-

tion method in a real robot, techniques to alleviate this

Fig. 4. Percentage of correct localizations against distance for the four
better combinations according to Table I. The notation is the same as in the
Table.
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computational load should be used. Global descriptors to

reject unlikely panoramas could greately reduce the number

of nodes from the map that must be considered. Another

option could be using a K-D tree to accelerate the matching

procedure in a similar way as it is done in [17].

V. CONCLUSIONS AND FUTURE WORK

In this work we proposed and evaluated a signature to

characterize places that can be used for global localization.

This signature consists of a constellation of feature region

descriptors, computed from affine-covariant regions extracted

from a panoramic image acquired in the place we want

to add to the map. Later, these signatures are compared

to the constellation extracted from a new panoramic image

using geometric constraints, and the most similar signature

is selected as the current location. To compare the different

signatures, the 8-point algorithm with RANSAC to reject

false matches is used.

Regarding the validation of the global localization schema,

the results obtained show that by using the presented method,

a room can be reliably recognized from a distance between

two or three meters away from the point where the initial

panorama was acquired. The highest score was achieved

by the combination of Harris-Affine and SIFT, with which

approximately 74% of the localization tests were successful.

We have also compared the results of the proposed affine-

covariant region detectors with the scale-invariant region

detector proposed by Lowe in [17], widely used in robot

navigation, and showed that the affine-covariant regions

outperformed Lowe’s scale-invariant method.

Different region detectors exhibit different strengths and

weaknesses. No single detector had a perfect performance

in every situation: Harris-Affine worked well almost every-

where, but in rooms with many repetitive patterns the per-

formance decreased and MSER achieved a higher percentage

of success. In narrow and long corridors Hessian-Affine out-

performed the other methods. Additionally, tests performed

combining different region detectors show that simply using

at the same time different types of features does not improve

the results directly; nor in the case of different rooms, neither

in the maximum distance. However, more advanced methods

to combine types of features, such as voting schemas, have

shown improvements in similar schemes [22], and perhaps

it could also improve our approach.

An interesting line of continuation for this research would

be investigating context-aware methods to combine different

types of feature regions empowering the strengths of each

type while lowering its weaknesses. Another line of contin-

uation that could significantly ameliorate the results would

be improving the descriptor matching strategy used, which

was not the focus of this work.
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