
  

  

Abstract�With the increasing popularity of actuators 
involving smart materials like piezoelectric, control of such 
materials becomes important. The existence of the inherent 
hysteretic behavior hinders the tracking accuracy of the 
actuators. To make matters worse, the hysteretic behavior 
changes with rate. One of the suggested ways is to have a 
feedforward controller to linearize the relationship between the 
input and output. Thus, the hysteretic behavior of the actuator 
must be first modeled by sensing the relationship between the 
input voltage and output displacement. Unfortunately, the 
hysteretic behavior is dependent on individual actuator and 
also environmental conditions like temperature. In this fast 
moving world, time is money and it is very costly to model the 
hysteresis regularly. In addition, the hysteretic behavior of the 
actuators also changes with age. Base on the studies done on 
the phenomena hysteretic behavior with rate, this paper 
proposes an adaptive rate-dependent feedforward controller 
with Prandtl-Ishlinskii (PI) hysteresis operators for 
piezoelectric actuators. This adaptive controller is achieved by 
adapting the coefficients to manipulate the weights of the play 
operators. Actual experiments are conducted to demonstrate 
the effectiveness of the adaptive controller. 

I. INTRODUCTION 
YSTERESIS is  a common phenomenon in applications 

involving issues like magnetic fields and smart 
materials. One common example of smart materials is 
piezoelectric actuators. Piezoelectric actuators are playing an 
ever increasing role in positioning technology. Their 
applications include cell manipulation, scanning tunneling 
microscopy and diamond turning machines. One common 
example of piezoelectric ceramic is PZT ceramic. PZT is a 
solid solution of PbZrO3 and PbTiO3 and the general 
formula is Pb(ZryTi1-y)O3. PZT has the pervoskite ABO3 
structure (Fig. 1). 

When a voltage is applied across the ceramic, the atom at 
the centre (Zr or Ti) will displace (Fig. 2). A pole is induced 
and the net polarization in the PZT ceramic changes. This 
results in the deformation of the material. The usage of 
deformation as actuators is a solution for precise actuation as 
no mechanical backlash is involved. A reverse observation 
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will occur when the ceramic is loaded. This is why 
piezoelectric materials are able to function as both actuators 
and sensors. 

 
 

Fig. 1.  A Crystal Unit Cell of PZT Ceramic 
 
 
 
 
 
 
 
 

Fig. 2.  Polarization.of a PZT Ceramic 
 
However, due to the nature of polarization, such materials 

exhibits non-linear multi-path hysteresis that makes control 
challenging, especially if precise tracking is required. 

Mathematical hysteresis models are commonly 
mathematically defined as rate-independent as velocity is 
not one of the inputs. However, the phenomena hysteretic 
behavior of most smart materials changes with rate as 
mentioned in Landauer et al. [1] and Smith et al. [2]. This is 
due to the nature of the polarization. Thus, a rate-dependent 
hysteresis model is used. 

There are a few proposed methods of controllers to 
control piezoelectric actuators. One popular method is the 
usage of a phenomena inverse feedforward controller. As 
the studies on the hysteretic behavior of such materials are 
not that well studied at the atom level yet, phenomenological 
modeling of the hysteretic behavior is commonly used. The 
inverse model is then used as a feedforward controller to 
predict and linearize the relationship between the input and 
output (Fig. 3). 

Song et al. [3] proposed using a feedforward model in 
their controller to improve the performance of the control 
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system. Choi et al. [4] also demonstrated that the 
performance of their PID controller was improved with a 
feedback linearization loop. 
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Fig. 3.  Linerization of Hysteretic Plant using Inverse Feedforward 
Controller 

 
There are several mathematical models to model the 

phenomena hysteretic behavior. Among the simplest way 
utilize two polynomials. Two sets of polynomial are used to 
model the forward and backward paths. This method will 
not work when the turning point is changed as it is not 
continuous. Sun et al. [5] proposed a new mathematical 
model by modifying the polynomials. 

Among other mathematical hysteresis models, Preisach 
model [6-8] is the more commonly used model. Maxwell 
slip model [9] and hysteron model [10] are some other 
options available. 

Prandtl-Ishlinskii (PI) hysteresis model is used in this 
paper. A major advantage of PI operators is the availability 
of an analytical inverse model. This is ideal for real-time 
situation. The inverse model is then used as the feedforward 
controller to linearize the hysteretic behavior.  

The hysteretic behavior of the piezoelectric actuators 
changes with environment conditions like temperature. In 
this fast moving world, time is money and it is costly to 
regularly model each actuator before usage. In addition, the 
hysteretic behaviors of these actuators change as the 
actuators age. A couple of adaptive controllers have been 
proposed [10-11]. However, they are unable to track non-
periodic motions. 

Thus, this paper proposed an adaptive rate-dependent 
hysteresis feedforward controller for piezoelectric actuators. 
The adaptive controller will account for the dynamic 
environmental conditions. In addition, this adaptive 
controller introduces no phase difference and is suitable for 
tracking purpose. 

A brief introduction of the rate-dependent phenomena 
Prandtl-Ishlinskii hysteresis model is given in the following 
section. A description of the adaptive controller is given in 
section III, followed by results, discussions and conclusion. 

II. HYSTERESIS MATHEMATICAL MODEL 
This section briefly describes the rate-dependent Prandtl-

Ishlinskii hysteresis model. Supplementary details of the 

Prandtl-Ishlinskii hysteresis operators can be found in 
Kuhnen et al. [12-14] and Ang et al. [15].  

A. Prandtl-Ishlinskii (PI) Play Operator 
The play operator in the PI hysteresis model, commonly 

used to model the backlash between gears, is defined by 
)](,[)( 0 tyxHty r=  

        { })](,)(min[,)(max Ttyrtxrtx −+−=  (1) 
where x is the control input, y is the actuator response, r is 

the control input threshold value or the magnitude of the 
backlash, and T is the sampling period. 

Initial Condition of (1) is given by 
     { }],)0(min[,)0(max)0( 0yrxrxy +−=  (2) 
where y0 is a real number which is usually initialized to 0. 

To change the gradient, a weight value wh is multiplied to 
the PI operator Hr . By summing a number of such operators 
with different threshold values and weights, a hysteresis 
model is obtained: 

[ ] )(,)( 0 tyxHwty r
T
h

rrr
=  (3) 

where weight vector T
hwr = [wh0 � whn] and [ ] )(, 0 tyxH r

rr = 
[Hr0[x, y00](t) � Hrn[x, y0n](t)]T with the threshold vector 
rr = [r0 � rn]T where 0 = r0 < � < rn, and the initial state 
vector 0yr = [y00 � y0n]T.  

Unlike the Preisach model, which behaves like a flight of 
stairs, the PI operator is a better mathematical model as it is 
a first order gradient and it is also more mathematically 
simpler. To account for the one sided characteristics of 
piezoelectric actuators, Ang et al. [15] proposed setting the 
value of rn to be half of the maximum control input. 

B. Modified Prandtl-Ishlinskii 
The nature of PI operator is symmetrical about the center 

point of the loop, but this is not really true in the phenomena 
observation. To overcome this restriction, Ang et al. [15] 
and Kuhnen et al. [12] proposed using a saturation operator: 

⎩
⎨
⎧

=
>−

=
0                        ),(
0   },0,)(max{

)]([
dty
ddty

tySd  

[ ] )()( tySwtz d
T
s

rr
=  (4) 

The general idea of this saturation operator is to bend the 
graph and make it not symmetrical. In this paper, the 
weights of the saturation operator are kept as a constant and 
will not change in the adapting mechanism. 

C. Rate-Dependent Phenomenological Model 
The phenomena response of the piezoelectric actuator is 

dependent on the velocity. Thus, experiments are carried out 
piezoelectric actuators to obtain a rate-dependent 
phenomena model. The actuator is subjected to different 
saw-tooth (for constant rate) rate and the hysteresis weights 
of the play operators are plotted against the control input 
velocity rate. Experiments are carried out and the result is 
plotted in Fig. 4. Up to a certain velocity (this limit depends 
on the length of the piezoelectric ceramic), weights of the 
play operators of the piezoelectric actuator can be model 
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linearly to the velocity input with good approximation.  
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Fig. 4.  Weights of the hysteresis play operators against velocity obtained 

from piezoelectric actuator P885.50 from Physik Instrumente 
 
Thus, base on the phenomena hysteretic behavior with 

rate, the equation to approximately relate the weights with 
rate is presented as follows: 

),())(( tzbatzw iihi && += i = 0 � n (5) 
where bi is the slope of the best-fit line through the ai�s 

and the referenced slope ai is the intercept of the best-fit 
line. 

Thus the rate-dependent PI model becomes: 
[ ] )(,)( tzxtz &Γ=  [ ][ ] )(,)( 0 tyxHzwSw r

T
hd

T
s

rr
&

rrr
=  (6) 

D. Inverse Model 
Kuhnen [12] showed that the inverse PI model can be 

expressed by PI play operators too. Thus, the inverse of the 
rate-dependent PI model can also be expressed as: 

[ ] [ ][ ] )(',')(')( 0''
1 tyzSwHzwtz d

T
sr

T
h

rrrr
&

r
=Γ−  (7) 

The inverse of the hysteresis model is basically a reflection 
along the 45o line. The inverse model parameters can be 
calculated by: 
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III. ADAPTIVE FEEDFORWARD CONTROLLER 
The adaptive feedforward controller is described in this 

section. The adaptive feedforward controller is first given. 
The adapting mechanism, which is recursive least square, is 

next implemented with a slight modification. This section 
ends with an algorithm of the adapting mechanism for ease 
in implementation. 

A. Adaptive Inverse Hysteretic Controller 
Based on the phenomena hysteretic behavior in section II, 

it is safe to assume that the hysteretic behavior of a 
piezoelectric actuator can modeled well using (6). 
Substituting (5) into (6), 

[ ] [ ][ ] )(,..)(,.)( 00 tyxHbtzyxHaSwtz rrd
T
s

rrr
&

rrrrr
+=  (9) 

Thus, given the desired displacement, the required voltage 
can be obtained via: 

[ ])(')( ' tzSwty dd
T
sd

rr
=  (10) 

[ ] )('),())((')( 0' tytyHtzwtx dr
T
h

rr
&

r
=  (11) 

where zd(t) is the desired displacement, yd(t) is the desired 
displacement after passing through the inverse saturation 
operator and x(t) is the estimated required voltage. 
 Given the input voltage, the actual output displacement 
from the hysteretic actuator is given as: 

[ ][ ] )(,)()( 0 tyxHzwSwtz r
T
hd

T
sa p

rr
&

rrr
=  (12) 

where za(t) is the actual displacement, T
hp

w
r

are the actual 

weights of the play operators. The actual displacement of the 
actuator is also the measured displacement. Equation (12) 
can also be rewritten as: 
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The error of the model is obtained as: 

[ ] [ ]
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In this paper, to adapt the vectors a
r

 and b
r

, least square is 
performed with the cost function: 

∑
=

=
t

i
m ietV

0

2)]([
2
1)(  (15) 

Assuming the hysteretic behavior of a piezoelectric 
actuator can be modeled accurately using equation (6), the 
vectors a

r
 and b

r
 will adapt as close to the behavior of the 

plant as possible. In other words, 
0)(lim ≈

∞→
temt

 (16) 

aiit
aa ≈

∞→
lim and 

aiit
bb ≈

∞→
lim for i=1,�,n (17) 

With the adapted vectors a
r

 and b
r

 that can closely model 
the plant, )(zwT

h &
r

 can be obtained. Thus, the inverse )(' zw T
h &

r
 

can also be obtained using equation (8) and the desired-
actual error will be minimized. The signal flow diagram of 
the adaptive feedforward controller is given in Fig. 5. 
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Fig. 5.  Signal Flow Diagram of the Adaptive Feedforward Controller 

 

B. Adaptive Weight-Control Mechanism 
The input vector to the recursive least square (RLS) is: 

T
rrrrrr nn

HtzHHtzHHtzHtI ]).(,,...).(,,).(,.[ )(
1100

&&&
r

=  (18) 

where 
irH is [ ]0, yxH

ir . It is more important to adapt the ai 

values to the hysteretic behavior than bi. It can also be seen 
in Fig. 4 that the gradient of the first few weights are more 
significant. Thus, the terms in the input vector, )(tI

r
, is 

multiplied with the terms in a priority vector, [ca0,cb0,� 
can,cbn]T, to obtain:  
u(t)= T

rbnranrbra nn
HtzcHcHtzcHc ]).(,,...,).(,[

00 00 &&  (19) 

In this paper, cai is set to 1 and cbi is set to 0.0008 if the unit 
of )(tz&  is in μm/s.  
The weight vector to be adapted is defined as:  
ŵ (t) = [a0, b0, a1, b1, � , an, bn]T

 (20) 

The remaining derivation steps to obtain the algorithm are 
very similar to the derivation of adaptive filters using RLS 
and can be found in [15]. Other available adaptive laws 
found in adaptive control textbooks may be implemented, 
with some modification if needed. 

C. Algorithm 
 Initialization of the weights is first performed as shown 
in (21). Note that the first weight must again be set to be a 
positive non-zero number. The matrix P is also initialized. 
After that, for each sample loop, the parameters are 
computed as described in (22). 
 
Initialization: 
ŵ(0) =(5, 0 �)T 
P(0) =δ-1I (21) 
where δ is a positive real number called the regularization 
parameter and is set to be a small positive constant for high 
signal to noise ratio (SNR) and set to be a large positive 
constant for low SNR. 

For each instant of time, n = 1, 2, �, use 
π(n) = P(n-1) u(n), 
μ(n) = π(n) / { λ + uH(n)π (n), 
ŵ(n+1) = ŵ'(n) + μ(n)u(n)em(n), 
P(n) = λ-1P(n-1) - λ-1μ(n) uH(n)P(n-1). (22) 
where λ is the forgetting factor which is a positive constant 
close to, but less than 1. When λ is set to 1, it implies infinite 
memory. Thus, set λ to be near unity if you want a controller 
that will remember most of the historical result, but it means 
it will adapt slower to a changing plant. 

IV. EXPERIMENTAL RESULTS 
In this section, a brief description of the experiment setup 

is first given, followed by the results. The behavior of the 
piezoelectric actuator P885.90 from Physik Instrumente is 
used to demonstrate the adaptive rate-dependent 
feedforward controller. 

A. Experiment Setup 
As seen from Fig. 6, a 16-bit D/A card is used to 

generate the necessary voltage, which is then passed through 
the amplifier (the gain is approximately 10). Given the 
voltage, the actuator will deform and the interferometer will 
detect the displacement and convert it to analog voltage 
signal. Using a 16-bit A/D card, the PC reads in the 
displacement. 
 
 
 
 
 
 
 
 

 
Fig. 6.  Experimental Architecture 
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QNX Neutrino is used. The sampling rate of the DAQ card 
is set at 10 kHz. A timer interrupt is set at an interval of 0.5 
ms (2 kHz) to average the data collected and update the 
parameters. The averaging acts a form of filtering. 

B. Experimental Results 
Experiments are conducted to demonstrate the 

performance of the adaptive feedforward controller. The 
objective of the actuator is to actuate according to a desired 
motion. In all the experiments conducted for this paper, the 
parameters of the actuator are treated as unknown. The first 
term of vector a is initialized as 5 whilst all the remaining 
terms in the vectors a and b are all initialized as 0. 

The first experiment is to actuate the actuator in a periodic 
sinusoidal motion. The rmse is found to be 0.1211μm 
between the time of 0.75s to 1s. The rmse will continue to 
drop if more adaptation time is permitted. The rmse from 
time 10s to 20s is 0.0584μm, which is near to the 
interferometer�s noise level. Using a sensor with lower noise 
and better resolution might be able to reduce the rmse. 
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Fig. 7.  Tracking result of a 12Hz Sinusoidal wave. 

 

 
In the first experiment, the desired motion is a periodic 

motion. However, the desired motions in many industrial 
applications are random and non-periodic. Thus, the 
adaptive feedforward controller was tested with a number of 
randomly created desired waveform motions. These 
waveforms are created by random values. These values are 
then passed through a low pass filter to smoothen out the 
points. Random numbers are used to ensure that the 
waveform is not periodic. This is where the rate-dependent 
phenomena play a role in the adaptive feedforward 

controller.  
Five different waves were randomly created. Fig. 8 shows 

how the weights converge while Fig. 9 shows the tracking 
performance of the adaptive feedforward controller for one 
of the waveforms. A section between time 5s and 8s is 
shown in Fig. 10. The result is summarized in Table II. A 
wide time span of 10s to 20s is used to calculate the result 
for better representation. The mean rmse of the 5 non-
periodic motions is found to be 0.0943μm with σ = 0.0159. 
The mean of the maximum errors is 0.3899 μm with σ = 
0.0291. 
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Fig. 8.  Convergence of the weights of the adapting mechanism. 
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Fig. 9.  Experimental results of a random non-periodic wave. The different 
non-periodic waves are created by passing random numbers through a low 

pass filter. 
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Fig. 10.  A Section of Fig. 9. between time 5s to 8s. 

TABLE I 
MEASURED PERFORMANCE OF THE ADAPTIVE RATE-DEPENDENT 

CONTROLLER IN TRACKING SINUSOIDAL WAVEFORMS. 

 4 Hz 8 Hz 12 Hz 

rmse (μm) 0.0638 0.0619 0.0584 

rmse / actuator�s 
stroke length 0.0028 0.0026 0.0027 

The rmse and max errors are the results taken from over a span from 10s to 
20s. 
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V. DISCUSSION 
Most controllers like PID controllers introduce phase 

difference. Phase difference comes with higher tracking 
error. The proposed adaptive hysteresis feedforward 
controller is suitable for tracking purpose as no phase 
difference is introduced. 

In this paper, the actuator is actuated in accordance to the 
non-periodic random waveform. Thus, there is no prior 
knowledge of the desired motion and the motion is non-
periodic. The purpose of choosing non-periodic waveform is 
to illustrate the rate-dependent ability of the adaptive 
feedforward control. As illustrated in the experiments, 
although the hysteretic plant (actuator) is treated as 
unknown, the adaptation speed of the feedforward controller 
is less than a second. The convergence speed is dependent 
on the waveform. A good learning waveform at the 
beginning will shorten the convergence time. Different 
adapting mechanism/law can be used too. In this paper, RLS 
is used as it is a simple and good algorithm with fast 
convergence time to implement. The author had also 
implemented least mean square (LMS) as the adapting 
mechanism. Although LMS is more robust to sudden 
changes, the steady state error is not as low and also the 
environmental conditions do not often change abruptly. 

However, there are two main limitations. The input 
signals must satisfy the persistent excitation condition. In 
addition, to obtain the inverse parameters, it is assumed that 
the gradient at all the points are positive. In other words, the 
sum of weights at any point is assumed to be positive. 
Negative gradients must be avoided at all times. The authors 
plan to modify [17] and implement in this controller. 

VI. CONCLUSION 
The hysteretic behavior of a piezoelectric actuator 

changes with environment conditions and age. Thus, an 
adaptive rate-dependent hysteresis feedforward controller 
for hysteretic plants is proposed and presented. This is 
achieved by adapting the coefficients that relate rate to the 

weights of the play operators to suit the environment. Actual 
implementation of the adaptive controller was carried out on 
a piezoelectric actuator. The rate-dependent property of the 
adaptive feedforward controller was illustrated with the 
tracking control ability of non-periodic random waveforms 
which most controllers are unable to perform. 
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TABLE II 
MEASURED PERFORMANCE OF THE ADAPTIVE RATE-DEPENDENT 
CONTROLLER IN TRACKING RANDOMLY CREATED WAVEFORMS. 

 
 
 

Adaptive Rate-dependent 
Controller 

rmse  ± σ  (μm) 0.0943 ± 0.0159 

rmse / peak-peak (%) 0.33 

max error ± σ  (μm) 0.3899 ± 0.0291 

max error / peak-peak  (%) 1.35 

The rmse and max errors are the mean results over a set of 5 different 
random non-periodic waveform experiments. The error is calculated from 
time = 10s to 20s. The waveforms are created by passing random numbers 
through a low-pass filter. The peak-peak is obtained as the difference 
between the maximum and minimum during this 10s interval of the random 
non-periodic waveforms. 
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