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Abstract— Central Pattern Generators (CPGs) are becoming
a popular model for the control of locomotion of legged
robots. Biological CPGs are neural networks responsible for the
generation of rhythmic movements, especially locomotion. In
robotics, a systematic way of designing such CPGs as artificial
neural networks or systems of coupled oscillators with sensory
feedback inclusion is still missing.

In this contribution, we present a way of designing CPGs
with coupled oscillators in which we can independently control
the ascending and descending phases of the oscillations (i.e. the
swing and stance phases of the limbs). Using insights from
dynamical system theory, we construct generic networks of
oscillators able to generate several gaits under simple parameter
changes. Then we introduce a systematic way of adding sensory
feedback from touch sensors in the CPG such that the controller
is strongly coupled with the mechanical system it controls.

Finally we control three different simulated robots (iCub,
Aibo and Ghostdog) using the same controller to show the
effectiveness of the approach. Our simulations prove the impor-
tance of independent control of swing and stance duration. The
strong mutual coupling between the CPG and the robot allows
for more robust locomotion, even under non precise parameters
and non-flat environment.

I. INTRODUCTION

The control of locomotion of legged robots is a great

challenge that has not yet been completely solved. Recently,

taking inspiration from the way nature solves the problem,

researchers have proposed the concept of Central Pattern

Generators (CPGs) to generate control policies for the loco-

motion of robots [1]–[5]. In biology, a CPG is a distributed

neural network, located in the spinal cord of vertebrates,

able to generate complex high dimensional signals for the

control of coordinated periodic movements [6]. These CPGs

are activated by simple tonic signals from higher part of

the brain and they are strongly coupled with the body they

control and the environment, via sensory feedback.

In robotics, these CPGs are often modeled as coupled

dynamical systems, mostly oscillators. The advantage of

using such controllers is their stability properties (limit cycle

behavior), where transient perturbations are rapidly forgotten.

Another advantage is that oscillators have intrinsic properties

of synchronization that allow strong coupling with the robot

and its environment. Moreover, using such systems for gen-

erating the control policies reduces the dimensionality of the

control problem, since only simple parameters as frequency,

This work was supported by the European Commission’s Cognition Unit,
project no. IST-2004-004370: RobotCub (L.R.) and by a grant from the
Swiss National Science Foundation (L.R. and A.I.).

School of Communication and Computer Science, Ecole Polytech-
nique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
ludovic.righetti@a3.epfl.ch, auke.ijspeert@epfl.ch

amplitude and coupling between the oscillators have to be

chosen to generate high dimensional coordinated policies.

Finally, since these methods are model free, they are well

adapted to the locomotion in unknown environments. This

approach has been applied for the control of both simulated

[4] and real biped robots [1], [3], snake and salamander

robots where one CPG was able to control both walking

and swimming [5] and quadruped robots [2] to cite a few

successful examples. However, a major drawback in the CPG

approach is the lack of design methodologies. Despite some

attempts to provide generic tools for building CPGs [7], [8],

most of the time they are tailor-made for specific applications

and very few design principles are available, especially for

the integration of feedback in such systems.

In a recent contribution [8], we presented a simple way

to independently control the duration of swing and stance

phases during locomotion (i.e. controlling the duration of the

ascending and descending phases of the oscillators), which

allowed also to control the shape of the control signal. We

used the theory of symmetric coupled cells networks [9]

to design a generic coupling architecture for our CPG and

showed how it could be applied to the control of a crawling

humanoid robot.

In this contribution, we continue our previous attempt to

provide design methodologies. We present a generic network

of coupled oscillators able to generate different gaits (walk,

trot, bound and pace) and we integrate sensory feedback in

the CPG in a systematic manner. Several other contributions

have proposed ways to integrate sensory feedback in CPGs,

most of them are based on the idea of using the sensory input

either to reset the phase of the oscillators when the feet touch

the ground [1], or by using the entrainment properties of

the oscillators [2]–[4]. Other feedback pathways have been

designed in [2], however these are specific to a particular

robot and oscillator model and it is not clear how to use

the same controller for other robots. The novelty of this

contribution compared to other works is threefold: first it

proposes generic networks of oscillators to generate gaits

independently of the chosen oscillators, second the oscillator

model is specifically designed for locomotion and allows for

independent control of swing and stance durations, third we

include sensory feedback by explicitly shaping the phase

space of the oscillators such that we can control precisely

the behavior of our system. A great advantage of such an

approach is that the resulting controller is simpler compared

to [2] and can easily be used to control very different robots.

We show the genericity of our approach by testing this CPG

on three different simulated quadruped robots (iCub, Aibo



and Ghostdog), using several gaits, on different terrains.

II. ASSUMPTIONS AND NECESSARY FEATURES FOR A

LOCOMOTION CONTROLLER

We first define a set of desirable features for our locomo-

tion controller and we make some assumptions on the form

of the controller, in order to constrain our design space.

A. Features

A controller for quadruped locomotion should be able

to generate several different gaits into a single controller

(via appropriate simple parameters change). Indeed it is

quite obvious that different gaits are suitable for different

speeds. At slow speeds, one would prefer statically stable

gaits such as a walk and at high speeds dynamically stable

gaits such as bound or gallop. From the control point of

view, the system should generate smooth control policies

with the possibility to modulate smoothly these policies in

amplitude and frequency by simple parameter change. We

would also like the system to be stable against perturbation

in order to allow integration of sensory feedback. Suitable

feedback pathways should make the locomotion more robust

in unknown environment. Finally the architecture of the

CPG should be simple and generic enough to be applied to

different kinds of robots and to allow integration of higher

controls (e.g. precise feet placement) or more stereotyped

reflexes (e.g. moving the foot higher when hitting an object

in the middle of swing).

In summary, the required features are

• Generation of several gaits

• Stability of the controller to allow feedback integration

• Smooth policies modulated by simple parameter change

• Robust locomotion by feedback integration

• Genericity of the architecture (applied to several robots)

• Framework that allows more complex behavior

B. Assumptions

It is well known in biology that the speed of locomotion

in quadruped animals is controlled by the duration of the

stance phase (there exists a linear relation between inverse

of stance duration and speed). On the other hand the duration

of the swing is almost constant for any gait and has no

relation with the speed of locomotion, certainly for stability

issues. We assume that it might be the same for robots, so

we need to independently control the durations of swing

and stance in our CPG. We also know that force sensing

under the feet has a very important role in the behavior

of biological CPGs [6]. Indeed it strongly modulates the

onset of the swing and stance phases. In our system one

limb should stay in swing phase as long as the foot does

not touch the ground, if the foot touches the ground sooner

than expected, then the controller should switch to stance

phase. We expect the opposite behavior to happen for the

stance phase. From a control point of view, we assume that

the CPG is a network of coupled oscillators that encode in

their phase space the locomotion policy of each limb. One

advantage of using oscillators is that the coordination of

the limbs comes as an intrinsic property of the system and

moreover they are stable against perturbations (limit cycle

behavior). Using such an approach is interesting for sensory

feedback integration, because we can view the CPG as a

system that is controlled by the sensory information, i.e. this

information, depending on the state of the CPG, will change

the form of its phase space. We use the term “controlled by

sensory information” because of the strong coupling that can

completely change the internal dynamics of the CPG.

As a summary we make the following assumptions:

• Independent control of swing and stance duration

• CPGs encode the control policies in phase space

• Strong coupling with the mechanical system

(the CPG controls and is “controlled” by the mechanics)

• Sensory feedback modulates the onset of swing and

stance phases

III. LOCOMOTION CONTROLLER DESIGN

We present the central pattern generator (CPG) that gen-

erates the control policies for locomotion, including the

properties and assumptions described in the previous section.

A. Feedforward trajectory generator

1) Oscillator model: We need an oscillator in which we

can independently control the swing and stance durations

(i.e. the ascending and descending phases of the oscillation).

To do so we use a modified Hopf oscillator that has a

phase-dependent frequency. It is based on the oscillator we

designed in [8], but normalized such that the limit cycle has

an invariant shape for different frequencies. Its equation is

ẋ = α(µ− r2)x− ωy (1)

ẏ = β(µ− r2)y + ωx (2)

ω =
ωstance

e−by + 1
+
ωswing

eby + 1
(3)

where r =
√

x2 + y2, ω is the frequency of oscillations in

rad · s−1,
√
µ is the amplitude of oscillations. ωswing and

ωstance are the frequencies of the swing and stance phases

respectively. α and β are positive constants that control the

speed of convergence to the limit cycle. Using different

speeds of convergence for the x and y variables allows to

control more precisely the generation of the control policy.

For example in the following we use µ = 1, α = 5 and

β = 50, so the convergence is faster on the y axis than on

the x axis. We thus have strong convergence properties, while

having a limited derivative for the control policy generated

by x. We motivate this choice of oscillator because the Hopf

oscillator has a harmonic limit cycle that is structurally stable

and the shape of the limit cycle is independent of the choice

of the frequency parameters. Moreover we can explicitly

and independently control the frequencies of the ascending

and descending phases of the oscillation as well as their

amplitude with ωswing , ωstance and µ.

The control policy is the x variable and represents joint

angle of the most proximal joint in the sagittal plane of a limb

in our experiments. However it can be noted that x could

easily represent any other quantity (position of the hand,



torque, etc...). The policy of the other joints is a function

of x and is discussed in Sec. IV.

2) Network structure: We now couple the oscillators in or-

der to generate the desired gaits. Here we extend our previous

work [8] to have a network able to generate walk, trot, pace

and bound. To define the generic coupling architecture, we

use results from the theory of symmetric coupled cells [10].

This theory gives conditions on the existence of symmetric

periodic solutions in networks of coupled dynamical systems.

The interest of such a theory is that the design of the

network structure can be made independent of the internal

dynamics of the cells. The design of such a network relies

only on algebraic arguments, which makes the design of the

network easier and scalable to more complex networks (e.g.

for hexapod locomotion). Moreover it is then possible to

calculate the other possible periodic solutions of the network

and make sure that only the desired ones are stable.

The symmetries present in a network of coupled cells

induce the existence of periodic solutions possessing the

same symmetries. A symmetry in the network is defined

by a permutation of the cells that preserves the coupling

architecture (we assume here that all the cells have the

same internal dynamics). Given a network, we can define

a coupling matrix A whose entries describe the coupling

between the cells. Then we say that a linear transformation

γ is a symmetry of the network if γA = A (i.e. the network

structure is invariant under the transformation)1.

The spatial symmetries of a periodic solution x(t) of a

system of differential equations are the symmetries γ such

that x(t) = γx(t), for all t. The spatio-temporal symmetries

σ of a periodic solution x(t) are the symmetries that preserve

the orbit of the solution, i.e. the symmetries that induce a

phase shift, ψ, in the solution such that σx(t) = x(t+ ψ).

The main result we use is the H/K Theorem from [9],

Theorem 1: H/K Theorem Let Γ be the symmetry group

of a coupled cell network in which all cells are coupled and

the internal dynamics of each cell is at least two-dimensional.

Let K ⊂ H ⊂ Γ be a pair of subgroups. Then there exist

periodic solutions to some coupled cell systems with spatio-

temporal symmetries H and spatial symmetries K if and only

if H/K is cyclic and K is an isotropy subgroup. Moreover,

the system can be chosen so that the periodic solution is

asymptotically stable.

Knowing the symmetries of a desired gait, we can now

construct a network that can generically support this gait

by calculating the constraints on the coupling matrix that

the symmetry imposes. The trot gait is a gait in which the

diagonal legs move in synchrony and half a period out of

phase with the contralateral legs. Thus, using permutation

notation, if we number the limbs as in Fig 1, we have

one spatial symmetry ((14)(23), 0) (the 0 means no phase

shift after the permutation) and 2 additional spatio-temporal

symmetries ((12)(34), 1
2 ) and ((13)(24), 1

2 ). The symmetry

group generated by these symmetries is isomorphic to Z2 ×

1Rigorous mathematical definitions and technical hypotheses such as Γ-
equivariance of the ODEs can be found in [9]
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Fig. 1. Generic coupling structure for the 4-cell networks. Same coupling
between cells is shown by arrows of the same type, this also shows how
the network is constrained by the required gaits.

Z2. It can easily be calculated that the pace and bound gaits

have the same group of symmetries and that generically in a

system of 4 coupled cells having the same symmetry, all the

3 gaits will co-exist (since the subgroups of the network

are {I, ((12)(34))}, {I, ((13)(24))} and {I, ((14)(23))}).

It has indeed already been shown that these solutions are

conjugate in a 4 cell network [10]. However, since the

stability of these conjugate solutions can be determined by

an appropriate choice of coupling parameters, we can make

sure that only the desired pattern is stable. From a control

point of view, this is satisfactory, since unstable solutions

cannot be reached. For the walking gait, the generator of the

group is ((1423), 1
4 ) and the symmetry group is isomorphic

to Z4. Figure 1 shows the minimal structure of networks for

supporting walk, pace, trot and bound. The hypotheses of

the H/K Theorem (H/K cyclic and K isotropy subgroup)

can easily be checked to be true. Then it is also possible to

calculate the other possible periodic solutions by calculating

the subgroups of the symmetry group of the network.

We now couple the oscillators according to generic cou-

pling matrices such that the desired gaits are stable. Their

stability was verified by numerical simulations. The equa-

tions for the CPG are now

ẋi = α(µ− r2i )xi − ωiyi (4)

ẏi = β(µ− r2i )yi + ωixi +
∑

kijyj (5)

the kij being defined by the coupling matrices. The other

parameters are defined as before. Figure 2 shows the coupling

matrices and the resulting gaits. Note that the type of gait

is determined by the coupling matrix and is not affected by

the swing-stance durations.

B. Feedback modulation

In this section we show how to integrate sensory feedback

from the touch sensors on the extremities of the limbs in

order to modulate the onset of swing and stance phases. The

idea is to explicitly change the phase space of the oscillator

according to their current state and the sensor values. First

we rewrite the oscillator equations, where we add a control

input u as

ẋi = α(µ− r2i )xi − ωiyi (6)

ẏi = β(µ− r2i )yi + ωixi +
∑

kijyj + ui (7)
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Fig. 2. Coupling matrices and examples of gait generation for the 4 gaits.
ωstance = 2ωswing for the trot and pace gaits. ωstance = 4ωswing for
the walking gait and ωswing = 2ωstance for the bound.

We decide to add the feedback on the yi variables rather than

xi for 2 reasons. First this is the variable that defines if we

are in stance (yi > 0) or swing phase (yi < 0) as is shown in

Figure 3. Second, since we use the xi variables as the policy

for the trajectories of the limbs, adding the control on the yi

variables assures that the xi variables will always produce a

smooth output.

1) Stopping before transition: We want the oscillator to

stop in two cases, during swing to stance transition when the

limb is not yet in contact with the ground and during stance

to swing transition when the limb still supports significant

body weight (i.e. to avoid premature lifting of the limbs).

The stopping behavior is obtained by temporarily activat-

ing the following control signal: ui = −ωixi−
∑

kijyj . This

choice is motivated by the fact that we want the oscillator to

stop at the transition, i.e. when y = 0 we want ẋ = ẏ = 0.

Thus we get α(µ − x2
i − y2

i )xi − ωiyi = 0 which implies

that the fixed point is at xi = ±√
µ (the oscillator stops

when xi reaches its maximum). Note that it is possible to

change the stopping position by changing µ. For the second

equation, we get ωixi +
∑

kijyj + ui = 0 which gives

us the control ui = −ωixi −
∑

kijyj . This control in fact

erases the coupling from the other oscillators and removes

the oscillating term of the yi variables.

Linearizing the equation with the new control, we can

deduce the stability of the fixed points (at x = ±√
µ, y = 0).

The Jacobian matrix at these points is

Df =

[

−2αµ −ωi

0 0

]

(8)

its eigenvalues are 0 and −2αµ with corresponding eigen-
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vectors (−ωi

2αµ
, 1) and (1, 0). Thus the stable manifold around

the fixed points is tangent to the x axis and the flow cannot

cross the x axis and converges automatically to the fixed

points. It converges to −√
µ when y > 0 and to

√
µ when

y < 0, thus it stops before transition, but once the Ox line

crossed it cannot come back.

2) Fast transitions: We want a fast transition from one

phase to the other in two cases: during stance when the

weight under the foot becomes low and during swing when

the foot touches the ground. To accelerate the transition, what

we need to do is to make the y variable go to 0, thus the

control for this case becomes u = F , the sign of F depending

on the direction of transition. Using this control, we can

know the time delay before transition that will occur in the

system. Indeed, during transition (we consider the transition

much faster than the oscillation), we will have x ' cte
and thus the speed of convergence to y = 0 is given by

ẏ = α(µ−x2)y−αy2 +ωix+F and since F is bigger than

the other terms, we have approximately ẏ ' F . Thus the

delay before transition will be
y(ttransition)

F
seconds, where

ttransition denotes the time when the transition starts.

The interest of using such a control instead of directly

resetting y to 0 is that we can explicitly control the delay

before the transition actually occurs. Of course, resetting

after some delay would be equivalent, but should be made

explicitly outside the equations. In the following we use

F = 300, which corresponds to a transition of ' 3.3 ms.

The activation of the feedback for an oscillator depends

on its phase and on the pressure sensors information of the

corresponding foot as is shown in Figure 3. The phase space

of the oscillator in function of the feedback is shown in

Figure 4. In summary the feedback goes as

ui =







−sign(yi)F fast transitions
−ωixi −

∑

kijyj stop transition
0 otherwise

(9)



IV. EXPERIMENTS

We performed experiments2 on three different simulated

quadruped robots having very different mechanic properties

(iCub, Aibo and Ghostdog). We used Webots [11], a software

for the physic simulation of robots based on ODE, a library

for the simulation of rigid body dynamics.

A. Experimental setup

For all the robots, the CPG generates the joints angles

of the hip and/or shoulder joints in the sagittal plane. The

trajectories for the knees (or elbows) are functions of the xi

variables of the CPG and are defined such that they bend

during swing and do not move during stance, to keep the

movement as simple as possible.

We used the simulated iCub robot, which is an infant-

like humanoid robot currently under construction for the

RobotCub project [12]. The robot has the size of a 2-year

old infant. It locomotes on the ground on its hand and knees,

thus 2 DOFs in the sagittal plane are available for the fore

limbs (shoulder and elbow) while there is only one for the

hind limbs (hip). For this robot, we also control the stiffness

of the elbow joint to allow a smooth landing of the hands (i.e.

we reduce the gains of the PID controller of the elbow when

the hand touches the ground). This is a very naive approach

but it is suitable for our current experiments. We will use

more advanced force control techniques for the elbow in

future experiments. For this robot we tested a trot gait as

real infants do. The second tests were done on a simulation

of the Aibo robot. Here walk and trot were tested. Contrary

to the iCub robot, we can use the knees of the hind limbs.

The final robot is called Ghostdog, which is a simulated

robot available in the Webots software. It is a dog-like robot,

having motors in the hips and knees. In addition there is

a spring in series with the knee joint, which gives to the

robot some passive dynamics, which is interesting to test

dynamically stable gaits such as bound. We tested walk and

bound on this robot.

B. Flat ground experiments

The first set of experiments was done on flat terrain.

We systematically tested the locomotion of the robots for

different values of ωswing and ωstance. We used the speed of

locomotion as a performance criterion. We tested the robots

with and without feedback, we also tested them without inter-

oscillator coupling but with feedback to test the significance

of a controller with only reflexes and no explicit coordination

between the limbs. In Figure 5 we show for the iCub

the speed of locomotion for the different experiments as a

function of the stance and swing parameters. The results

for the other robots at slow speeds (walk and trot) are

qualitatively the same.

We first observe that for the three experiments, the dura-

tion of the swing has almost no influence in the speed of

locomotion (vertical stripes in the figures), but it seems that

2Refer to the attached video to see typical results of the different
experiments described in the article.
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without feedback, a wrong choice of swing duration implies

a strong degradation in performance. On the other hand, we

find a clear correlation between speed of locomotion and

stance duration, as in mammals. This result is quite important

because it proves that the assumption we made in Section

II made sense and also shows that ωstance can be used as a

control parameter for the speed of locomotion.

The second observation is that without feedback, an incor-

rect swing parameter could lead to an impressive decrease of

performance, while when the feedback is enabled (with or

without coupling between the oscillators), the performance

does not degrade. This observation shows that the feedback

structure makes the controller more robust to parameter

choice. This makes sense since the feedback regulates the

timing of each phases, correcting thus bad parameters choice.

It must also be noted that it is only when both the feedback

and the coupling are enabled that the system makes its

best performance. It shows that trying to explicitly keep

a correct coordination between the limbs of the robot is

important and that a reflex-based controller that would only

react to the sensory feedback might not be as efficient as

our CPG. For the bound gait of the Ghostdog, the results are

a bit different. Indeed, we did not manage to find a correct

locomotion speed without the feedback. However, when we

enable the feedback, then the robot moves at high speed

(ranging between 0.2 to 0.6 m·s−1 or equivalently from 0.36

to 1.08 body length · s−1) for a large range of parameters.

This shows that sensory information combined with the CPG

can successfully stabilize a gait that is not intrinsically stable.

Another observation is that the feedback structure strongly

couples the CPG with the robot it controls. In Figure 6,

we show typical trajectories generated with and without

feedback by the CPG during walking for the Aibo, the strong

entrainment of the system is clear, it makes the controller

closer to the intrinsic dynamics of the robot, even if the

parameters are not perfectly chosen. This entrainment is even

more obvious on the phase space plot, where it is clear that

the stance phase is strongly shortened. For certain parameter

values, typically faster stance, the walking gait even change

into a trot gait by the feedback coupling, showing that the

system is able to adapt its gait to the specificity of the robot it

controls. Figure 6 shows also typical sensor values from the

foot of the Aibo. We clearly notice that the swing and stance

phases become more regular when the feedback is enabled.

This finally shows the mutual entrainment of both the CPG

and the robot, due to the strong coupling. We observe the

same qualitative results for all the robots, this coupling being
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even more important during bound of the Ghostdog (see

attached video).

C. Uneven terrain experiments

Finally we performed experiments with the three robots on

non-flat terrains. The robots went up and down terrains with a

slope (up to 10 degrees of slope for the iCub and Ghostdog,

5 degrees for the Aibo). In this case again, the feedback

was able to stabilize the robots and adapt the phase timing

according to the terrain. We also made the robots go down

stairs of up to 10cm high (for the iCUb and Ghostdog). The

feedback improved the locomotion in this case too, however

it happened that the robots fell. One major reason of these

falls is that sometimes the robots put their feet on the edges

of the stairs, making them slip and fall. Since our feedback

relies only on sensory information from the feet pressure

sensors and only modulates the swing and stance phases,

it cannot cope with such events. Stereotyped reflexes and a

higher level balance controller should be developed to cope

with such obstacles. Adding vision to the robot would also

help planning the robot trajectory and avoid such problems.

V. CONCLUSION

In this contribution we have presented a way of designing

CPGs and including feedback in them. We use an oscillator

designed for locomotion control, in which we can indepen-

dently control the duration of swing and stance phases. We

showed how insight from dynamical system theory could be

used to design the network architecture of the CPG in a

simple and scalable manner.

Our major contribution was the integration of sensory

feedback in the CPG in a manner such that we control

explicitly the behavior of the system and we can change its

properties using simple parameter changes. This CPG is able

to modulate online the trajectory generation for the control

of locomotion. We based our design on the assumption that

the CPG and the mechanical system were strongly coupled

in both ways. Thus we could think of the CPG as being

“controlled” by the sensory feedback, changing the state

space of the oscillators accordingly.

Finally we showed the generality of our method by ap-

plying the same controller to three very different robots. The

resulting locomotion is generally faster and more stable with

the feedback structure. The controller is tightly coupled with

the intrinsic dynamics of the robots. Our simulations also

showed that the swing duration was important for stability

and performance while the stance duration could be used

as a parameter to control the speed of locomotion. This

finding is very interesting because it is closely related to

observations made in mammal locomotion and it supports

the design assumptions we made in Section II.

However there are still many challenges to design a com-

plete locomotion controller, posture and stability problems

are not yet completely solved. Nevertheless we believe that

our framework is suitable to include more complex behavior

and control. For example it could be easily integrated in a

more general controller for precise hand placement during

locomotion [13]. Moreover we could use advanced adaptive

control techniques to fine tune the frequency parameters of

the oscillators, using for example methods from [14].

Future work will include integration of more complex

sensory feedback and stereotyped reflexes. We will also study

how to integrate more advanced force control techniques to

control the individual joints of the robot, using the CPG as

a policy generator.
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