

 Abstract— This paper presents two new approaches to
planning with uncertainty in position that achieve better
performance than existing techniques and that are able to
incorporate changes in the environment in near real-time. Both
approaches reuse previous searches and replan when changes
in the environment are detected.

The first approach, called replanning with prior map updates,
assumes that changes in the prior map originate from the same
source as the original prior map. Therefore, the updates are
registered with the existing map, but not with the position of
the robot. The resulting path after applying the updates is the
same as if the updates had been present in the original prior
map.

The second approach, called replanning with sensor updates,
assumes that changes in the prior map originate from on-board
sensors. Therefore, the updates are registered with the robot,
but not with the existing map. The resulting path after applying
the updates is not the same path that would be found if the
updates had taken place in the original prior map.

Replanning with prior map updates achieves a speed-up to
one order of magnitude with respect to forward planning from
scratch, while replanning with sensor updates achieves a speed-
up of almost two orders of magnitude.

I. INTRODUCTION
Planning with uncertainty in position is a computationally

intensive and often intractable problem. Even the most
efficient approaches take tens of seconds or minutes to find a
path in large environments, which is appropriate only for
off-line planning. In practice, however, off-line planners are
of limited use as prior maps are imperfect and obstacles such
as cars and other dynamic objects are not usually represented
in prior maps.

This paper presents two new approaches to planning with
uncertainty in position that achieve better performance than
existing techniques and that are able to incorporate changes
in the environment in near real-time. Both approaches reuse
previous searches and replan when changes in the
environment are detected.

The first approach, called replanning with prior map
updates, assumes that changes in the prior map originate

 Manuscript received September 14, 2007. This work was sponsored by

the U.S. Army Research Laboratory under contract “Robotics Collaborative
Technology Alliance” (contract number DAAD19-01-2-0012). The views
and conclusions contained in this document do not represent the official
policies or endorsements of the U.S. Government.

J.P. Gonzalez is with General Dynamics Robotic Systems and with the
Robotics Institute at Carnegie Mellon University, Pittsburgh PA, 15213 (e-
mail: jpgonzal@cmu.edu).

A. Stentz is with the Robotics Institute at Carnegie Mellon University,
Pittsburgh PA, 15213 (e-mail: axs@cmu.edu).

from the same source as the original prior map. Therefore,
the updates are registered with the existing map, but not with
the position of the robot. The resulting path after applying
the updates is the same as if the updates had been present in
the original prior map.

The second approach, called replanning with sensor
updates, assumes that changes in the prior map originate
from on-board sensors. Therefore, the updates are registered
with the robot, but not with the existing map. The resulting
path after applying the updates is not the same path that
would be found if the updates had taken place in the original
prior map.

II. RELATED WORK
Existing approaches to planning with uncertainty in

position for outdoor environments take from tens of seconds
to hours to calculate paths in large environments. Most are
also limited to indoor applications where the world can be
described as FREE or OBSTACLE, and where the search
space is significantly reduced [2][3][7][8][9][10].

In the field of Partially Observable Markov Decision
Processes (POMDPs), the problem of planning with
uncertainty in position has been frequently addressed.
However, most algorithms become computationally
intractable when dealing with worlds with a large number of
states. Only Roy and Thrun [13] have solved the problem of
finding optimal paths for large, continuous-cost worlds in
the presence of uncertainty. This approach requires pre-
processing of all the states in the search space, which later
allows for very fast planning. However, the approach does
not handle changes in the environments, and the total
planning time (including the pre-processing stage) can take
from several minutes to a few hours [14].

In classical path planning for outdoor environments only
Hait et al [6] and Gonzalez and Stentz [4][5] have proposed
planners that can handle the larger environments and
continuous cost representation required. While these
planners are much faster than the POMDP-based planners,
they are still too slow to be used as online planners in worlds
greater than 100x100 cells.

The research presented here extends the work of Gonzalez
and Stentz [5] by adding replanning capabilities and
allowing for sensor data to be incorporated into the planning
process.

III. PROBLEM STATEMENT
The problem we are trying to solve is navigating

autonomously in an outdoor environment without GPS

Replanning with Uncertainty in Position: Sensor Updates vs. Prior
Map Updates

Juan P. Gonzalez and Anthony Stentz, Member, IEEE

through the use of high resolution prior maps and a good
dead-reckoning system. We assume that the initial position
of the robot is known within a few meters, and the initial
heading is known within a few degrees. As the robot moves
towards the goal, its estimates of the traversal cost for some
areas of the prior map will be updated with data from
external sources or from the onboard sensors.

We assume a high-resolution map that allows the
identification of landmarks and the approximate estimation
of terrain types by automatic or manual methods. We
assume that landmarks can be reliably identified in the prior
map, and with the onboard sensors of the robot. We also
assume that landmarks may not be unique

The resulting path should minimize the expected value of
the objective function along the path, while ensuring that the
uncertainty in the position of the robot does not compromise
its safety or the reachability of the goal.

IV. PLANNING WITH UNCERTAINTY IN POSITION
The approach presented here extends the planner with

uncertainty in position (PUP) presented in [5], which takes
advantage of the low drift rate in the inertial navigation
system of many outdoor mobile robots. The planner uses an
isometric Gaussian distribution to model position
uncertainty and uses deterministic search to efficiently find
paths that minimize expected cost while considering
uncertainty in position. A linear error propagation model is
used, which assumes that the dominant term in the
uncertainty propagation is the error in the initial heading.

The high-resolution map is translated into a cost map, in
which the value of each cell corresponds to the cost of
traveling from the center of the cell to its nearest edge. Non-
traversable areas are assigned infinite cost and considered
obstacles. This map is often called a prior map.

As in [5] we use unique detection regions to disambiguate
landmarks. Unique detection regions are areas in the map in
which a non-unique landmarks can be uniquely identified for
a given detection range R.

A. State Space Representation
The probability density function (pdf) of the error is

modeled as a Gaussian distribution, centered at the most
likely location of the robot at step k:

2
1() ()
2

, 2

(,)

: (,)

1()
2

T
k k k k

k
k k

k k k

k k k

k
k

x y

N

p e
µ µ
σ

µ ε

µ σ

πσ

− −
−

=

=
q q

q

q

q

 (1)

where (,)
k kk x yµ µ µ= is the most likely location of the

robot at step k, and
k kk x yσ σ σ= = is the standard

deviation of the distribution at step k.
 Let us define:

 2k kε σ= ⋅ (2)

We can then model the boundary of the uncertainty region
as a disk centered at kµ with radius kε . This model is a
conservative estimate of the true error propagation model
and, depending on the type of error that is dominant in the
system, can provide an accurate approximation of the true
model.

Under these assumptions, the augmented state vector

 (,)µ ε=r (3)

defines a 3-D configuration space, which is also a complete
belief space [1].

In the cost map, the cost Co of a cell q is defined as the
cost to travel from the center of the cell to its nearest edge.
We extend the idea of this 2-D cost map into the 3-D
configuration space by defining the cost to move from the
center of the 3-D cell r to its nearest edge. This cost can be
expressed as:

 () (),() (,)
k kk k k o i i

i
C C C pµ εµ ε= = ∑r rr q q (4)

where Co(qi) is the deterministic traversal cost as defined by
the 2-D cost map at location qi.

B. Uncertainty Propagation
1) Outside of Unique Detection Regions

Outside of unique detection regions the position estimate
of the robot is calculated using dead-reckoning. For traverses
up to a few kilometers and with a good dead-reckoning
system, the dominant term in the error propagation is the
error in the initial heading, which increases linearly with
distance traveled. We therefore use the following model to
propagate uncertainty:

 1 1(,)k k u k kdε ε α µ µ− −= + (5)

where αu is the uncertainty accrued per unit of distance
traveled, 1kµ − is the previous position along the path, 1kε −
is the uncertainty at the previous position, and 1(,)k kd µ µ−
is the distance between the two adjacent path locations 1kµ −
and kµ . The uncertainty rate αu is typically between 0.01
and 0.1 (1% to 10%) of distance traveled.

2) Inside Unique Detection Regions
If all the possible locations for a configuration rk are

inside a unique detection region, we can guarantee that the
feature that created the region can be detected, and that no
other features will be visible within the field of view of the
robot.

For practical purposes we make the simplifying
assumption that the disk with radius 2k kε σ= ⋅ completely
contains all possible locations on (x,y) of a given
configuration (,)k k kµ ε=r . Therefore, if the disk of radius
kε centered at kµ is completely contained within a unique

detection region i, we assume that the configuration rk is
inside the unique detection region. As such, we can
guarantee that feature i will be detected and assume that the

uncertainty kε will be reduced to a small amount δ .

C. Using Deterministic Search to Plan with
Uncertainty in Position
The belief space and 3-D cost map defined above define a

graph with positive traversal costs. If the transitions between
nodes are deterministic, we can use deterministic search to
find the lowest cost path between any two points in the
graph.

We use the following assumptions to ensure that the
transitions between nodes are deterministic. In areas outside
unique detection regions, planning takes place without
sensing landmarks, and can be modeled as deterministic
transitions in belief space. If landmarks can be reliably
detected, then the areas inside unique detection regions can
also be modeled as deterministic transitions, as the detection
of landmarks is guaranteed. In the transitional areas that are
not completely contained within unique detection regions
the detection of landmarks cannot be either guaranteed or
ruled out. However, by assuming that landmarks will only be
detected when the uncertainty contour is completely
contained within the detection region, we can still model
these regions in a deterministic fashion, at the expense of
having an overly conservative approach.

We search this graph using a modified version of A* in 3-
D in which the successors of each state are calculated only in
a 2-D plane, and state dominance is used to prune
unnecessary states. Fig 1 shows an example of using PUP to
find a path in a sample world. Notice how the planner avoids
high cost regions and localizes only when needed.

Fig 1. Path planned using PUP. Lighter regions in the cost map
represent lower cost, and darker regions represent higher cost. Green
areas are non-traversable obstacles. The blue path corresponds to the
mean of the expected path, and the circles around each point are the
uncertainty at each step along the path. The blue circular regions
represent the unique detection region region of each landmark

V. PROPOSED APPROACH
We propose an approach that implements replanning

within the Planning with Uncertainty in Position approach
described above. RPUP uses D*-lite [11][12] to incorporate
changes in the environment by reusing previous search
results that minimize the changes in the search graph.
However, there are significant challenges when
implementing such approach.

The main limitation is that many of the performance gains
in PUP come from using forward search and state
dominance. However, when replanning for goal-directed
navigation, it is much more efficient to plan backward from
the goal than forward from the start. While in forward search
the uncertainty at the beginning of the search (the start
location) is known, in backward search the uncertainty at the
beginning of the search (the goal location) is unknown.
Instead of having a single start state with known uncertainty,
all possible uncertainty values at the goal have to be
considered in the search. Furthermore, most of the search
will take place near the goal, where the uncertainty is higher
(as opposed to planning forward, in which case the
uncertainty near the start is usually lower).

We propose two ways to incorporate updates in the prior
map, depending on whether the updates are registered with
the prior map or with the robot. Each type of update requires
a somewhat different replanning approach and results in
different paths and performance.

A. Prior Map Updates
This approach assumes that the updates in the prior map

are provided by a source that is well registered with the
original map. For example, if the original map is a satellite
image, updates to this map will also come from a satellite
image that is well registered to the original satellite image.
These updates, like the initial prior map, are not perfectly
registered to the position of the robot.

Because prior map updates are registered with the prior
map, they can be directly applied to the prior map. However,
when the prior map is updated, all the cells in the 3-D
configuration space that are within 2σ of the updated prior
map cell need to be updated as well. Changes in the prior
map Co at location xk, yk require changing (, ,)x yC µ µ εr at

all locations such that

 2 2 2() ()x k y kx yµ µ ε− + − ≤ (6)

for all values of ε.
Paths found by replanning with prior map updates are

equivalent to the paths that would have been found if the
new information had been present in the original prior map.

Fig 2 shows an example of RPUP with prior map updates.
The path shown is the resulting path after replanning the
path from Fig 1 because a prior map update is received
showing an obstacle to the left of the workspace.

Fig 2. Path updated and re-planned because of a prior map obstacle.

B. Sensor Updates
This approach assumes that the updates in the prior map

are provided by a source that is well registered with the
position of the robot such as updates provided by the
onboard sensors in the robot. The position of the robot with
respect to these updates is known, but the position of these
updates in the prior map is not.

These updates are represented in a separate sensor layer,
which is combined with the prior map as follows:

 () ,

(, ,)

(,) (1) (,) (,)

TE x y

s i i o i i i i
i

C

C x y C x y p x yµ ε

µ µ ε

α α
∀

=

+ −∑
 (7)

where Cs is the sensor update, and [0,1]α ∈ is a linear term
that determines the importance of the sensor data with
respect to the prior data. Since the sensor data is assumed to
be perfectly registered with the position of the robot, its cost
does not depend on the probability distribution of the
position of the robot, and (7) can be simplified as follows:

() ,

(, ,) (,)

(1) (,) (,)

(, ,) (,) (1) (, ,)

TE x y s x y

o i i i i
i

TE x y s x y x y

C C

C x y p x y

C C C

µ ε

µ µ ε α µ µ

α

µ µ ε α µ µ α µ µ ε
∀

= +

−

= + −

∑
r

 (8)

Using this update model, when a change at location
(µx,µy) is detected, the combined map TEC is updated by
recalculating (, ,)TE x yC µ µ ε for all ε values at (µx,µy). This

change affects significantly fewer cells than prior map
updates, since neither the prior map oC nor the configuration
space map Cr change when sensor updates are received.

The parameter α can have different interpretations, but in
general reflects the confidence on the sensor data. One

possible approach is to use sensor fusion assuming that both
the prior cost and the sensor updates are normally distributed
with means Co and Cs, and variances (or confidences) σo

2

and σs
2. In such case

2

2 2

1

1 1
s

s o

σ

σ σ

α =
+

 (9)

If the confidence in the sensor information is much higher
than the confidence in the prior map, s oσ σ<< and 1α = ,
but only for cells with sensor information. For cells that have
not received sensor data sσ → ∞ , therefore:

1
0

for cells with sensor data
otherwise

α


= 


 (10)

Paths found by replanning with sensor updates are not
equivalent to the paths that would have been found if the
new information had been present in the original prior map,
because prior map information is not registered to the robot
and sensor information is.

Fig 3 shows the resulting path after replanning the path
from Fig 1 because a sensor update is received showing an
obstacle to the left of the workspace. Notice how only the
mean of the path avoids the obstacle, not the 2σ uncertainty
contour.

Fig 3. Path updated and re-planned because of a sensor obstacle

C. Discussion
The approach proposed here handles two of the most

common cases for data updates with uncertainty in position
for mobile robot navigation. However, there are scenarios
that fall between prior map updates and sensor updates
which are not properly handled. One such scenario is if the
robot were to revisit a previously sensed area. In this case,
the uncertainty with respect to the previously sensed data is
no longer negligible. The uncertainty in the old sensed data
is not the same uncertainty as that of the prior map either.

The correct way of dealing with old sensed data would be to
keep track of the uncertainty of the robot with respect to
each data point and to update this uncertainty as the robot
moves. However this would be extremely inefficient, as all
data points would change every time the robot moves.

Because the robot is assumed to be moving towards a
goal, the scenario described above is not as critical as it
would be for other tasks. In tasks that require sensed areas to
be frequently revisited it may be possible to discard sensed
data after a given time or after some distance has been
traveled. This would maintain the consistency of the data
while keeping updates efficient.

VI. RESULTS

A. Performance
In order to measure the performance gains achieved by

using replanning vs. planning from scratch the following
experiment was performed. 50 different worlds were
randomly generated using a fractal world generator, varying
in size from 100x100 to 1000x1000 pixels. The number of
uncertainty levels was kept fixed at 100. In each of these
worlds the prior map used was a low resolution version of
each world. Then the robot’s motion along the path was
simulated and higher resolution data was obtained around
the robot in a 20x20 cells area by retrieving the original,
high-resolution map (see Fig 4). These data updates were
incorporated into the plan as prior map updates (registered to
the original map) or sensor updates (registered to the robot).
The planner used for planning from scratch was the one
described in [5], which is a very efficient forward planner
with uncertainty in position. The simulations were
performed on an Intel(R) Xeon(TM) CPU running at
3.80GHz, with 4GB of memory. While some parts of the
algorithm could easily be run in parallel, the simulations
only use one of the four processors present. Additional
improvements in the run-time of the algorithm could be
achieved by taking advantage of the additional processors
available.

When using prior map updates, the performance gains
were only noticeable for worlds larger than 500x500, and
continuously improving for larger worlds. The best result
was at 1000x1000, where planning from scratch took 50
seconds on average, while replanning took approximately
7.5 seconds (7.5 times faster). Fig 5 shows the average
online planning times (top) and the speed-up factor for
different world sizes (bottom).

Replanning with sensor updates produced significantly
better performance gains. Performance improvements were
significant for worlds of size 300x300 and higher, with
greater improvements in larger worlds. The best result was
at 1000x1000, where planning from scratch took 38 seconds
on average, while replanning took approximately 0.6
seconds (62 times faster). Because replanning takes on
average less than one second, this approach can be
considered near real-time: the planner can be implemented

online incorporating real-time updates from the onboard
sensors in the robot. This solves some of the problems with
off-line planners that are limited to local obstacle avoidance
when executing the original path. Fig 6 shows the average
the average online planning times (top) and the speed-up
factor for different world sizes (bottom).

Fig 4. Initial path planned in low-resolution prior map (top) and final
path followed by the robot after high-resolution sensor updates (bottom)

Fig 5. Average online planning time for forward search vs. re-planning
with prior map updates (top). Average speed-up (bottom)

Fig 6. Average online planning time for forward search vs. re-
planning with sensor updates (top). Average speed-up (bottom)

While re-planning is significantly faster with either prior
map updates or sensor updates, it has some important
disadvantages with respect to the original PUP
implementation (forward search). While in forward PUP the
expanded states defined a thin volume, in backward PUP
with D*-Lite the search space is usually a full 3-D volume.
The average thickness of the search volume in forward
search is between 1 and 2 cells, while the average thickness
for replanning with backward search is about 20 cells. Thus,
the memory requirements for backward search are 10 to 20
times greater.

Additionally, the initial planning time when performing
backward search is much longer than in forward search. Fig
7 shows the comparison between initial planning times for
forward vs. backward search. The worst case is at
1000x1000, where the initial planning time for backward
search is 1500 seconds (25 minutes), while for forward
search is 120 seconds (2 minutes). While this is an important
limiting factor, most parts of the initial planning can be
computed off-line, therefore reducing the initial planning
time significantly.

Fig 7. Average initial planning time for forward search vs. re-
planning with sensor updates.

B. Field Tests
The following test setup was implemented on the e-gator

autonomous vehicle shown in Fig 8. We used an aerial
photograph covering a 200x250m region at 30 cm/pixel as
the source for our prior data. From this photograph, we
estimated a traversal cost map by training a Bayes classifier
and manually annotating roads and buildings. Additionally,
the electric poles used as landmarks were also identified in
the image and were manually labeled.

Fig 8. E-gator autonomous vehicle used for testing and electric poles
used for localization at test site. The vehicle equipped with wheel
encoders and a KVH E- core 1000 fiber-optic gyro for dead reckoning,
and a tilting SICK ladar and onboard computing for navigation and
obstacle detection

An initial path was planned based on this estimated cost

map (prior map), the landmarks, and the estimated initial
position and heading of the robot. Once the robot started
moving, its sensors provided updates to the cost map (sensor
updates), as well as detection information about the
landmarks. A new path was replanned every second using
the combination of the prior map, the sensor updates and the
landmarks. Local obstacle avoidance was also performed at
10Hz.

As a reference, the same setup was also tested without
PUP: using only the prior map (without landmarks), and
only dead-reckoning for localization, while incorporating
sensor updates into a standard planner (D*lite) that did not
consider uncertainty.

Each approach was run 5 times, for a total of 10 runs. Fig
9 and Fig 10 show the paths planned and executed for one
the runs in each setup, as well as the position reported by a
WAAS-enabled GPS (for reference). Notice that the error
between the robot’s position estimate and the GPS position
is much smaller when using RPUP and that only when using
RPUP the sensor obstacles are correctly positioned in the
global map. Notice also that the path executed in the top part
Fig 9 is significantly different from the path planned. This is
due to replanning around a blockage detected by the sensors.

 Fig 11 Shows the error in the position of the robot with
respect to the position reported by the GPS. Notice how this
error is less than 4 meters at all times when using RPUP, and
grows continuously when using only dead-reckoning.

Fig 9. Path planned (left) and executed (right) without GPS using
RPUP. In the left image the blue circles are unique detection regions
generated by landmarks. In the right image, the blue line is the position
estimate of the Kalman filter on the robot and the green line is the
position reported by a WAAS differential GPS with accuracy of
approximately 2 meters (for reference only). The orange regions represent
sensor data, with obstacles shown as bright orange.

Fig 10. Path planned (left) and executed (right) without GPS, using a
standard planner. In the right image, the blue line is the position estimate
of the Kalman filter on the robot and the green line is the position
reported by a WAAS differential GPS with accuracy of approximately 2
meters (for reference only). The orange regions represent sensor data,
with obstacles shown as bright orange.

Fig 12 shows the replanning times for the same run using
RPUP. Notice how the times are usually less than one
second and always less than two seconds. The average
replanning time was 0.22 seconds, with a standard deviation
of 0.23 seconds.

While each of the 10 runs had slightly different
characteristics, using RPUP always outperformed the regular
planner. All five runs using RPUP were successfully
completed, with uncertainties at the goal well below 5m.
Only four of the runs with the regular planner were
completed. The first run had to be aborted because the robot
was unable to find a way around a group of rocks by the side
of the road. Of the remaining runs, only the second run had
an uncertainty at the goal below 5 meters. The other three
runs had uncertainties of 10, 12 and 7 meters respectively.

 Our approach was also tested in a larger, 600x700m area.
Using the same test setup as in the previous experiments, a

single 850m run was planned and successfully executed. Fig
13 shows the test site and the path executed.

Fig 11. Position error when executing path using RPUP with landmarks
(top) and when using a regular planner without landmarks (bottom). The
blue solid line is the error in the position of the robot (difference between
the robot’s position estimate and the GPS). The red dashed line is the
GPS’s own error estimate. The green solid line is the robot’s error
estimate. The dotted gray line is the sum of the error estimates of the GPS
and the robot.

Fig 12. Replanning times for the run using RPUP. Notice how
replanning times are usually less than 1 second, and always less than 2
seconds.

Fig 13. Long run using RPUP. The blue line is the position estimate of
the Kalman filter on the robot and the green line is the position reported
by a WAAS differential GPS with accuracy of approximately 2 meters
(for reference only). The orange regions represent sensor data, with
obstacles shown as bright orange. The total length of the run was 850
meters.

VII. CONCLUSIONS AND FUTURE WORK
We have introduced two novel approaches to planning

with uncertainty in position that enable a robot to plan paths
that incorporate changes detected in the environment and to
navigate with imperfect prior maps. These approaches
implement D*-lite as part of the planning with uncertainty
algorithm proposed in [5] and incorporate changes that are
registered with either the prior map (prior map updates) or
with the robot (sensor updates).

Replanning with prior map updates provides performance
improvements with respect to the original PUP approach of
almost one order of magnitude. While performance is highly
dependent on the quality of the original map and the specific
changes that take place in the world, the results presented
here show a performance gain of up to 7.5 (with a
1000x1000 world).

Replanning with sensor updates provides significant
performance gains with respect to the original PUP
approach, with the most significant gains being obtained
with 1000x1000 worlds. At this size, the average
performance gain is 62. The average time to replan a path
was about 0.6 seconds, enabling this approach to be used as
an on-line planner for some applications. While this
approach may still be too slow for other applications, it is a
significant step towards real-time, on-line path planning with
uncertainty in position.

We also presented results from several field tests
confirming the advantages of using RPUP in GPS-denied
environments, as well as the ability to replan in response to
sensor updates. To the best of our knowledge, this is the first
time that a planner that considers uncertainty in position for
outdoor environments has been validated through
experimental results.

While the approaches presented here do not consider all
the possibilities for incorporating new data into an existing
plan, they represent the most common cases for goal-
directed navigation.

Future work includes evaluating the integration of sensor
data with prior map data in more complex environments, as
well as using more complex sensor models to perform the
fusion of sensor and prior map data.

REFERENCES
[1] B. Bonet and H. Geffner, "Planning with incomplete information as

heuristic search in belief space," in Proceedings of the 6th
International Conference on Artificial Intelligence in Planning
Systems (AIPS), pp. 52-61, AAAI Press, 2000

[2] B. Bouilly. “Planification de Strategies de Deplacement Robuste pour
Robot Mobile”. PhD thesis, Insitut National Polytechnique, Tolouse,
France, 1997

[3] B. Bouilly, T. Siméon, and R. Alami. “A numerical technique for
planning motion strategies of a mobile robot in presence of
uncertainty”. In Proc. of the IEEE Int. Conf. on Robotics and
Automation, volume 2, pages 1327--1332, Nagoya (JP), May 1995.

[4] J.P. Gonzalez and A. Stentz, "Planning with Uncertainty in Position:
An Optimal and Efficient Planner," Proceedings of the IEEE
International Conference on Intelligent Robots and Systems (IROS
'05), August, 2005.

[5] J.P. Gonzalez and A. Stentz, "Planning with Uncertainty in Position
Using High-Resolution Maps," In Proceedings of the IEEE Int.
Conference on Robotics & Automation (ICRA) 2007, April, 2007.

[6] A. Haït, T. Simeon, and M. Taïx, "Robust motion planning for rough
terrain navigation".Published in IEEE Int. Conf. on Intelligent Robots
and Systems Kyongju, Korea, 1999.

[7] Th. Fraichard and R. Mermond "Integrating Uncertainty And
Landmarks In Path Planning For Car-Like Robots" Proc. IFAC Symp.
on Intelligent Autonomous Vehicles March 25-27, 1998.

[8] J.C. Latombe, A. Lazanas, and S. Shekhar, "Robot Motion Planning
with Uncertainty in Control and Sensing," Artificial Intelligence J.,
52(1), 1991, pp. 1-47.

[9] J.C. Latombe, Robot Motion Planning. Kluwer Academic Publishers.
1990

[10] A. Lazanas, and J.C. Latombe, “Landmark-based robot navigation”. In
Proc. 10th National Conf. on Artificial Intelligence (AAAI-92), 816--
822. Cambridge, MA: AAAI Press/The MIT Press.

[11] S. Koenig and M. Likhachev. Improved fast replanning for robot
navigation in unknown terrain. Technical Report GITCOGSCI -2002.

[12] S. Koenig and M. Likhachev, "D*lite". Eighteenth national conference
on Artificial intelligence, American Association for Artificial
Intelligence, 476-483, 2002.

[13] N. Roy, and S. Thrun, “Coastal navigation with mobile robots”. In
Advances in Neural Processing Systems 12, volume 12, pages 1043—
1049, 1999.

[14] N. Roy, Department of Aeronautics and Astronautics, MIT. Private
Conversation. September 1, 2004

