
  

 Abstract— This paper presents two new approaches to 
planning with uncertainty in position that achieve better 
performance than existing techniques and that are able to 
incorporate changes in the environment in near real-time. Both 
approaches reuse previous searches and replan when changes 
in the environment are detected.  

The first approach, called replanning with prior map updates, 
assumes that changes in the prior map originate from the same 
source as the original prior map. Therefore, the updates are 
registered with the existing map, but not with the position of 
the robot. The resulting path after applying the updates is the 
same as if the updates had been present in the original prior 
map. 

The second approach, called replanning with sensor updates, 
assumes that changes in the prior map originate from on-board 
sensors. Therefore, the updates are registered with the robot, 
but not with the existing map. The resulting path after applying 
the updates is not the same path that would be found if the 
updates had taken place in the original prior map.  

Replanning with prior map updates achieves a speed-up to 
one order of magnitude with respect to forward planning from 
scratch, while replanning with sensor updates achieves a speed-
up of almost two orders of magnitude.  

I.  INTRODUCTION  
Planning with uncertainty in position is a computationally 

intensive and often intractable problem. Even the most 
efficient approaches take tens of seconds or minutes to find a 
path in large environments, which is appropriate only for 
off-line planning.  In practice, however, off-line planners are 
of limited use as prior maps are imperfect and obstacles such 
as cars and other dynamic objects are not usually represented 
in prior maps. 

This paper presents two new approaches to planning with 
uncertainty in position that achieve better performance than 
existing techniques and that are able to incorporate changes 
in the environment in near real-time. Both approaches reuse 
previous searches and replan when changes in the 
environment are detected.  

The first approach, called replanning with prior map 
updates, assumes that changes in the prior map originate 
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from the same source as the original prior map. Therefore, 
the updates are registered with the existing map, but not with 
the position of the robot. The resulting path after applying 
the updates is the same as if the updates had been present in 
the original prior map. 

The second approach, called replanning with sensor 
updates, assumes that changes in the prior map originate 
from on-board sensors. Therefore, the updates are registered 
with the robot, but not with the existing map. The resulting 
path after applying the updates is not the same path that 
would be found if the updates had taken place in the original 
prior map.  

II. RELATED WORK 
Existing approaches to planning with uncertainty in 

position for outdoor environments take from tens of seconds 
to hours to calculate paths in large environments. Most are 
also limited to indoor applications where the world can be 
described as FREE or OBSTACLE, and where the search 
space is significantly reduced [2][3][7][8][9][10].  

In the field of Partially Observable Markov Decision 
Processes (POMDPs), the problem of planning with 
uncertainty in position has been frequently addressed. 
However, most algorithms become computationally 
intractable when dealing with worlds with a large number of 
states. Only Roy and Thrun [13] have solved the problem of 
finding optimal paths for large, continuous-cost worlds in 
the presence of uncertainty. This approach requires pre-
processing of all the states in the search space, which later 
allows for very fast planning. However, the approach does 
not handle changes in the environments, and the total 
planning time (including the pre-processing stage) can take 
from several minutes to a few hours [14].  

In classical path planning for outdoor environments only 
Hait et al [6] and Gonzalez and Stentz [4][5]  have proposed 
planners that can handle the larger environments and 
continuous cost representation required. While these 
planners are much faster than the POMDP-based planners, 
they are still too slow to be used as online planners in worlds 
greater than 100x100 cells.  

The research presented here extends the work of Gonzalez 
and Stentz [5] by adding replanning capabilities and 
allowing for sensor data to be incorporated into the planning 
process.  

III. PROBLEM STATEMENT 
The problem we are trying to solve is navigating 

autonomously in an outdoor environment without GPS 
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through the use of high resolution prior maps and a good 
dead-reckoning system. We assume that the initial position 
of the robot is known within a few meters, and the initial 
heading is known within a few degrees. As the robot moves 
towards the goal, its estimates of the traversal cost for some 
areas of the prior map will be updated with data from 
external sources or from the onboard sensors. 

We assume a high-resolution map that allows the 
identification of landmarks and the approximate estimation 
of terrain types by automatic or manual methods. We 
assume that landmarks can be reliably identified in the prior 
map, and with the onboard sensors of the robot. We also 
assume that landmarks may not be unique 

The resulting path should minimize the expected value of 
the objective function along the path, while ensuring that the 
uncertainty in the position of the robot does not compromise 
its safety or the reachability of the goal. 

IV. PLANNING WITH UNCERTAINTY IN POSITION 
The approach presented here extends the planner with 

uncertainty in position (PUP) presented in [5], which takes 
advantage of the low drift rate in the inertial navigation 
system of many outdoor mobile robots. The planner uses an 
isometric Gaussian distribution to model position 
uncertainty and uses deterministic search to efficiently find 
paths that minimize expected cost while considering 
uncertainty in position. A linear error propagation model is 
used, which assumes that the dominant term in the 
uncertainty propagation is the error in the initial heading. 

The high-resolution map is translated into a cost map, in 
which the value of each cell corresponds to the cost of 
traveling from the center of the cell to its nearest edge. Non-
traversable areas are assigned infinite cost and considered 
obstacles. This map is often called a prior map. 

As in [5] we use unique detection regions to disambiguate 
landmarks.  Unique detection regions are areas in the map in 
which a non-unique landmarks can be uniquely identified for 
a given detection range R. 

A. State Space Representation 
The probability density function (pdf) of the error is 

modeled as a Gaussian distribution, centered at the most 
likely location of the robot at step k: 
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where ( , )
k kk x yµ µ µ=  is the most likely location of the 

robot at step k, and 
k kk x yσ σ σ= =  is the standard 

deviation of the distribution at step k. 
 Let us define: 

 2k kε σ= ⋅  (2) 

We can then model the boundary of the uncertainty region 
as a disk centered at kµ  with radius kε . This model is a 
conservative estimate of the true error propagation model 
and, depending on the type of error that is dominant in the 
system, can provide an accurate approximation of the true 
model.  

Under these assumptions, the augmented state vector 

 ( , )µ ε=r  (3) 

defines a 3-D configuration space, which is also a complete 
belief space [1].  

In the cost map, the cost Co of a cell q is defined as the 
cost to travel from the center of the cell to its nearest edge. 
We extend the idea of this 2-D cost map into the 3-D 
configuration space by defining the cost to move from the 
center of the 3-D cell r to its nearest edge. This cost can be 
expressed as: 

 ( ) ( ),( ) ( , )
k kk k k o i i

i
C C C pµ εµ ε= = ∑r rr q q  (4) 

where Co(qi) is the deterministic traversal cost as defined by 
the 2-D cost map at location qi. 

B. Uncertainty Propagation  
1) Outside of Unique Detection Regions 

Outside of unique detection regions the position estimate 
of the robot is calculated using dead-reckoning. For traverses 
up to a few kilometers and with a good dead-reckoning 
system, the dominant term in the error propagation is the 
error in the initial heading, which increases linearly with 
distance traveled. We therefore use the following model to 
propagate uncertainty: 

 1 1( , )k k u k kdε ε α µ µ− −= +  (5) 

where αu is the uncertainty accrued per unit of distance 
traveled, 1kµ −  is the previous position along the path, 1kε −  
is the uncertainty at the previous position,  and 1( , )k kd µ µ−  
is the distance between the two adjacent path locations 1kµ −  
and kµ . The uncertainty rate αu is typically between 0.01 
and 0.1 (1% to 10%) of distance traveled.  

2) Inside Unique Detection Regions 
If all the possible locations for a configuration rk are 

inside a unique detection region, we can guarantee that the 
feature that created the region can be detected, and that no 
other features will be visible within the field of view of the 
robot.  

For practical purposes we make the simplifying 
assumption that the disk with radius 2k kε σ= ⋅  completely 
contains all possible locations on (x,y) of a given 
configuration ( , )k k kµ ε=r . Therefore, if the disk of radius 
kε centered at kµ  is completely contained within a unique 

detection region i, we assume that the configuration rk is 
inside the unique detection region. As such, we can 
guarantee that feature i will be detected and assume that the 



uncertainty kε will be reduced to a small amount δ . 

C. Using Deterministic Search to Plan with 
Uncertainty in Position 
The belief space and 3-D cost map defined above define a 

graph with positive traversal costs. If the transitions between 
nodes are deterministic, we can use deterministic search to 
find the lowest cost path between any two points in the 
graph. 

We use the following assumptions to ensure that the 
transitions between nodes are deterministic. In areas outside 
unique detection regions, planning takes place without 
sensing landmarks, and can be modeled as deterministic 
transitions in belief space. If landmarks can be reliably 
detected, then the areas inside unique detection regions can 
also be modeled as deterministic transitions, as the detection 
of landmarks is guaranteed. In the transitional areas that are 
not completely contained within unique detection regions 
the detection of landmarks cannot be either guaranteed or 
ruled out. However, by assuming that landmarks will only be 
detected when the uncertainty contour is completely 
contained within the detection region, we can still model 
these regions in a deterministic fashion, at the expense of 
having an overly conservative approach.  

We search this graph using a modified version of A* in 3-
D in which the successors of each state are calculated only in 
a 2-D plane, and state dominance is used to prune 
unnecessary states. Fig 1 shows an example of using PUP to 
find a path in a sample world. Notice how the planner avoids 
high cost regions and localizes only when needed.  

 

 
Fig 1. Path planned using PUP. Lighter regions in the cost map 
represent lower cost, and darker regions represent higher cost. Green 
areas are non-traversable obstacles. The blue path corresponds to the 
mean of the expected path, and the circles around each point are the 
uncertainty at each step along the path. The blue circular regions 
represent the unique detection region region of each landmark 

 
 

V. PROPOSED APPROACH 
We propose an approach that implements replanning 

within the Planning with Uncertainty in Position approach 
described above. RPUP uses D*-lite [11][12] to incorporate 
changes in the environment by reusing previous search 
results that minimize the changes in the search graph. 
However, there are significant challenges when 
implementing such approach. 

The main limitation is that many of the performance gains 
in PUP come from using forward search and state 
dominance. However, when replanning for goal-directed 
navigation, it is much more efficient to plan backward from 
the goal than forward from the start. While in forward search 
the uncertainty at the beginning of the search (the start 
location) is known, in backward search the uncertainty at the 
beginning of the search (the goal location) is unknown. 
Instead of having a single start state with known uncertainty, 
all possible uncertainty values at the goal have to be 
considered in the search. Furthermore, most of the search 
will take place near the goal, where the uncertainty is higher 
(as opposed to planning forward, in which case the 
uncertainty near the start is usually lower).   

We propose two ways to incorporate updates in the prior 
map, depending on whether the updates are registered with 
the prior map or with the robot. Each type of update requires 
a somewhat different replanning approach and results in 
different paths and performance. 

A. Prior Map Updates 
This approach assumes that the updates in the prior map 

are provided by a source that is well registered with the 
original map. For example, if the original map is a satellite 
image, updates to this map will also come from a satellite 
image that is well registered to the original satellite image. 
These updates, like the initial prior map, are not perfectly 
registered to the position of the robot.  

Because prior map updates are registered with the prior 
map, they can be directly applied to the prior map. However, 
when the prior map is updated, all the cells in the 3-D 
configuration space that are within 2σ of the updated prior 
map cell need to be updated as well. Changes in the prior 
map Co at location xk, yk require changing ( , , )x yC µ µ εr  at 

all locations such that 

 2 2 2( ) ( )x k y kx yµ µ ε− + − ≤  (6) 

for all values of ε.  
Paths found by replanning with prior map updates are 

equivalent to the paths that would have been found if the 
new information had been present in the original prior map.  

Fig 2 shows an example of RPUP with prior map updates. 
The path shown is the resulting path after replanning the 
path from Fig 1 because a prior map update is received 
showing an obstacle to the left of the workspace.  



 
Fig 2. Path updated and re-planned because of a prior map obstacle.  

B. Sensor Updates 
This approach assumes that the updates in the prior map 

are provided by a source that is well registered with the 
position of the robot such as updates provided by the 
onboard sensors in the robot. The position of the robot with 
respect to these updates is known, but the position of these 
updates in the prior map is not.  

These updates are represented in a separate sensor layer, 
which is combined with the prior map as follows: 
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where Cs is the sensor update,  and [0,1]α ∈  is a linear term 
that determines the importance of the sensor data with 
respect to the prior data. Since the sensor data is assumed to 
be perfectly registered with the position of the robot, its cost 
does not depend on the probability distribution of the 
position of the robot, and (7) can be simplified as follows: 
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Using this update model, when a change at location 
(µx,µy) is detected, the combined map TEC  is updated by 
recalculating ( , , )TE x yC µ µ ε  for all ε values at (µx,µy). This 

change affects significantly fewer cells than prior map 
updates, since neither the prior map oC nor the configuration 
space map Cr change when sensor updates are received. 

The parameter α can have different interpretations, but in 
general reflects the confidence on the sensor data. One 

possible approach is to use sensor fusion assuming that both 
the prior cost and the sensor updates are normally distributed 
with means Co and Cs, and variances (or confidences) σo

2 

and σs
2. In such case  
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If the confidence in the sensor information is much higher 
than the confidence in the prior map, s oσ σ<<  and 1α = , 
but only for cells with sensor information. For cells that have 
not received sensor data sσ → ∞ , therefore: 
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Paths found by replanning with sensor updates are not 
equivalent to the paths that would have been found if the 
new information had been present in the original prior map, 
because prior map information is not registered to the robot 
and sensor information is.  

Fig 3 shows the resulting path after replanning the path 
from Fig 1 because a sensor update is received showing an 
obstacle to the left of the workspace. Notice how only the 
mean of the path avoids the obstacle, not the 2σ  uncertainty 
contour.  

 
Fig 3. Path updated and re-planned because of a sensor obstacle  

C. Discussion 
The approach proposed here handles two of the most 

common cases for data updates with uncertainty in position 
for mobile robot navigation. However, there are scenarios 
that fall between prior map updates and sensor updates 
which are not properly handled. One such scenario is if the 
robot were to revisit a previously sensed area. In this case, 
the uncertainty with respect to the previously sensed data is 
no longer negligible. The uncertainty in the old sensed data 
is not the same uncertainty as that of the prior map either.  



The correct way of dealing with old sensed data would be to 
keep track of the uncertainty of the robot with respect to 
each data point and to update this uncertainty as the robot 
moves. However this would be extremely inefficient, as all 
data points would change every time the robot moves.  

Because the robot is assumed to be moving towards a 
goal, the scenario described above is not as critical as it 
would be for other tasks. In tasks that require sensed areas to 
be frequently revisited it may be possible to discard sensed 
data after a given time or after some distance has been 
traveled. This would maintain the consistency of the data 
while keeping updates efficient.  

VI. RESULTS 

A. Performance 
In order to measure the performance gains achieved by 

using replanning vs. planning from scratch the following 
experiment was performed. 50 different worlds were 
randomly generated using a fractal world generator, varying 
in size from 100x100 to 1000x1000 pixels. The number of 
uncertainty levels was kept fixed at 100. In each of these 
worlds the prior map used was a low resolution version of 
each world. Then the robot’s motion along the path was 
simulated and higher resolution data was obtained around 
the robot in a 20x20 cells area by retrieving the original, 
high-resolution map (see Fig 4). These data updates were 
incorporated into the plan as prior map updates (registered to 
the original map) or sensor updates (registered to the robot). 
The planner used for planning from scratch was the one 
described in [5], which is a very efficient forward planner 
with uncertainty in position. The simulations were 
performed on an Intel(R) Xeon(TM) CPU running at 
3.80GHz, with 4GB of memory. While some parts of the 
algorithm could easily be run in parallel, the simulations 
only use one of the four processors present. Additional 
improvements in the run-time of the algorithm could be 
achieved by taking advantage of the additional processors 
available.  

When using prior map updates, the performance gains 
were only noticeable for worlds larger than 500x500, and 
continuously improving for larger worlds. The best result 
was at 1000x1000, where planning from scratch took 50 
seconds on average, while replanning took approximately 
7.5 seconds (7.5 times faster). Fig 5 shows the average 
online planning times (top) and the speed-up factor for 
different world sizes (bottom).  

Replanning with sensor updates produced significantly 
better performance gains. Performance improvements were 
significant for worlds of size 300x300 and higher, with 
greater improvements in larger worlds. The best result was 
at 1000x1000, where planning from scratch took 38 seconds 
on average, while replanning took approximately 0.6 
seconds (62 times faster). Because replanning takes on 
average less than one second, this approach can be 
considered near real-time: the planner can be implemented 

online incorporating real-time updates from the onboard 
sensors in the robot. This solves some of the problems with 
off-line planners that are limited to local obstacle avoidance 
when executing the original path. Fig 6 shows the average 
the average online planning times (top) and the speed-up 
factor for different world sizes (bottom). 

 
 

 

 
Fig 4. Initial path planned in low-resolution prior map (top) and final 
path followed by the robot after high-resolution sensor updates (bottom)  

 
 
 
 
 
 
 
 
 

 
Fig 5. Average online planning time for forward search vs. re-planning 
with prior map updates (top). Average speed-up (bottom) 



 
Fig 6. Average online planning time for forward search vs. re-
planning with sensor updates (top). Average speed-up (bottom) 

While re-planning is significantly faster with either prior 
map updates or sensor updates, it has some important 
disadvantages with respect to the original PUP 
implementation (forward search). While in forward PUP the 
expanded states defined a thin volume, in backward PUP 
with D*-Lite the search space is usually a full 3-D volume. 
The average thickness of the search volume in forward 
search is between 1 and 2 cells, while the average thickness 
for replanning with backward search is about 20 cells. Thus, 
the memory requirements for backward search are 10 to 20 
times greater.  

Additionally, the initial planning time when performing 
backward search is much longer than in forward search. Fig 
7 shows the comparison between initial planning times for 
forward vs. backward search. The worst case is at 
1000x1000, where the initial planning time for backward 
search is 1500 seconds (25 minutes), while for forward 
search is 120 seconds (2 minutes). While this is an important 
limiting factor, most parts of the initial planning can be 
computed off-line, therefore reducing the initial planning 
time significantly. 

 
Fig 7. Average initial planning time for forward search vs. re-
planning with sensor updates. 

B. Field Tests 
The following test setup was implemented on the e-gator 

autonomous vehicle shown in Fig 8. We used an aerial 
photograph covering a 200x250m region at 30 cm/pixel as 
the source for our prior data. From this photograph, we 
estimated a traversal cost map by training a Bayes classifier 
and manually annotating roads and buildings. Additionally, 
the electric poles used as landmarks were also identified in 
the image and were manually labeled. 

 

 
Fig 8. E-gator autonomous vehicle used for testing and electric poles 
used for localization at test site. The vehicle equipped with wheel 
encoders and a KVH E- core 1000 fiber-optic gyro for dead reckoning, 
and a tilting SICK ladar and onboard computing for navigation and 
obstacle detection 

 
An initial path was planned based on this estimated cost 

map (prior map), the landmarks, and the estimated initial 
position and heading of the robot. Once the robot started 
moving, its sensors provided updates to the cost map (sensor 
updates), as well as detection information about the 
landmarks. A new path was replanned every second using 
the combination of the prior map, the sensor updates and the 
landmarks. Local obstacle avoidance was also performed at 
10Hz.  

As a reference, the same setup was also tested without 
PUP: using only the prior map (without landmarks), and 
only dead-reckoning for localization, while incorporating 
sensor updates into a standard planner (D*lite) that did not 
consider uncertainty.  

Each approach was run 5 times, for a total of 10 runs. Fig 
9 and Fig 10 show the paths planned and executed for one 
the runs in each setup, as well as the position reported by a 
WAAS-enabled GPS (for reference). Notice that the error 
between the robot’s position estimate and the GPS position 
is much smaller when using RPUP and that only when using 
RPUP the sensor obstacles are correctly positioned in the 
global map. Notice also that the path executed in the top part 
Fig 9  is significantly different from the path planned. This is 
due to replanning around a blockage detected by the sensors.  

   Fig 11 Shows the error in the position of the robot with 
respect to the position reported by the GPS. Notice how this 
error is less than 4 meters at all times when using RPUP, and 
grows continuously when using only dead-reckoning. 



 
Fig 9. Path planned (left) and executed (right) without GPS using 
RPUP. In  the left image the blue circles are unique detection regions 
generated by landmarks. In the right image, the blue line is the position 
estimate of the Kalman filter on the robot and the green line is the 
position reported by a WAAS differential GPS with accuracy of 
approximately 2 meters (for reference only). The orange regions represent 
sensor data, with obstacles shown as bright orange.  

Fig 10. Path planned (left) and executed (right) without GPS, using a 
standard planner. In the right image, the blue line is the position estimate 
of the Kalman filter on the robot and the green line is the position 
reported by a WAAS differential GPS with accuracy of approximately 2 
meters (for reference only). The orange regions represent sensor data, 
with obstacles shown as bright orange.  

Fig 12 shows the replanning times for the same run using 
RPUP. Notice how the times are usually less than one 
second and always less than two seconds. The average 
replanning time was 0.22 seconds, with a standard deviation 
of 0.23 seconds. 

While each of the 10 runs had slightly different 
characteristics, using RPUP always outperformed the regular 
planner. All five runs using RPUP were successfully 
completed, with uncertainties at the goal well below 5m. 
Only four of the runs with the regular planner were 
completed. The first run had to be aborted because the robot 
was unable to find a way around a group of rocks by the side 
of the road. Of the remaining runs, only the second run had 
an uncertainty at the goal below 5 meters. The other three 
runs had uncertainties of 10, 12 and 7 meters respectively. 

 Our approach was also tested in a larger, 600x700m area. 
Using the same test setup as in the previous experiments, a 

single 850m run was planned and successfully executed.  Fig 
13 shows the test site and the path executed.  

 
 

Fig 11. Position error when executing path using RPUP with landmarks 
(top) and when using a regular planner without landmarks (bottom). The 
blue solid line is the error in the position of the robot (difference between 
the robot’s position estimate and the GPS). The red dashed line is the 
GPS’s own error estimate. The green solid line is the robot’s error 
estimate. The dotted gray line is the sum of the error estimates of the GPS 
and the robot.  

 
 
 
 
 
 
 

Fig 12. Replanning times for the run using RPUP. Notice how 
replanning times are usually less than 1 second, and always less than 2 
seconds. 

 



Fig 13. Long run using RPUP. The blue line is the position estimate of 
the Kalman filter on the robot and the green line is the position reported 
by a WAAS differential GPS with accuracy of approximately 2 meters 
(for reference only). The orange regions represent sensor data, with 
obstacles shown as bright orange. The total length of the run was 850 
meters. 

VII. CONCLUSIONS AND FUTURE WORK 
We have introduced two novel approaches to planning 

with uncertainty in position that enable a robot to plan paths 
that incorporate changes detected in the environment and to 
navigate with imperfect prior maps. These approaches 
implement D*-lite as part of the planning with uncertainty 
algorithm proposed in [5] and incorporate changes that are 
registered with either the prior map (prior map updates)  or 
with the robot (sensor updates). 

Replanning with prior map updates provides performance 
improvements with respect to the original PUP approach of 
almost one order of magnitude. While performance is highly 
dependent on the quality of the original map and the specific 
changes that take place in the world, the results presented 
here show a performance gain of up to 7.5 (with a 
1000x1000 world). 

Replanning with sensor updates provides significant 
performance gains with respect to the original PUP 
approach, with the most significant gains being obtained 
with 1000x1000 worlds. At this size, the average 
performance gain is 62. The average time to replan a path 
was about 0.6 seconds, enabling this approach to be used as 
an on-line planner for some applications. While this 
approach may still be too slow for other applications, it is a 
significant step towards real-time, on-line path planning with 
uncertainty in position.  

We also presented results from several field tests 
confirming the advantages of using RPUP in GPS-denied 
environments, as well as the ability to replan in response to 
sensor updates. To the best of our knowledge, this is the first 
time that a planner that considers uncertainty in position for 
outdoor environments has been validated through 
experimental results.  

While the approaches presented here do not consider all 
the possibilities for incorporating new data into an existing 
plan, they represent the most common cases for goal-
directed navigation.  

Future work includes evaluating the integration of sensor 
data with prior map data in more complex environments, as 
well as using more complex sensor models to perform the 
fusion of sensor and prior map data. 
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