Probabilistic localization with a blind robot
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Abstract— Researchers have addressed the localization prob-
lem for mobile robots using many different kinds of sensors,
including rangefinders, cameras, and odometers. In this paper,
we consider localization using a robot that is virtually “blind”,
having only a clock and contact sensor at its disposal. This
represents a drastic reduction in sensing requirements, even in
light of existing work that considers localization with limited
sensing. We present probabilistic techniques that represent
and update the robot’s position uncertainty and algorithms
to reduce this uncertainty. We demonstrate the experimental
effectiveness of these methods using a Roomba autonomous
vacuum cleaner robot in laboratory environments.

I. INTRODUCTION

Localization is one of the best-studied problems in mobile Fig. 1. A Roomba autonomous vacuum cleaner robot.
robotics. Accurate knowledge of the robot’s position withi
its environment is widely considered to be essential for
mobile robots to be useful. Although robots often obtaintations [22]. However, that work relies in crucial ways
such knowledge by some combination of sensor measureqa assumptions that the robot's sensing and control are
ments, motion estimates, and pre-supplied initial cood#tj perfect. For example, certain portions of [22] depend on
information from sensors is usually the primary means dhe robot’s ability to slide along the environment boundary
eliminating position uncertainty. Understanding the rofe without triggering its contact sensor. If the robot's cahtr
sensing in the localization process is therefore essewtial admits even the slightest directional errors, such motions
complete understanding of localization problems. are impossible. In practice, sensing is rarely fully actara
In the mobile robotics literature, localization problemsand control is rarely perfect. In this paper we present new
take many forms. In this paper, we consider active globallgorithms that are robust to these errors and demonstrate
localization, in which a robot has access to a complete magxperimentally that these algorithms are effective.
of its environment but is totally ignorant of its positionhd The most successful published approaches to localiza-
robot must purposefully direct its motions to eliminatetthation are generally based on either particle filters [8], [11]
uncertainty. Using probabilistic techniques, we dematstr [12], [17], extended Kalman filters [13], [18], or grid-bake
that a certain global active localization problem can bédiscretizations [3], [5], [6], [14]. The novelty of our work
solved with very limited sensing capabilities. This work isis that we use a robot model in which the sensing and
distinguished from prior probabilistic localization tesues motion capabilities are severely limited. These limitatio
by the limitations on the robot’s sensing. We consider @troduce geometric issues, requiring new algorithms for
differential drive robot equipped with a contact sensor and both pose tracking and active localization. Our work also
clock, but no other sensors. draws inspiration from theoretical results on localizattbat
This work is motivated by a desire to understanditifer- use geometrical reasoning and set-based representafions o
mation requirement®f important robotic tasks. By finding uncertainty [10], [22], [27].
very simple robots that are able to complete certain tasks, The minimalist approach we take has a long history
we begin to identify necessary conditions on the sensing robotics. Researchers have studied the implications of
and motion capabilities for completing that task. In a morsensing limitations for navigation [19], [24], exploratil],
directly practical sense, studying robots with very simpl¢7], and manipulation [2], [20] tasks. The general problem
sensing schemes is profitable because such robots are betfedetermining the information requirements of robotickas
suited (for reasons of cost and complexity) for deploymeris taken up in [9], [21]. Our work contributes to this line
in large cooperative teams. of research by demonstrating that, with appropriate adapta
Prior theoretical work showed that active global localtions, such minimalist models are applicable in experimlent
ization problems can be solved under severe sensor liroentexts.



We conducted experiments using Roomba autonomous
vacuum cleaner robots, shown in Figure 1. The Roomba is
attractive as a research platform because it is inexpensi
and readily available, and because its sensors closelyhmatc
the abstract models we use.

Like many approaches to the localization task, our basi
method is probabilistic. In fact, our work can be considFig. 2. A robot with Gaussian rotational error starts in tiester of a

; ; ilatie i ; ctangular environment and moves forward to the environmeuandbary.
ered as exploring a kind of probabilistic information SpaC‘%‘Ehe probability density over points along the boundary isvah For

[16], which arises in partially observable Markov decisionystration purposes, the variance of the distributioriniractically large.
processes (POMDPs) [15], [25], [28]. As our algorithmleft] The robot moves upward. Although the resulting disfition appears

; ; ; ; erficially to be Gaussian, it is not. [right] The robot mnevat an
prOQres.’s.;es’ .th.e rc.)bOt mamtal.n.s an approxmatg, dlscréal#g)jle. Observe that, because of geometric effects, the methe oésulting
probability d|3_t”b_Ut|(_)n over positions glong the envinoent  gistribution need not be endpoint of the robot's nominaletcsry.
boundary. This distribution is updated in response to nmgtio
by the robot. For active localization, we use an entropy-
based heuristic to choose uncertainty-reducing motiohs. T
algorithm constructs a localization plan consisting ofesal/
subplans, each of which results in a r_nor_10ton|c decr_ea_se N possible, we ignore the robot’s clock during translations.
entropy, even if the entropy temporarily increases within a

subplan. This willingness to tolerate temporary increases _ '€ robot’s motions can be described as a sequence of
uncertainty is crucial to effective handling of the multides  iSCTete stages, in each of which the robot makes a single
distributions that arise in our problems. rotation, then moves forward until its contact sensor is

The remainder of this paper is organized as follows. ngggered. We number these stages with consecutive irgeger

present formal definitions for our robot model and for passivi = 1,2, - - . Since the robot can only move between points
and active localization problems in Section Il. Algorithies along oW, we need not consider the points in the interior
solve the passive and active problems appear in Sections WV as pOSS|bIe_ locations for the robot. )
and Il respectively. Details about our experiments are in NOt® that rotational errors accumulate over time, and the
Section V, followed by discussion and conclusion in Sec’0Pots true heading will become more uncertain as more
tion VI. stages go by. Since the error in the robot’s orientationaafest
k will be the sum of the error at stageplus all preceding
Il. PROBLEM STATEMENT error, we can say that the random varialblg representing

. . . k . .
In this section, we introduce our robot model and definé€ orientation error at step is Ry = >_;_, ri, in which
the passive and active localization problems we solve. i IS @ random variable describing the error resulting from

stepi. Note that ther;'s are independent and identically

A. Robot model distributed according t@. Let p;, denote the distribution of
A point robot with orientation moves in an environmentf2x. The result of this sum will depend on the single-stage
W c R? that is planar, closed, bounded, and polygonal. Therror distributionp. In the special case whegeis Gaussian
environment need not be simply connected. Bgt c W  With varianceo?, pj, is Gaussian with variances>.
represent the boundary &7 and letn denote the number B. Localization problems
of vertices ofoW. The robot knows its initial orientation,
but not its initial position within}/. We consider two related localization problems:
The robot is equipped with a contact sensor and a clock, « Passive localization- The robot's motions are con-
but no other sensors. We consider two types of motions that trolled by an external decision maker. The problem
these sensors enable. is to efficiently maintain and update the probability

« Rotations— Using its clock, the robot can rotate in  distribution of possible states of the robot.
p|ace by dead reckoning_ Motion by dead reckoning is e Active localization— The robot's primary task is to
notorious]y noisy, so we model the error in the amount eliminate Uncertainty in its pOSition. The prObIem is to
of rotation by a zero-mean densify We assume that choose motions so that the robot will be certain it is in
p is strictly increasing below its mean and strictly @ disk of radiuse with a probability at least — 6.
decreasing above its mean, and thdtas a continuous  Observe that to solve the active localization problem
cumulative distribution function. Figure 2 shows antypically requires as a “subroutine” a solution to the passi
example, in which a robot starts in the center of docalization problem.
rectangular environment and moves upward. Unfortunately, as the robot moves, the distribution of pos-
« Translations— The robot can move forward, but since itsible states alon§W becomes increasingly difficult to repre-
lacks odometry, the only reliable translation it can maksent analytically, even if both the prior and error disttibns
is to move forward until it reaches the environmentare well-behaved. Moreover, geometric features within the
boundary. We assume that the robot travels in a straightivironment will cause discontinuities that complicate th
line, but because we explicitly model orientation errorsanalytical representation of the distribution even furtfie®

our algorithms are robust to small deviations from
this assumption. Since we are interested in solving
localization problems with a little sensor information as
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Fig. 4. Computing the sét; of cells visible from a cells;. The diagram
depicts three cells fully visible from the midpoint ef and one cell that,
because of an obstruction, is only partially visible. Alufaells are included
- ] ~ inV;.

Fig. 3. A simple square environment, along with a 5-step plan sbives

the active localization problem in that environment. Théahstate is shown d intai bability distributi f ibl L.
in the top left. The final state, which concentrates neatlgfahe probability ar_‘ _mam an a probability distribution of possible pasis
mass in one corner of the square, is shown in the lower right. §hall ~ within the environment.

arrows in each picture show the direction of movement at thegt. st The robot receives as input a descriptiorﬂéf represented
as a doubly-connected edge list. As a preprocessing step, we

mbat thi mplexity. w roximate the true distritti compute for each cel; in the environment discretization
combat this complexity, we approximate the true dis a list V; C S of cells that are visible, either fully or

by discretizing the boundary of the environment into Smagartially, from the midpoint ofs;. See Figure 4. This step

cells of size at moske and recording the amount of prob- . o .
I : n mplished in time 1 mputing th
ability mass in each of these cells. Such a nonparametr‘fa be accomplished in tin@(mx logn) by computing the

S . . \fsibility polygon in T of each such midpoint [23].
representation is well-suited for representing the corjple Give)rll fheygnvironmeriﬂ/ acommandeg moti[on]direction
multimodal distributions that arise in global localizatio : c :

- R . : . u, and a belief distributionP,, the problem of passive
This discretization can be viewed as a p|eceW|se-consta]n't T .
) . . . X .. “localization is to compute an updated distributiBp,,. To
approximation to the underlying density function. We devid accomplish this, we compute a transition ma such
each edges of OW into [length(e)/(2¢)] equally-spaced ' U

cells. LetS = {s1,..., s}, in which eachs; € S is line that
segment iMWW, denote the set of discrete cells generated in Py = Ry i Py ()
this way. ] ) ] ]
Under this discretization, we can represent the robotsN€ interpretation of?,, ;. is that the entry at row, column
uncertainty as am:-dimensional column vector j contains the fraction of probability mass that moves from
- cell s; to cell s;, under a motion in direction.. We use
Pe=[Px - Pem |, (1) the subscript on the transition matrix? to emphasize the
in which P, ; is the probability of the robot being in cel} dependence on time-varying the orientation error distioiou
at stagek. We assume a uniform prior, so that P ) ) ,
It remains to describe how to comput, . Columni
Py; = length(s;) ) of this matrix describes how probability mass moves from

" perimeter(9W) s; to each other cell of the discretization. Since the robot

If additional information about the robot's starting pasitis Moves in a straight line, this fraction is nonzero only for
available (for example, a known starting position), thisian cells visible froms;, that is, the cells ifi/;. For each of these,
condition can be Changed according|y' we Compute two angle%l andgg that bound the interVébf

In this context, the input to the passive localization proborientation errors that, given commanded motion directipn
lem is the environmentV, a discretizationS, a motion leads the robot from the midpoint ef into a visible portion
direction u, and a probability vecto,; the output is a Of s;. By integratingp,, over the interval betweefy and6,,
probability vectorP,; the updated to reflect this motion. We obtain the transition probability from ce} to cell s;.
Similarly, note that if at least — § of the probability mass Sincep, has a continuous cumulative distribution function,
is concentrated in a single cell, we can be certain (modufé€ integral is guaranteed to exist. After all of the visitbdis
any errors introduced by the discretization) that the activin Vi are accounted for, the remaining probability remains
localization problem has been solved. Figure 3 shows @ncentrated ins;. This procedure is pictured Figure 5
starting distribution and possible solution for a very sienp and summarized in Algorithm 1. The algorithm runs in
environment.

INote that, if the visibility ofs; by the midpoint ofs; is obstructed by an
IIl. PASSIVE LOCALIZATION obstacle small relative te then visible portion of; need not be a segment.
. . . o Although, in general, this indicates tlds too large for localization iV,
In this section, we solve the passive localization prObthis case can be handled in Algorithm 1 by integrating ovehemnnected

lem, in which the task is to observe the robot's executionomponent of the visible portion of; and summing the results.
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Fig. 5. Computing a single entry iR, ;. Orientation errors betweefy ~ Fig. 6.  Adjusting robot's motion angle. [top left] An initiabimodal
and @, will lead the robot froms; to s;. distribution. [top right] Because of orientation errorspetion parallel to
the wall leaves a large fraction of the probability mass w@éd. [bottom]
- - — A small adjustment to the motion direction, computed by Alganitd with
Algorithm 1 PassivelLocalization W, S, Py, u) a = 0.1, corrects the problem.

1: R, < m x m matrix of zeros
2: for i € {1,...,m} do

3 m; — midpoint of s density function induced by;. This density has differential
4. for s, € V; do entropy
5: if s; #s; then
6: Pips — maximal subset of; visible fromm; Wfe) = - o fr(x)log fp, (x)dz (4)
7 01 — u — ANGLE(p; —m;) m
8: O — u — ANQGLE(pg —m;) = - Z/ fp,(x)log fp, (z)dz (5)
0 Ruti | 32 pi(0)do)| =1
10: end if
11 end for = - Zlength(si)Pk.,i log Py ;. (6)
’ i=1
12: Rk i 1-— . Ry . . . . .
13 end f’g}“ T aigiemgri Buns, Note in particular that this formulation differs from the

discrete entropy of;, because the contribution of each cell

14: P, Ry 1 P . : ; .
kil © Tk to h(fp,) is weighted by the size of that cell. Our algorithm

15: return P4

selects a series of motions, ..., u; intended to minimize
time O(m?), which (holding perimeter(91) constant), is B. Candidate subplans
O(e™?). Suppose two cells; ands; each have nonzero probability

in P,. What actions by the robot will transfer (most of)
the probability mass in these cells into a single common
Now we turn to the problem of active localization. Wedestination? A solution to a similar problem for a robot
present an algorithm that chooses motions for the robot inithout errors appears in [22]. The approach is based on
order to eliminate uncertainty in its position. The intoiti pursuit-evasion, in which one point (representing a pdssib
is to chain together a sequence of subplans, each of whipbsition of the robot) chases another, repeatedly moving in
“merges” the probability mass from two cells into a singlehe direction of the first step of the shortest pathVin
destination. This basic structure is inspired by the atbori  between the two points, until they finally merge.
of [22], but because we admit errors in control, the alganith  Unfortunately, this solution is not directly applicable,
requires significant modifications. Our algorithm is greedyecause it often generates motions that require the robot
in the sense that it selects, from a group of candidat® move very close t&W without triggering its contact
subplans, the subplan that makes the most “progress” towagdnsor. In extreme cases, the robot makes a “collapsing
localization. transition” by sliding along an edge @fl¥. Such motions
We propose a certain form of entropy as a progressre not reliable for the robot model in this work, because so
measure in Section IV-A, describe how we generate subplansich probability mass lies between angles occupied by the
in Section IV-B, and combine these two elements to form wall the robot is currently touching. This probability mass

IV. ACTIVE LOCALIZATION

complete active localization plan in Section IV-C. corresponds to the possibility that the robot may collidéhwi
the wall immediately. Figure 6 illustrates the phenomenon.
A. Progress measure This behavior can be minimized by adjusting the robot’s

We follow [5] and others in using entropy as a heuristianotion direction away from the boundary, thereby incregsin
for measuring the progress of the algorithm. Recall that the probability that the robot will move. Select an algarith
approximates the density of a continuous random variabfgarameter: € (0, 1/2], representing the maximum allowable
representing the robot’s true position. Ljgt, : 9W — [0,1]  chance of the robot failing to make a move. Then, given a
denote the (piecewise constant) approximation to the truesired motion directiom and a cells;, we can compute a



Algorithm 2 AdjustAction (u, s;, k) Algorithm 3 CandidateSubplan(s;, s;, Px)
1: (x1,z2) < endpoints ofs;, ordered so that the interior 1: ¢; «+ midpoint of s;

of W is on the clockwise side. 2: ¢o < midpoint of s;
2:m «— (x1 +x2)/2 3: Pin — P
3: Y1 <« ANGLE(xz1 —m) 4: m — empty list of actions
4: 1y «— ANGLE(z3 —m) 5: while |¢1 — ¢2] > ¢/2 do
5! Upnin < min(u, ANGLE((x9 — 21)1)) 6: u « first step of the shortest path from to ¢
6: Umaz — max(u, ANGLE((z2 — x1)"1)) 7. s« cell in S containingg;
70w — (Umaz + Umin)/2 8  u <« ADJUSTACTION(u, s, k)
8 b« f[wz, 1]pk(e)dé? 9: appendutor
9: if b < « then 10: Ry < PASSIVELOCALIZATION (W, S, Py, u)
10:  return u 1. Pry1 < RuipPr
11: end if 122 k—k+1
12: while [b — a| > ¢ do 13:  if h(fp,) < h(fp,,.,) then
13:  if b < « then 14: Tomin < T
14: Uiin < U 15: Prin — Py
15:  else 16:  end if
16: Umaz — U 17:  q1 < SHOOTRAY (W, g1, u)
17:  end if 18: g9 « SHOOTRAY (W, ¢2, u)
18 u — (Wmaz + Umin)/2 19: end while
19: b« f_wmwpk(e)da 20: return (Tpmin, Prmin)
20: end while
21: return u

(s;,s;) of cells. The algorithm considers only th€é pairs
with the highest scores. This had the effect of excluding
new motion direction.’, defined as the direction closest tolow-probability unions that would more likely scatter the
u that leaves at most probability of the robot not moving probability mass around the environment rather than lower
from s;. The resulting angle/’ will always be between: the entropy. Note that the pair;,s;) and (s;,s;) are
and the angle normal to thg in the interior direction. This distinct (and therefore considered separately) but aliiays
u’ can be approximated to within a toleran¢eising binary identical scores. In practice, we obtained acceptabletsesu
search. Algorithm 2 summarizes this method, which runs igetting N as low as 10.
time O(log(1/¢)).

This adjustment technique allows us to construct a subplan
that attempts to unify the probability mass in a given pair We have implemented this algorithm and evaluated its
of cells s; and s;. We use the midpoints of the cells effectiveness in localizing a Roomba autonomous vacuum
as representatives, and apply the pursuit-evasion tes@niccleaner robot. In this section, we describe those expetsnen
introduced in [22] to unify those representatives. At each Since the Roomba is a disk rather than a point, we perform
step, however, we apply Algorithm 2 to adjust those motiongomputations using the configuration space of the robot
to allow for orientation errors. This process continuesluntin W, rather thanW itself. Where the boundary of the
the two representatives are merged. Since, in contraslp [2configuration space is a circular arc, we use a piecewise-
some motions may actually increase the robot’s uncertainfjynear approximation by segments of length less than
we truncate the subplan at the stage at which entropy isNote that even as simple a robot as the Roomba is
lowest. The complete algorithm to generate subplans appe&€uipped with several sensors that we ignore in our models.

V. EXPERIMENTAL RESULTS

in Algorithm 3. In particular, the robot has an infrared wall sensor wittgean
o approximately 5cm, a more powerful infrared sensor for re-
C. A complete localization plan ceiving remote control commands, encoders for each wheel,

Now we can state the complete active localization algcand several sensors that report on the internal conditibns o
rithm, which appears in Algorithm 4. At each step, it considthe robot (battery voltage, battery current, etc.). Altjiou
ers a set of candidate subplans generated by Algorithm 3 asdme of these sensors provide information that might be
appends to its master plan the candidate that improves thelpful for localization, we ignore them in this work becaus
entropy the most. This process continues until no entropypur intention is to find minimal sensor configurations that
reducing candidate can be found. enable localization solutions. Additionally, because ala-

Which candidate subplans should be considered? Ideallyility problems that may eventually arise due to accumnggti
all m?—m possibilities should each be evaluated, but becauseror in dead reckoning, this algorithm was created with the
generating each subplan is computationally expensive, thintention of eventually using a compass instead of a clock,
approach is impractical. Instead, we choose an algorithoalibration data, and initial heading. Therefore, we do not
parameterN and we assign a scotE, ; P, ; to each pair use the clock for anything other than rotating.



Algorithm 4 ActiveLocalization (W) h(fr,) = 5158351 h(fr,) = 1667621

1: S « discretization ofoW into cells no larger thafe ‘

2. m — empty list of actions \ T

. length(sy) length(s,,) T

3 Py~ per?mgeter?BW) e pereimgeters(('?W) ]

4: k<0
5: loop

6: S—SxS—{(s,8)|seS}

—

h(fpy,) = 0.009535

7. sort S by decreasing values d¥; ; Py ;

8: deleteall but the first/V elements fromS

9. Ppin — P& b

100 Tmin < empty list of actions Fig. 8. Localization in a simple environment. [top left] Theitial
1. for (s, sj) in S do probability distribution around the environment bounddtgp right] An
12 (Fuun. Pou) — CANDIDATE SUBPLAN(s, 5, Fy)  IMemedite sep fesiig fom e st twe stee of il
13: if n(fp.,.) <h(fp,.,) then

14: Tmin <~ Tcan ) N

15: Pmin - Pcan h(/n,):s.suﬂs h(fp,) = 0.331

16: end if
17:  end for "

18:  if my,i, IS emptythen

-
19: return m

20: else Fig. 9.  Localization in a non-simple environment. [left] Theitial

21: append 7,,;, tO T probability distribution. [right] The final probability dfribution.

22: k «— k + length(mmin)

23: Py Prin B. Execution examples

2. end it We tested Algorithm 4 on t thetic envi t
25: end |00p e lesie goritnm on two syntnetc environments,

depicted in Figure 7. Figure 8 shows a localization plan for
the environment in the top portion of Figure 7.0Our implemen-
tation computed a 10-stage plan that concentrated edéentia
all of the probability mass in a single cell. The Roomba was
able to repeatedly localize itself in this environment gsin
this plan, without any failures. Our algorithm computes a
similar plan even if the variance in the rotational error is
increased by a factor of five. This occurs largely because the

Fig. 7. Two laboratory environments we used to test AlgorithniThe  environment is relatively simple, having few concavitiesl a
floor is a pitted vinyl surface, and the walls are covered eibibcks. no holes

Figure 9 shows a significantly more difficult environment.
There are two holes, and there is a narrow corridor in the
center of the environment around which it is difficult for
a Roomba to navigate. It also contains a segment in the

) ] __upper left corner where the environment width is only larger
Since the robot uses dead reckoning to rotate, calibratiQan the robot by a few centimeters. Our implementation

was required to minimize the rotational error. The robot Wagomputed a 34-stage plan that concentrated al@t of

commanded to rotate a certain amount of time in an effort e probability mass in a single cell. The Roomba was also
get it to rotate a certain number of radians. Our resultsig thypje to consistently localize itself in this environment.

calibration indicate that the manufacturer-specifiedtiobal We also tested the algorithm in simulation (but not with

speeds were off by small amounts, though large enough thaty sical experiments) on about 12 other environments. We
they had to be considered. We also confirmed that the safig e aple to solve most of them without any parameter

calibration works well for two other Roombas not used fog,ning using a standard set of parameters. The left portion
collecting the calibration data. The calibrations were enad ot Figyre 10 shows one of these, along with the final state
a floor with pitted vinyl tiles, and it is possible that difée1t  4fter executing a 52-step localization plan. The enviramsie
flooring materials would require different calibrations. requiring special tuning of, N, ande shared the feature of

At each stage, the rotation error is relatively small. Irhaving portions between which it is difficult to move without
our experiments, we modelled this error by using foa stopping in the interior and turning, an action that the tobo
Gaussian distribution with variance? = 0.0001. Recall, is incapable of performing. The right portion of Figure 10
however, that at stagk, the accumulated orientation errorshows an extreme example of this feature, where movements
pr has variancer? = ko?. by our robot between arms of the environment are difficult

A. Error modeling
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Fig. 10. [left] The final probability distribution after tregorithm was run
on a complicated, jagged environment. [right] A problematiiremment [8]
for the algorithm. The algorithm could not solve this envimant with
reasonable parameters.
to execute reliably. [9]
[10]

VI. DISCUSSION AND CONCLUSIONS

In this paper, we presented algorithms for both passiv%]
and active localization problems a robot equipped Wit}[1
only a contact sensor and a clock, and demonstrated its
usefulness experimentally. We have left several importabt?!
areas unexplored.

First, the active localization algorithm depends on sevi3]
eral constants that must be hand-tuned. The discretization
resolutione can be eliminated using dynamic discretization}, 4
methods [4]. We found that the performance of Algorithm 4
depends on only weakly oV, the number of candidate
subplans considered. It remains a challenging problem {(1)5]
choose« in an automated way that balances overly long
localization plans (ifo is too small) against the inability to [16]
deal with multimodal distributions (if is too large).

Second, the environments we used for our experiments]
are relatively small and artificial. We are actively working
to implement our techniques in a much larger, more realist'[gg]
office environment. We expect larger environments to signif
icantly increase the computation requirements and magniﬁlg]
the noise of the robot’s control.

Finally, we are also interested in solving navigation prob-
lems with similar sensor limitations. This problem is retht [20]
to both path planning and active localization, because the
robot must carefully plan paths that keep uncertainty ati]
manageable levels throughout the robot’s motion. Priorkwor[zz]
on so-called “coastal navigation” with longer-range sesso
[26] is also relevant. More detailed tasks, such as mappirngg]

or delivery, might require even more informative sensors. [24]
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