
Rigorously Bayesian Range Finder Sensor Model for Dynamic

Environments

Tinne De Laet, Joris De Schutter and Herman Bruyninckx

Abstract—This paper proposes and experimentally validates
a Bayesian network model of a range finder adapted to
dynamic environments. The modeling rigorously explains all
model assumptions and parameters, improving the physical
interpretation of all parameters and the intuition behind the
model choices. With respect to the state of the art model [1],
this paper proposes: (i) a different functional form for the prob-
ability of range measurements caused by unexpected objects,
(ii) an intuitive explanation for the discontinuity encountered
in the cited paper, and (iii) a reduction in the number of model
parameters, while maintaining the same representational power
for experimentally obtained data. The proposed beam model
is called RBBM, short for Rigorously Bayesian Beam Model.
A maximum-likelihood estimation and a variational Bayesian
estimation algorithm (both based on expectation-maximization)
are proposed to learn the model parameters.

I. INTRODUCTION

Intelligent robot behavior requires sensors to allow a robot

to perceive its environment. To translate sensor measure-

ments into intelligent behavior, they have to be interpreted

in the context of a measurement model that describes the

physical formation process of a measurement. The design

of a measurement model is a trade-off between accuracy

(hence, increased intelligence) on the one hand, and com-

plexity and robustness on the other hand. The latter are

improved by models that use only physically interpretable

parameters. Accuracy has two aspects: (i) the mathematical

measurement model is a good approximation of the physical

sensor, and (ii) the stochastic nature of the physics involved

is represented by conditional probabilities on a well-chosen

subset of the model parameters.

This paper focuses on (sonar and laser) range finders,

whose physical principle is the emission of a sound or light

wave, followed by the recording of its echo. Highly accurate

measurement models would include physical phenomena

such as surface curvature and material absorption coefficient,

but these are difficult to estimate robustly in unstructured

environments. Hence, the literature typically relies on purely

geometric models, either in discrete geometric grids [2]–[6],

or in continuous geometric models [1], [7], [8]. Moravec [6]

proposed (in general) non-Gaussian measurement densities

over a discrete grid of possible distances measured by sonar;

the likelihood of the measurements has to be computed for
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all possible positions of the mobile robot at a certain time.

Even simplified models [5] in this approach turned out to be

computationally too expensive for real time, so [4] proposed

a sensor model which makes use of only the distance to

the closest obstacle in the map along the direction of the

sensor; the model is a mixture of two physical causes for

a measurement: a hit with an object in the map, or with an

object not yet modeled in the map. An analogous mixture [1],

[7] adds two more physical causes: a “random” measurement,

and a “maximum reading” measurement resulting from using

the sensor beyond its range. [1], [8] use a continuous model,

[7] presents the discrete analog of the mixture, taking into

account the limited resolution of the range sensor.

This paper proposes a rigorously Bayesian modeling of

the probabilistic measurement model for a range finder

adapted for the use in dynamic environments. Similar to [1],

[8] the measurement model is derived for the continuous

domain. Unlike the previous proposed models the mixture

components are founded on a rigorously Bayesian modeling.

This modeling makes use of probabilistic graphical models,

in this case Bayesian networks. The proposed beam model is

called RBBM, short for Rigorously Bayesian Beam Model.

II. BEAM MODELS OF RANGE FINDERS

The goal of this paper is to derive a probabilistic measure-

ment model p (Z = z | X = x, M = m)1 for a range finder,
i.e. the beam model; Z indicates the measured range, X
the position of the mobile robot (and of the sensor mounted

on it), and M the environment map. An ideal deterministic

range sensor gives a range measurement z⋆ = g (x, m),
g () being the ideal measurement function. In practice, ideal
measurements are disturbed by, for instance, physical noise

and inaccurate modeling of sensor and environment. The

probabilistic representation p (z | x, m) of the measurement
model reflects the uncertain outcome of the measurement due

to such disturbances. Since the environment is often assumed

static, unmodeled dynamics in the environment (e.g., people

or unmodeled robots moving in front of the sensor) directly

jeopardize the estimation results.

This paper gives a rigorously Bayesian derivation for

a probabilistic measurement model of range finders in a

dynamic environment. The innovations of the presented

approach are (i) to introduce extra state variables A = a
for the positions of unmodeled objects in the probabilistic

measurement model p (z | x, m, a), and (ii) to marginalize

1To simplify notation, the explicit mention of the random variable in the
probabilities p (X = x) is omitted whenever possible, and replaced by the
common abbreviation p (x).

2008 IEEE International Conference on
Robotics and Automation
Pasadena, CA, USA, May 19-23, 2008

978-1-4244-1647-9/08/$25.00 ©2008 IEEE. 2994



out these extra state variables from the total probability

before estimation. This is required because extra variables

(exponentially!) increase the computational complexity of

state estimation, and the position of unmodeled objects is

typically not of great interest anyway. In summary, the

marginalization

p (z | x, m) =

∫

a

p (z | x, m, a) p (a) da, (1)

avoids the increase in complexity to infer the conditional

probability distributions p (x) and p (m), while maintaining
the modeling of the dynamic nature of the environment. Sec-

tion II-A explains which extra state variables are physically

relevant; Section II-B explains the steps to simplify the large

joint probability density function of the extended state to a

factored form that is computationally cheap to marginalize.

A. Bayesian model with extra state variables

Bayesian networks graphically represent probabilistic re-

lationships among the variables in a mathematical model,

to structure probabilistic inference computations with those

variables [9], [10]. The network consists of: (i) A set of

random variables connected by directed edges forming a

directed acyclic chain (DAG); (ii) Each discrete (continu-

ous) random variable has a finite (infinite) set of mutually

exclusive states; (iii) each random variable A with par-

ents B1, . . . , BN has a conditional probability distribution

p (A | B1, . . . , Bn) (called conditional probability table for
discrete variables). In this application, an unknown number

n of unmodeled objects is present in the environment.
Depending on the position of the jth unmodeled object on the
measurement beam xNj , the unmodeled object is occluding

the environment or not. k is the total number of occluding
objects out of the n unmodeled objects, and the position of
such occluding objects on the measurement beam is denoted

by xKi. If the environment is occluded by an unmodeled

object, the range sensor will ideally measure z⋆
occl = xKc,

with xKc the position of the closest occluding object.

The following extra state variables a of Eq. (1) are
included in the Bayesian model: N is the discrete random
variable indicating the unknown number of unmodeled ob-

jects in the environment; XNj is the continuous random

variable for the position of the jth unmodeled object on
the measurement beam; K is the discrete random variable

indicating the number of objects occluding the measurement

of the map; XKi is the continuous random variable for the

position of the ith occluding object on the measurement
beam; and Z⋆

occl is the continuous random variable indicating

the ideal range measurement of a the closest occluding

object. Figure 1 shows all these variables Z, X, M, N, XN =
{XNj}j=1:n, K, XK = {XKi}i=1:k, Z⋆

occl in the Bayesian

network for the probabilistic range finder measurement

model.

The arrows in the network model causal relationships be-

tween the variables. For example, X and M unambiguously

determine the measured range Z in the case of a perfect
sensor and in absence of unmodeled occluding objects.

N

K

XKi

XNj

X

Z⋆
occl Z

M

n

k

p

σm

Fig. 1. The Bayesian network for the probabilistic measurement model
supplemented with the deterministic parameters shown explicitly by the
smaller solid nodes using a compact representation with plates (the rounded
rectangular boxes). A plate represents a number, indicated in the lower right
corner, of independent nodes of which only a single example is shown
explicitly.

The number of occluding objects K depends on the total

number N of unmodeled objects and their positions XN

with respect to the measurement beam. Also X and M have

a causal impact on K: the larger the expected measurement
z⋆, the higher the possibility that one or more objects are

occluding it. The positions on the measurement beam XK

of the occluding objects are equal to the positions of the K
unmodeled objects that are occluding the map. Therefore,

the random variables XK are not only influenced by K but
also by XN . Since the K objects are occluding the map,

their positions on the measurement beam are limited to the

interval [0, z⋆], so XK has a causal dependency on X and
M . The ideal measurement z⋆

occl of an occluding object is

the position of the occluding object closest to the sensor,

so Z⋆
occl depends on the positions XK of the occluding

objects. Finally, the measurementZ depends also on the ideal
measurement of the occluding object Z⋆

occl and the number

of occluding objects K .
As explained before inferring the probability distribu-

tion of the extra state variables such as p (n) is of-
ten infeasible. Marginalization of the extra state variables

Z, X, M, N, XN , K, XK , Z⋆
occl avoids the increase in com-

plexity of the estimation problem, but maintains the modeling

of the dynamic nature of the environment. Marginalization

requires all conditional probability tables and conditional

probability distributions of each random variable condition-

ally on its parents. Therefore, first of all some assumptions

have to be made for p (n). Assume that the probability of
the number of unmodeled objects decreases exponentially,

i.e. p (n) is given by:

p (n) = (1 − p) pn, (2)

with p defined here as the degree of appearance of unmodeled
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objects. Secondly, assume that nothing is known a priori

about the position of the unmodeled objects on the measure-

ment beam, so the unmodeled object’s position is assumed

to be uniformly distributed over the measurement beam:

p (xNj | n) =

{
1

zmax
if xNj ≤ zmax

0 otherwise
. (3)

Thirdly, assume the unmodeled objects are independent:

p (xN | n) =
n∏

j=1

p (xNj | n) . (4)

Next, an expression is needed for the conditional probabil-

ity: p (k | n, xN , x, m), i.e. the probability that k of the n
unmodeled objects are occluding the measurement of the

map m. An unmodeled object is occluding the map m if

it is lying on the measurement beam and in front of the map

feature. It can be easily seen (or mathematically derived),

that p (k | n, xN , x, m) is a binomial distribution:

p (k | n, xN , x, m) =







(
n
k

)

µk (1 − µ)
n−k

if k ≤ n

0 otherwise

(5)

where µ is the probability that an unmodeled object is

occluding the map and

(
n
k

)

= n!
(n−k)!k! is the number

of ways of choosing k objects out of a total of n objects.
Since it was assumed that the positions of the unmodeled

objects were uniformly distributed µ, the probability that an
unmodeled object is occluding the map is:

µ = p (xNj < z⋆) =
z⋆

zmax
. (6)

Furthermore, an analytical expression for p (xK | xN , k) is
necessary. The positions of the occluding objects xK are the

positions of those unmodeled objects xN that are occluding

the environment. In other words, xKi equals xNj if and only

if the unmodeled object is occluding the environment, i.e.

xNj ≤ z⋆:

p (xKi | xNj , k, x, m) =






1
p(xNj≤z⋆)δ (xKi − xNj)

= zmax
z⋆ δ (xKi − xNj) if xNj ≤ z⋆

0 otherwise

(7)

with δ the Dirac function and xKi the occluding object cor-

responding to xNj . The perfect measurement of a occluding

object z⋆
occl is that of the closest occluding object xKc:

p (z⋆
occl | xK) = δ (z⋆

occl − xKc) . (8)

The conditional probability p (z | x, m, z⋆
occl, k) has two main

cases, the first for k = 0 where no occlusion is present and
the sensor is observing the modeled map m and the second
case for k ≥ 1 where the sensor observes an occluding
object. If the measurement noise is modeled by a zero mean

Gaussian with standard deviation σm,

p (z | x, m, z⋆
occl, k) =

{
N (z; z⋆, σm) if k = 0
N (z; z⋆

occl, σm) if k ≥ 1.
(9)

The Bayesian network for the probabilistic measurement

model supplemented with the introduced parameters p and
σm is shown in Figure 1.

B. Marginalization of extra state variables

This section shows the different steps needed to marginal-

ize out the extra state variables introduced in Eq. (1),

and motivates the assumptions that lead to an analytical

measurement model.

The product rule rewrites the measurement model

p (z | x, m) as:

p (z | x, m) =
p (z, x, m)

p (x, m)
=

p (z, x, m)

p (x) p (m)
, (10)

since X and M are independent. The numerator is obtained

by marginalizing the joint probability of the whole Bayesian

network pjoint = p (z, x, m, n, xN , k, xK , z⋆
occl) over z⋆

occl,

xK , xN , n and k:

p (z, x, m) =

∫
∑

k

∫
∑

n

∫

pjoint dxN dxK dz⋆
occl. (11)

Using the chain rule to factorize the joint distribution and

substituting (11) in (10) gives:

p (z | x, m) =

∫
∑

k

p (z | x, m, z⋆
occl, k)

∫

p (z⋆
occl | xK)

p (k, xK | x, m) dxK dz⋆
occl, (12)

where p (k, xK | x, m) =
∑

n

p (k | n, x, m) p (n)

∫

xN

p (xK | xN , k, x, m) p (xN | n) dxN

︸ ︷︷ ︸

=p(xK | n,k,x,m)

, (13)

in which the binomial distribution p (k | n, xN , x, m) of
Eq. (5) can be moved out of the integral (since it is indepen-

dent of xN ) and is further on written as p (k | n, x, m). Now
focus on the integral over xN and study the part over the

position of the object xNj . Substituting (3) and (7) results

in:

p (xKi | n, k, x, m) =

{
1
z⋆ if xKi ≤ z⋆

0 otherwise.
(14)

This shows that xKi is uniformly distributed when condi-

tioned on k, n. Since all occluding objects are considered
independent:

p (xK | n, k, x, m) =

{(
1
z⋆

)k
if xKi ≤ z⋆, ∀0 ≤ i ≤ k

0 otherwise.
(15)

Substituting the above equation in (13) gives:

p (k, xK | x, m) =







(
1
z⋆

)k
p (k | x, m) if

{

xKi ≤ z⋆

∀0 ≤ i ≤ k

0 otherwise
(16)
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where (1/z⋆)k is moved out of the integral and

p (k | x, m) =
∑

n

p (k | n, x, m) p (n) . (17)

Substituting (2) and (5) in the above infinite sum over n

gives:

p (k | x, m) =

∞∑

n=k

[(
n
k

)

µk (1 − µ)
n−k

(1 − p) pn

]

. (18)

It can be proved that this infinite sum can be simplified to:

p (k | x, m) = (1 − p′) p′k, with p′ =
µp

1 − (1 − µ) p
. (19)

As will be seen later on, p′ has a clear physical interpretation:
it is the probability that the map is occluded by an unmodeled

object (Eq. 38). Substituting the analytical expression for

p (k | x, m) in (16) and substituting the result in (12) gives:

p (z | x, m)=

∫
∑

k

p (z | x, m, z⋆
occl, k) (1 − p′) p′k

p (z⋆
occl | k, x, m) dz⋆

occl, with (20)

p (z⋆
occl | k, x, m)=

∫

xK

p (z⋆
occl | xK) p (xK | k) dxK . (21)

Substituting (8) in the above equation results in:

p (z⋆
occl | k, x, m) =

∫

xKc

δ (z⋆
occl − xKc) p (xKc | k) dxKc

= p (xKc = z⋆
occl | k, x, m) . (22)

This equation shows that the conditional probability

p (z⋆
occl | k, x, m) represents the probability that the perfect

measurement of the nearest occluding object is z⋆
occl, i.e.

the probability that the nearest occluding object is located

at z⋆
occl. This is only the case when one of the k objects on

the measurement beam is located such that z⋆
occl is measured

and all other objects on the measurement beam are located

behind the occluding object, or expressed in probabilities:

p (z⋆
occl | k, x, m) =

k∑

i=1

p (xK 6=i ≥ z⋆
occl | k, x, m) p (xKi = z⋆

occl | k, x, m) .

(23)

Since xK is uniformly distributed over [0, z⋆] (14),
p (z⋆

occl | k, x, m) can be written as:

p (z⋆
occl | k, x, m) = k

1

z⋆

(
z⋆ − z⋆

occl

z⋆

)k−1

. (24)

Now turn the attention to the summation over k in (20):

p (z, z⋆
occl | x, m) =

∑

k

p (z | x, m, z⋆
occl, k) p (z⋆

occl | k, x, m) (1 − p′) p′k. (25)

Split the summation in (25) in two parts: one for k = 0,
when there is no occlusion and one for k ≥ 1 when there

is, and substitute the expression for p (z | x, m, z⋆
occl, k) given

by (9):

p (z, z⋆
occl | x, m) = N (z; z⋆, σm) p (z⋆

occl | k = 0, x, m)

(1 − p′) + N (z; z⋆
occl, σm) p (z⋆

occl | x, m) , (26)

with p (z⋆
occl | x, m)=

∞∑

k=1

p (z⋆
occl | k, x, m) (1 − p′) p′k.(27)

Substituting (24) in (27) results in:

p (z⋆
occl | x, m) =

∞∑

k=1

k
1

z⋆

(
z⋆ − z⋆

occl

z⋆

)k−1

(1 − p′) p′k, (28)

which can be simplified to:

p (z⋆
occl | x, m) =

(1 − p′) p′

z⋆

[

1 −
(

z⋆−z⋆
occl

z⋆ p′
)]2 . (29)

Substituting (29) in (26) gives:

p (z, z⋆
occl | x, m) = N (z; z⋆, σm) p (z⋆

occl | k = 0, x, m)

(1 − p′) + N (z; z⋆
occl, σm)

(1 − p′) p′

z⋆

[

1 −
(

z⋆−z⋆
occl

z⋆ p′
)]2 . (30)

Substituting the result of the summation over k in (20) shows
that only the integration over z⋆

occl still has to be carried out:

p (z | x, m) = (1 − p′)N (z; z⋆, σm) + p′
∫

N (z; z⋆
occl, σm)

1 − p′

z⋆

[

1 −
(

z⋆−z⋆
occl

z⋆ p′
)]2 dz⋆

occl . (31)

The first term of the right hand side is a Gaussian distribution

around the ideal measurement multiplied with the probability

of no occlusion (k = 0). The second term is an integration
over all possible positions of the occluding object of a scaled

Gaussian distribution centered at the ideal measurement of

the occluding object (z⋆
occl). The scaling factor represents the

probability the occluding objects are located such that z⋆
occl

is measured:

p (z⋆
occl | x, m) =

p′ (1 − p′)

z⋆

[

1 −
(

z⋆−z⋆
occl

z⋆ p′
)]2 . (32)

This scaling factor can be rewritten as:

p (z⋆
occl | x, m) =

p (1 − p)

zmax

[

1 −
(

1 −
z⋆

occl

zmax

)

p
]2 , (33)

which is independent of z⋆. This is in accordance with

intuition, since one expects p (z⋆
occl | x, m) i.e. the proba-

bility distribution of the ideal measurements caused by the

occluding objects to be independent of z⋆, the measurement

in the case there would be no occlusion. Furthermore, the

likelihood of sensing unexpected objects decreases with

the range, as expected. This is easily explained with the

following thought experiment: if two independent objects are
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Fig. 2. Quality of approximation of integral with p = 0.8, zmax = 10,
z⋆ = 5 and σm = 0.15.

present with the same likelihood in the perception field of the

range finder, and the first object is closest to the range sensor,

then it is more likely to measure the first object. To measure

the second object, the second object should be present and

the first object should be absent [1].

Until now, no approximations where made to obtain

Eq. (31) for the beam model p (z | x, m). The integral
over the scaled Gaussian distributions however, can’t be

obtained analytically. Therefore a first approximation in the

marginalization is made, neglecting the noise on the range

measurement in the case an occluded object is measured,

i.e.: N (z; z⋆
occl, σm) ≈ δ (z − z⋆

occl) , where δ represents the
Dirac function. Using this approximation the integral in the

right hand side of (31) is approximated as:

p′ (1 − p′)

z⋆
[
1 − z⋆−z

z⋆ p′
]2 =

p (1 − p)

zmax

[

1 −
(

1 − z
zmax

)

p
]2 . (34)

Figure 2 shows the quality of the approximation compared

to the approximation of the integral by an finite sum with

step size 0.01. It is clear that the approximation introduces
a discontinuity around z = z⋆. Using the proposed approx-

imation for the integral the resulting measurement function

is: p (z | x, m) =





(1 − p′)N (z; z⋆, σm) + p′
(1−p′)

z⋆[1−( z⋆
−z

z⋆ p′)]
2 if z ≤ z⋆

(1 − p′)N (z; z⋆, σm) otherwise

, (35)

as shown in Figure 3.

The measurement model can be written as a mixture of

two components:

p (z | x, m) = π1phit (z | x, m) + π2poccl (z | x, m) , (36)

with π1 = (1 − p′) (37)

π2 = p′ (38)

phit (z | x, m) = N (z; z⋆, σm) (39)

poccl (z | x, m) =







1
z⋆

1−p′

[1−( z⋆
−z

z⋆ p′)]
2 if 0 ≤ z ≤ z⋆

0 otherwise.
(40)
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p (z | x, m)

z

Finite sum
Approximation

Fig. 3. p (z | x, m) with p = 0.8, zmax = 10, z⋆ = 5 and σm = 0.15.

C. Extra components

Occasionally, range finders produce entirely unexplainable

measurements. These unexplainable measurements are often

caused by phantom readings when sonars bounce off walls,

or suffer from cross-talk [1]. These unexplainable measure-

ments are modeled using a uniform distribution spread over

the entire measurement range [0, zmax]:

prand (z | x, m) =

{
1

zmax
if 0 ≤ z ≤ zmax,

0 otherwise.
(41)

Furthermore, sensor failures typically produce max-range

measurements, modeled as a point-mass distribution centered

around zmax:

pmax (z | x, m) = I (zmax) =

{

1 if z = zmax,

0 otherwise.
(42)

These two extra components can be added to (36), resulting

in the final RBBM:

p (z | x, m) = π1 phit (z | x, m) + π2 poccl (z | x, m)+

π3 prand (z | x, m) + π4 pmax (z | x, m) , (43)

where π3 and π4 are the probabilities that the range finder
returns an unexplainable measurement and a maximum read-

ing, respectively. Furthermore,

π1 = (1 − p′) (1 − π3 − π4) and (44)

π2 = p′(1 − π3 − π4), (45)

while phit (z | x, m), poccl (z | x, m), prand (z | x, m) and
pmax (z | x, m) are given by (39), (40), (41) and (42) respec-
tively.

With respect to the state of the art beam model of Thrun et

al. [1], the model proposed here, Eq. (43), has: (i) a different

functional form for the probability of range measurements

caused by unmodeled objects, (ii) an intuitive explanation

for the discontinuity encountered in the cited paper, and

(iii) a reduction in the number of model parameters. Thrun
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Fig. 4. Graphical representation of the mixture measurement model with
latent correspondance variable and intrinsic parameters.

et al. [1] assume that poccl (z | x, m) has an exponential
distribution, while this paper shows that the distribution is

quadratic, Eq. (40). As stated in the previous paragraph,

the discontinuity of the RBBM (Fig. 3) is caused by an

approximation. While Thrun’s model considers the decay of

poccl (z | x, m) to be independent of π2, the probability of an
occlusion, it is shown here that they both depend on the same

parameter p′ (Eq. (40), Eq. (45)). Therefore the RBBM has
fewer parameters than Thrun’s model.

III. LEARNING THE RBBM MODEL PARAMETERS

The RBBM, Eq. (43), depends on four independent model

parameters:

Θ = [σm, p′, π3, π4] , (46)

while zmax is a known sensor characteristic. This set of
parameters has a clear physical interpretation; σm is the

standard deviation of the zero mean Gaussian measurement

noise in Eq. (9) governing phit (z | x, m) (Eq. (39)); p′,
defined in Eq. (19), is the probability that the map is

occluded (p (k ≥ 1 | x, m)); π3 and π4 are the probabilities
that the range finder returns an unexplainable measurement

(unknown cause) and a maximum reading (sensor failure),

respectively.

The physical interpretation of the Θ parameters allows to
initialize them by hand. However, another, more flexible way

is to learn the model parameters from actual data. Further-

more, this is also a validation for the proposed analytical

model: if the learning algorithm succeeds in finding model

parameters such that the resulting distribution gives a good

explanation of the data, the analytical model is likely to agree

well with reality. This section presents a maximum likelihood

(ML) and a variational Bayes (VB) estimator to learn the

parameters from data.

A. Maximum likelihood estimator

A ML estimator is proposed to identify the parameters

Θ that maximize the likelihood of the data Z = {zj} with
associated positions X = {xj} and map m:

Θ = argmax
Θ

log p (Z | X, m, Θ) . (47)

When using the mixture representation of the measurement

model (43)2 the estimation problem can be formulated as

2In the proposed estimators the maximum reading component is not
considered. Extension of the estimators to include this extra component
is however straightforward.

finding the ML estimates for the parameters π1, π2, π3 and
π4. The ML estimate for the parameter p

′ is easily obtained

from the reformulated ML estimates using p′ = π2
1−π3−π4

.

Since it is not known which of the three possible causes ac-

tually caused each of the measurements under consideration

the ML estimation problem is difficult and lacks a closed-

form solution. If however, the corresponding causes of the

datapoints would be known, the solution is easily obtained

in closed form. Therefore introduce a latent correspondence

variablesD having a 1-of-K representation in which a partic-
ular element dk is equal to 1 and all other elements are zero.

This indicates that the cause k caused the datapoint under
consideration. The graphical representation of the mixture

formulation of the measurement model including the latent

correspondence variable is shown in Figure 4. Although with

this unknown correspondences, the ML estimation problem

lacks a closed-form solution, an expectation-maximization

approach (EM) can solve the problem by iterating an ex-

pectation and a maximization step. The EM-algorithm is an

elegant and powerful method for finding ML solutions for

models with latent variables [11]–[13]. The expectation step

calculates an expectation for the correspondence variables

dk while the maximization step computes the other model

parameters under these expectations. Algorithm 1 presents

an EM-approach for the ML-estimator, further on called ML-

EM algorithm.

Algorithm 1ML-EM estimator for RBBM model parameters

while convergence criterion not satisfied do

for all zj in Z , with j = 1 : J , where J = |Z|−1 do

calculate z⋆
m

η = [ π1 phit (zj | xj , m) + π2 poccl (zj | xj , m)+
π3 prand (zj | xj , m)]

−1

γ (dj1) = η π1 phit (zj | xj , m)
γ (dj2) = η π2 poccl (zj | xj , m)
γ (dj3) = η π3 prand (zj | xj , m)

end for

π1 =
P

j
γ(dj1)

J
, π2 =

P

j
γ(dj2)

J
, π3 =

P

j
γ(dj3)

J

p′ = 1
1−π3

zoccl

σm =

√
P

j γ(dj1)(zj−z⋆
j )

2

P

j
γ(dj1)

end while

return Θ = {π3, p
′, σm}

B. Variational inference

ML approaches give a point estimate of the parameters

such that these parameters maximize the likelihood of the

data. A well known problem with ML methods is that the

likelihood function will generally be higher for more com-

plex models, leading to overfitting [13]–[15]. Fully Bayesian

treatment, including a prior over the unknown parameters,

automatically overcomes the problems of the ML approach,

such as overfitting and give a full probability distribution

over the estimated parameters instead of a point estimate.
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The proper Bayesian approach attempts to integrate over

the possible settings of all uncertain quantities rather than

optimize them as in the ML approach [14], [15]. The quantity

that results from integrating out both the hidden variables

and the parameters is termed the marginal likelihood: p (z) =
∫

p (z | θ) p (θ) dθ, where p (θ) is a prior over the parameters
of the model. Integrating out parameters penalizes models

with more degrees of freedom since these models can a priori

model a larger range of data sets. This property of Bayesian

integrations had been called Occam’s razor, since it favors

simpler explanations for the data over complex ones [16],

[17].

Unfortunately the marginal likelihood, p (z), is an in-
tractable quantity to compute for almost all models of

interest. The variational Bayesian method constructs a lower

bound on the marginal likelihood, and attempts to optimize

this bound using an iterative scheme that has intriguing

similarities to the standard EM-algorithm. To emphasize the

similarity with ML-EM the algorithm based on variational

Bayesian inference is often called VB-EM.

Since the VB approach is a fully Bayesian approach, priors

have to be introduced over the parameters θ = [µ, σm, π].
Since the analysis is considerably simplified if conjugate

prior distributions are used, a Dirichlet prior is chosen for

the mixing coefficients π: p (π) = Dir (π|α0), and an inde-
pendent Gaussian-Wishart prior for the mean µ and the pre-
cision λm = σ−1

m of the Gaussian distribution phit (z | z, m):

p (µ, λm) = N

(

µ|m0, (βλm)
−1

)

W (λm|W0, ν0). α0 gives

the effective prior number of observations associated with

each component of the mixture. Therefore, if the value of

α0 is set small, the posterior distribution will be mainly

influenced by the data rather than by the prior.

Algorithm 2 presents the algorithm for the VB-estimator,

further on called VB-EM algorithm.

IV. VALIDATION AND EXPERIMENTS

In a learning experiment, the parameters of the measure-

ment model, p (z | x, m), are learned from data obtained
using a laser distance sensor both using the proposed ML-

EM and VB-EM estimator. In the experiment, range finder

measurements are obtained using a static and known map in

which unmodeled and possibly moving objects are randomly

and manually placed in the field of view of the laser range

finder. The laser range finder is a Sick LMS 200 and

is located at a fixed position in the known map. From

the obtained data set measurements are selected which are

centered around a particular expected range. The experiment

set consists of eight experiments, with different degree of

appearance p (Eq. (2)) of unmodeled objects and different
expected ranges.

The model parameters are learned for eight experiments,

with different degree of appearance of unmodeled objects.

The difference between the learned model and the data is

calculated as:

d = ∆z

√
∑

i

(p (Z⋆ (i) | X (i) , m, Θ) − Nz(i))
2
, (48)

Algorithm 2 VB-EM estimator for RBBM model parameters

while convergence criterion not satisfied do

for all zj in Z , with j = 1 : J , where J = |Z|−1 do

calculate z⋆
m

ρj1 = exp [Ψ (α1) − Ψ (α1 + α2 + α3)
+ 1

2

(
Ψ

(
ν
2

)
+ log 2 + log |W |

)
− 1

2 log (2π)

− 1
2

(

β−1 + ν (zj − m)T W (zj − m)
)]

ρj2 = exp [Ψ (α2) − Ψ (α1 + α2 + α3)
+ log poccl (zj | x, m)]

ρj3 = exp [Ψ (α3) − Ψ (α1 + α2 + α3)
+ log prand (zj | x, m)]

η = ρj1 + ρj2 + ρj3

rj1 = η−1ρj1, rj2 = η−1ρj1, rj3 = η−1ρj1

end for

J1 =
∑J

j=1 rj1, J2 =
∑J

j=1 rj2, J3 =
∑J

j=1 rj3

z̄1 = 1
J1

∑J

j=1 rj1zj

S1 = 1
J1

∑J
j=1 rj1 (zj − z̄1) (zj − z̄1)

T ,

α1 = α0 + J1, α2 = α0 + J2, α3 = α0 + J3.

β = β0 + J1

m = 1
β

(β0m0 + J1z̄1)

W−1 = W−1
0 +J1S1 + β0J1

β0+J1

(z̄1 − m0) (z̄1 − m0)
T

ν = ν0 + J1

π1 = α1

α1+α2+α3

, π2 = α2

α1+α2+α3

, π3 = α3

α1+α2+α3

p′ = π2

1−π3

σm =
(

νβ
1+β

W
)− 1

2

end while

return {α1, α2, α3, β, m, W, ν, Θ = [π3, p
′, σm]}

where Nz contains the experiment data as a normalized

histogram for the points Z⋆ = [0 : ∆z : zmax]:

Nz =
hist (Z, Z⋆)

∆z
∑
hist (Z, Z⋆)

. (49)

In the VB-EM algorithm a low informative prior is used,

i.e. α0 is low compared to the size of the data set used for

learning.

Table I contains the distances for the ML-EM and VB-EM

estimator proposed in the paper compared to the distances

for the maximum likelihood estimator for the measurement

model proposed in [1] for the eight experiments. Despite

the extra parameter of the model presented in [1] compared

to the model presented here, the average distance between

the data and the learned distributions is almost equal. This

results indicate that the extra parameter is not needed in the

measurement model.

Figure 5 shows the results of the ML-EM and VB-

EM estimators for the measurement model proposed in the

paper compared to the results of the maximum likelihood
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Experiment ML-EM VB-EM Model [1]

1 0.1272 0.1905 0.2102
2 0.4561 0.3518 0.4579
3 0.5980 0.6617 0.5115
4 0.2404 0.2523 0.2148
5 0.3268 0.3414 0.3874
6 0.4395 0.4293 0.5259
7 0.4286 0.4107 0.5216
8 0.4521 0.4411 0.3825

average 0.3849 0.3848 0.4015

TABLE I

THE DISTANCES TO THE TRAINING SET OF A ML-EM AND VB-EM

ESTIMATOR PROPOSED IN THE PAPER COMPARED TO THE DISTANCES OF

A ML-EM ESTIMATOR PROPOSED IN [1] FOR EIGHT EXPERIMENTS.
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Fig. 5. Results of a ML-EM and VB-EM estimators proposed in the paper
compared to the results of a ML-EM estimator proposed in [1] for one of
the eight learning experiments with high degree of appearance of unmodeled
objects.

estimators for the measurement model proposed in [1] for

one of the eight experiments with high degree of appearance

of unmodeled objects.

V. DISCUSSION

This paper proposed and experimentally validated the

RBBM, a rigorously Bayesian network model of a range

finder adapted to dynamic environments.The rigorous mod-

eling revealed all underlying assumptions and parameters.

This way a clear physical interpretation of all parameters is

obtained which provides intuition for the parameter choices.

In contrast to [1] the assumption underlying the non-physical

discontinuity in the measurement model is discovered. Fur-

thermore, it is shown that the functional form for the

probability of range measurements caused by unmodeled

objects phit (z | x, m) (43) is quadratic rather than exponential
as proposed in [1], [7], [8]. Furthermore, compared to [1],

[7], [8] the number of parameters is reduced, while still

allowing the same representational power for experimentally

obtained data. Bayesian modeling revealed that both the

ramp of phit (z | x, m) and the probability of an occluded
measurement π2 are directly dependent on one parameter p

′.

This is in contrast with the measurement models proposed

so far, where these two parameters are assumed to be

independent. Finally, a maximum-likelihood estimation and a

variational Bayesian estimation algorithm both based on the

expectation-maximization approach were proposed to learn

the RBBM model parameters. Learning the model parameters

directly benefits from the obtained reduction in number of

parameters. Using eight learning experiments it was shown

that the RBBM is able to explain the obtained measurements

as good as a state of the art model [1].
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