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Both autonomous and teleoperated tasks with a dexterous manipulator often

use cameras for external sensing. For teleoperated tasks, an array of cameras is

typically used to provide the operator with multiple two-dimensional views of the

manipulator workspace. For autonomous operations, cameras are used for visual

servoing or to produce a map of the environment in the manipulator workspace.

Nominal operations will likely produce manipulator configurations that occlude the

line of sight from the camera to a target of interest. One possible approach is to

treat the camera line of sight as a virtual obstacle to prevent camera occlusion. This

approach is demonstrated on the Ranger dexterous manipulator for a variety of task

configurations. Extension of this approach to non-redundant manipulators is also

considered.
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Chapter 1

Introduction

Increased autonomy will enable remote scientific exploration in previously un-

reachable destinations such as the Gakkel Ridge in the Eastern Arctic Basin [8][9] or

the Cenote Zacatón, a flooded sinkhole in Tamaulipas, Mexico [10]. Autonomous ca-

pability will also allow more complex teleoperated service tasks such as those needed

on-orbit to repair the Hubble Space Telescope or on other planets and moons.

Scientific exploration missions often require dexterous manipulation for suc-

cessful sample retrieval in unknown environments. Servicing missions, such as pro-

posed for Hubble, require manipulation and repair of man-made structures.

Both autonomous and teleoperated tasks almost always require the use of ex-

ternal sensing. For teleoperated tasks, the main sensor is often an array of cameras

that provide the operator with multiple views to help guide the operator’s move-

ments. For autonomous operations, combinations of cameras, laser ranging, and

sonar arrays are typically used to guide the robotic vehicle depending on the appli-

cation.

This thesis focuses on the design and implementation of an obstacle avoidance

system for manipulator operations. The system designed for this thesis primarily

aims at preventing camera occlusion for visually-guided manipulators to facilitate

autonomous and teleoperated tasks. The methodology can also be extended to
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prevent occlusion of any sensor external to the manipulator.

1.1 Motivation

The University of Maryland’s Space Systems Laboratory (SSL) is working

with Woods Hole Oceanographic Institute (WHOI) to develop the Autonomous

Sub-Polar Ice Robotic Exploration (ASPIRE) submersible for NASA’s Astrobiology

Science and Technology for Exploring Planets (ASTEP) program. The SSL is de-

veloping the Sub-sea Arctic Manipulator for Underwater Retrieval and Autonomous

Interventions (SAMURAI) along with the Autonomous Vision Application for Tar-

get Acquisition and Ranging (AVATAR) which will be mounted on the WHOI Just

Another Great Underwater Autonomous Robot (JAGUAR). The project’s goal is

to develop the component technologies required for autonomous sampling, integrate

them into a capable Autonomous Underwater Vehicle (AUV), and demonstrate the

systems by conducting scientifically important sampling in unexplored Earth envi-

ronments closely simulating future planetary environments.

The JAGUAR AUV will be fitted with the SAMURAI manipulator, shown

in Figure 1.1, to perform undersea sampling tasks. Undersea manipulation has in

the past exclusively been performed via teleoperation, except for simple low degree

of freedom (DOF) grappling activities. From the science perspective, exploration

of places such as the Gakkel Ridge has the potential to identify new life forms

and vastly improve our understanding of undersea geology. From an engineering

perspective, this mission will deploy the first fully autonomous undersea dexterous
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(6-DOF) manipulator, along with the first real-time undersea visual sampling target

recognition system. The culmination of the project will be the manipulator-AUV

system, completely untethered, operating at great depths.

a) JAGUAR b) SAMURAI

Figure 1.1: WHOI’s JAGUAR AUV (a) will be outfitted with the SAMURAI ma-
nipulator (b) for the ASTEP mission.

The dynamic environment and uncertainty make the manipulation for the

ASTEP mission a much more difficult task than traditional industrial manipulator

applications. Fast changing environments can quickly invalidate a robot’s map of

the environment. While there are a variety of immobile sample targets planned for

the ASTEP mission such as rocks and clams shown in Figure 1.2, there are also

mobile sample targets such as shrimp shown in Figure 1.3. Depending on their size

and extent, even immobile sample targets, such as tubeworms (Figure 1.3), may

be moving due to ocean currents. Further, disturbances to the vehicle can perturb

the base of the manipulator and cause all sample targets to be moving relative to

the manipulator. These vehicle disturbances can originate from a variety of sources

including water currents, reaction forces due to manipulator movement, and vehicle
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drift.

Figure 1.2: Immobile sample targets for ASTEP mission include rocks (left) and
clams (center) and tubeworms (right). (From [1])

Figure 1.3: Mobile sample targets for ASTEP mission include shrimp. (From [1])

The use of an externally mounted vision system (AVATAR) produces addi-

tional challenges for the ASTEP mission. The manipulator can easily be commanded

to follow trajectories that occlude the camera views of the sample target resulting

in a loss of a position estimate for the sample target. If AVATAR cannot track the

sample target during manipulator trajectories, the system will not likely be able to

acquire the sample in a dynamic environment.

1.2 Research Objectives

For successful sampling in the ASTEP mission, we would like to maintain

visibility of the sample target during manipulator trajectories in order to maximize
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the tracking capability of the sample and increase the likelihood of retrieving the

sample. To accomplish this, a motion planning system is needed that produces

trajectories that do not occlude the line of sight (LOS) between the cameras and

the sample target. This system needs to be real-time in order to cope with the

dynamic sampling environment and be independent of the kinematic configuration

of the manipulator and control scheme being implemented.

1.3 Approach

This thesis covers the design and implementation of an obstacle avoidance sys-

tem which treats the LOS from each camera to the sample target as ”line” obstacles

in order to prevent camera occlusion. This approach extends the methodology de-

veloped by Wang [5] to three-dimensions and also considers line obstacles which

were discussed by Wang, but not demonstrated. Singularity avoidance is also im-

plemented and the system is demonstrated in both simulation and hardware.

1.4 Thesis Structure

Chapter 2 overviews current manipulator obstacle avoidance techniques and

addresses the reasons for choosing the approach used in this research. Chapter 3

develops the necessary obstacle avoidance theory and several 3-link planar demon-

strations are given. Chapter 4 discusses the technique used to incorporate line

obstacles and offers several examples. Chapter 5 presents dynamic simulations with

a 3-link planar manipulator. Chapter 6 covers the implementation of the obstacle

5



avoidance system on the Ranger dexterous manipulator and presents results from

several demonstrations. Chapter 7 offers an approach to implement this obstacle

avoidance technique on non-redundant manipulators and Chapter 8 presents con-

clusions and offers possible future directions for this research.
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Chapter 2

Background and Previous Work

Despite ongoing research since the early 1980s, the field of manipulator ob-

stacle avoidance is still relatively immature and there is no consensus on the best

approach. Various methods are still being investigated, however, a majority of the

current body of research can be categorized into two approaches: configuration

space approaches and energy-based approaches. The energy-based approaches fur-

ther breakdown into coupled control solutions and decoupled trajectory solutions.

2.1 Configuration Space Approaches

Lozano-Perez and Brooks are credited for their early work on configuration

space approaches [2] [11]. The configuration space of a robot is the set of all possi-

ble configurations of the robot’s degrees of freedom. The subset of the configuration

space that results in collisions with obstacles is the forbidden region and the differ-

ence of the two sets is the free space region in which the robot can move without

colliding with obstacles. This approach yields position constraints on a robot as con-

straints on a reference point in the robot’s configuration space. Once the robot’s free

space has been determined a graph is constructed and used to search for collision-free

paths between a starting and target location.

Consider the two-dimensional problem of planning a path for a mobile robot
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though an obstacle field as shown in Figure 2.1. The goal is to determine a collision

free path for robot A from starting position S to the goal position G. The free

space is constructed by selecting a reference point on the robot, S, and growing the

obstacles such that the reference point can travel anywhere within the free space

without colliding with an obstacle.
Fig. 5. Fig. 6. 
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3. The Effect of Rotation 

It is important to notice that the growing operation as 

shown in Figures 2 and 3 is sensitive to the orientation of 

A. This was not apparent in Figure 2 because the moving 

object was a circle. The orientation dependence follows 

from the fact that a grown obstacle is defined as the for- 

bidden region for a reference point. The position of a 

point on the plane can encode only two degrees of free- 

dom, whereas differentiating the legality of two posi- 

tions of A with different orientations requires at least 

three degrees of freedom. Figure 5 shows that a different 

orientation of A from that in Figure 3 will produce dif- 

ferent grown obstacles and a different path. To make the 

orientation explicit, we will denote the result of growing 

all the obstacles with a moving object A, whose orienta- 

tion parameter  is the angle o~, GOS(A,).  The set of ver- 

tices of these grown obstacles will be called V,. 

To summarize, any position of A at orientation ,~ for 

which A's reference point is outside all the elements of 

the grown obstacle set is free of collisions. The sides of 

each obstacle in GOS(A,)  are computed by tracing the 

path of A's  reference point around each of the original 

objects while keeping A in contact with the obstacle. Be- 

fore two objects collide they must first touch; therefore 

any position of the reference point that would cause a 

collision must be inside the obstacle, and any position 

outside must be safe. Clearly this condition presupposes 

that the orientation of A does not change. 

Consider the problem of moving object A from po- 

sition S with orientation o~ to G with a different orienta- 

tion ft. A safe trajectory cannot be found by simply 

computing a path that is free of collisions in GOS(A,)  

and GOS(A~) since, in changing the orientation f rom a 

to/3, A must pass through the whole range of intermedi- 

ate orientations. One way to find a path requires knowing 

what positions on the plane will allow the desired rota- 

tion to take place. The algorithm can then plan a path 

from the start to one of these positions, rotate to the 

desired orientation, and move in that orientation to the 

goal. 
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For  a position to allow a change in orientation there 

must be no overlap between the rotating object in any of 

its intermediate orientations and any of the obstacles. 

Figure 6 shows the area that A traverses in going from 

orientation a to fl; this area may be approximated by 

another polygon A t,. Ca shown rectangular for simplicity. 

This new object, called an envelope,  can be used to grow 

a new obstacle set GOS(A t~, m), also shown in Figure 6, 

which represents the forbidden regions for the reference 

point of A in any of the orientations within the interval 

[a,/3]. We will refer to this as a transition obstacle set. 

By analogy to the vertex set V,, the set Vt,, ~ represents 

the set of vertices of obstacles in the transition obstacle 

set. In general we can associate with all the elements of 

a vertex set an orientation interval (possibly singular) as 

well as a position. 

The problem in Figure 6 can now be solved by: 

(1)  finding a path starting with orientation a at S which 

avoids the obstacles in G O S ( A , )  and which ends at 

a point clear of  the obstacles in GOS (A t-, ~ ), 

(2) rotating to orientation fl, and 

(3) f inding a pa th  to G avo id ing  the obs tac les  in 

GOS(A~) .  

This can be stated as a V G R A P H  problem of finding the 

shortest path from S to G in a visibility graph defined as 

follows: 

VG,~, t~ (N,, 6, L, ,  ~) 

where 

N.,~ = Vt~,~l U Vt~ ,~  U Vt~ ,61 

V(~,.~ = V .  u (S} 

Vr~,~l = V~ U {G} 

Vt-, ~1 defined as above 

and 

/_,~,, ~ = { ( n .  ns)} 

n~ ~ Vta,~ and nj ~ Vtc, aj where a, b, c, d are either a or fl 
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Figure 2.1: Configuration space for a 2D mobile robot. (from [2])

This two-dimensional example assumes that the robot can only translate within

the plane and not rotate. If the robot is given an additional rotational degree

of freedom, the configuration space becomes three-dimensional and separate two-

dimensional free space regions exist for each orientation of the robot. For a ma-

nipulator, each link is treated as an object which must be checked for collisions.

Unfortunately, there is strong evidence that C-space approaches are exponential in

time with respect to the number of degrees of freedom in the system [12] [13]. Thus

C-space approaches are considered intractable except for low dimensionality systems

and thus most of the current research has been focused on mobile robot applica-

tions where two-dimensional approximations are sufficient [14]. These approaches

are not yet appropriate for dynamic obstacle environments. However, there is a

8



recent thrust of research on randomized strategies such as probabilistic roadmap

methods that construct an approximation of the free space by randomly sampling

collision-free configurations [15]. These strategies show promise and greatly reduce

the cost of computing the free space, but current methods are still highly specialized.

2.2 Energy-based Approaches

Energy-based obstacle avoidance approaches use artificial potential fields to

guide the manipulator away from obstacles. Obstacles are modeled with high po-

tential energy while obstacle-free regions are modeled with low potential energy.

The manipulator is guided down valleys of the potential field with configurations

producing minimal potential energy to avoid collisions with obstacles.

Two main branches exist for energy-based obstacle avoidance. The first uses

the potential field coupled with an impedance controller. The second uses the po-

tential field to determine the inverse kinematic solution. Both approaches offer fast

computation and are better suited for dynamic obstacle environments than C-space

approaches.

2.2.1 Impedance Control with Artificial Potential Fields

Impedance control obstacle avoidance approaches were first introduced by

Hogan [16]. These approaches make use of the additive property of impedances

to supplement an impedance controller with additional disturbances forces to avoid

obstacles. The disturbances forces are generated from the artificial potential field.
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Lee demonstrated this approach with his reference adaptive impedance controller

and gave promising results for a simulated 2-DOF robot [17].

More recent work by Bon and Seraji have demonstrated this approach on a

7-DOF Robotics Research Corporation manipulator as well as the first generation of

Ranger dexterous manipulators at the SSL [3] [18]. Obstacles are divided into three

regions depending on their proximity to the manipulator as shown in Figure 2.2.

Tool-tip obstacles perturb the end-effector position, wrist obstacles perturb the ori-

entation of the wrist, and elbow obstacles perturb the redundancy in the arm to

avoid obstacles. A simple PD control law is used to determine the disturbing forces

for each of these regions.

an 

- 

- 

elbow 

- - 
- 

- 

p, S I - t i p  obstacle 

H 

Figure 1: Top view of Ranger manipulator module and 

left dexterous manipulator in the home pose 

tool-tip obstacle is one whose nearest point on the dex- 

terous arm is on the tool link and is closer than a spec- 

ified threshold to the tool-tip. A wrist obstacle is one 
whose nearest point on the dexterous arm is on the tool 

link and is further away from the tool-tip than the spec- 

ified threshold. An elbow obstacle is one whose nearest 

point on the dexterous arm is either on the upper-arm 

link or on the lower-arm link. 

The collision avoidance software computes the vir- 

tual force corresponding to  the single nearest obstacle 

relative to each arm zone, thus limiting perturbation 

computations to no more than three obstacles during 

any iteration. A single point obstacle near the tool link 

will perturb either the tool-tip position or the tool-tip 
orientation, depending on its distance from the tool- 

tip, while an extended obstacle may be detected as two 

point obstacles, one in the tool-tip zone and one in the 

wrist zone, thus perturbing both position and orienta- 

tion. This separation of influence avoids unnecessary 

trajectory perturbations to  both end-effector position 

and orientation. 

These collision avoidance strategies are adopted for 

simplicity of concept, ease of implementation, and, most 
importantly, to minimize computational requirements. 

These strategies effect a compromise between the goal 
of achieving effective collision avoidance in all circum- 

stances and the absolute requirement of achieving real- 

time performance. 

2.1 Virtual Spring and Damper Forces 

For each of the three arm zones, collision avoidance 

is accomplished by generating a virtual force, denoted 
by a vector in Figure 1, to repel the arm away from 

Figure 2: Spring and damper model used for virtual 

force generation 

the obstacle. This force is defined to be zero if there 

is no object within a user-specified stand-off distance, 

d,, away from the surface of the arm. If the minimum 

distance to an obstacle, d,, is less than the stand-off 

distance, we define the arm to be within the obstacle’s 

avoidance zone and a virtual force F is generated. This 

force is comprised of a spring component, which is pro- 

portional to the incursion magnitude, and a damper 

component, which is proportional to the approach ve- 
locity between the arm and the obstacle (see Figure 2). 

Tool-tip virtual forces perturb the three end-effector 

position coordinates to  avoid collisions. Wrist virtual 

forces perturb the three end-effector orientation coordi- 

nates to  avoid collisions. Elbow virtual forces perturb 

the arm angle to  avoid collisions. 

Collision avoidance is accomplished by utilizing the 

virtual spring and damper forces to  modify the operator- 

commanded arm motions. Entry into an obstacle’s 

avoidance zone will be opposed by the virtual force, 

which is a function of the avoidance zone incw-sion, 
e = d,  - d,. Let the virtual spring constant be de- 

noted by IC; and the virtual damper constant by IC, .  
Then the virtual force for collision avoidance is: 

de 
F = kie + kp-  

d t  

where the sign of e (and, hence, of F )  is chosen such 

that the force F will be applied in the opposite direction 

from the incursion. The terms in equation (1) corre- 

spond to a virtual spring force, F, = Icie, and a virtual 

damper force, Fd = IC, deld t .  

2.2 Hand Position Perturbations 

The virtual force, F ,  can be considered as a velocity 

perturbation, v ~ f .  Figure 3 illustrates how the pertur- 

bation is generated and used to  modify the operator- 

commanded position. The raw position perturbation, 

Y f ,  is given by: 

Yf = / v f  dt  = / F ( t )  dt  

2042 

Figure 2.2: Obstacle regions. (from [3])

The advantage of these approaches is that the dynamic behavior of the manip-

ulator as it interacts with obstacles is adjustable though the gains in the obstacle

induced disturbing force. However, this approach is tightly coupled with the control
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scheme and requires the use of a compliance controller which may not be desirable

depending on the task.

2.2.2 Generalized Inverse with Artificial Potential Fields

First introduced by Khatib [19], this approach uses the gradient of an artificial

potential field to direct the self-motion of the manipulator to a lower potential energy

configuration for obstacle avoidance. Typically, a full set of position constraints is

imposed on the end-effector and only the self-motion is used to avoid obstacles. This

scheme is implemented within the inverse kinematics of the manipulator to provide

fast reacting obstacle avoidance behavior.

Current work by Harden has successfully demonstrated this approach on a

7-DOF Robotics Research Corporation (RRC) manipulator [4]. Figure 2.3 shows

a long exposure photograph of the RRC manipulator’s self-motion while avoiding

a spherical obstacle. His research poses a variety of criteria that offer promise

for constructing the potential field and investigations have shown all of the used

criteria provide reasonable obstacle avoidance. Future work involves a more detailed

evaluation of which criteria offer the best results under which conditions.

Research by Wang presents an extension to Khatib’s approach in which a

search is conducted using the gradient of the potential field to find a local minimum

potential configuration [5]. Instead of using a single step down the potential gradient

as presented by Khatib, each inverse kinematic solution produces a locally minimum

configuration. An electrostatic potential model is used and Wang presents results for

11
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Figure 5.3: Self-motion to maximize the manipulator’s average minimum distance from obstacles.

For all the demonstrations other than self-motion, the obstacle avoidance

criteria were always fused with the JRA criterion because using the obstacle

avoidance criteria alone sometimes caused the manipulator to try and exceed its

joint limits in order to move further from the obstacles.  Demonstrations

performed include reaching around the obstacles, working on all sides of the

obstacles, and purposely trying to hit the obstacles.  When one tries to hit the

obstacles, the manipulator moves to the closest allowable point and then stops

moving.  The software informs the operator that a collision is imminent and

advises motion in another direction.  Once the operator commands motion away

from the obstacle, normal operation resumes.  The AMDR, EEAF, and EEAT

Figure 2.3: Self-motion of the RRC manipulator as it avoids a spherical obstacle.
(from [4])

a planar hyper-redundant manipulator. Figure 2.4 shows a simulation of a planar

hyper-redundant manipulator navigating through a point obstacle field. Though

not demonstrated, Wang’s idea of using charged line segments for obstacles appears

promising for this research since a camera’s line of site can be modeled with a line.

on the line from the point charge can be found by inte- 

grating the interaction between P and a small segment 

da: of the line over the entire length of the line. The 
resultant force component along x and y axes, and the 

couple can be expressed as [lo]: 

The effect of F, , F, and MO can be replaced by a equiv- 

alent force F = F, + F, applying at d = 9 away from 

origin 0. Furthermore, this external force can be pro- 

jected into joint space as follows: 

Qij = JpjFij (16) 

where the subscript i and j denotes the ith obstacle 
and j th link respectively. Because Fij will not project 

any component onto joints after j th  link, Jacobian Jpj  

contains only the first j links. Adding all these joint 

forces to Aqs in Equation (lo), the repulsive forces will 

prevent manipulator links from colliding into obstacles. 

Figure 4: Repulsive force on each link. 

4 Obstacle Avoidance 

Figure 5 shows a 20 degree-of-freedom planar hyper- 

redundant manipulator. In this section, we are going 

Figure 5: A 20 degree-of-freedom planar hyper- 

redundant manipulator. 

Figure 6: 
redundant manipulator in a clustered workspace. 

Obstacle avoidance of a 20-link hyper- 

to use this hyper-redundant manipulator as a platform 

to test if our control algorithm can tackle with typical 

obstacle avoidance problem. The real-time simulation 

is done on a Pentium 133 PC Linux and using Xwindow 
as its graphics interface. 

Example 1 

Obstacle avoidance can get difficult if the workspace is 

full of objects. Here we command the hyper-redundant 

manipulators to “wiggle” around eight obstacles and 
come back to reach the base point. In this simulation, 
all links are of half unit long, and obstacles are one 
unit apart in horizontal direction and halt unit apart in 
vertical direction. Electric fields are constructed with 

unit point charge for obstacles, and unit line charge for 
links. Figure 6 shows how the manipulator end-effector 

can bend itself around obstacles. In the figure some 

links seem to collide into obstacles, but actually it does 

not. Because the point obstacles are made larger in size 

to be visible on the plot. 

-469- 

Figure 2.4: Wang’s simulation of a hyper-redundant planar manipulator avoiding a
point obstacle field. (from [5])

These approaches provide real-time obstacle avoidance advantageous for fast
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changing dynamic environments, while maintaining independence from the control

scheme.

2.3 Summary and Research Direction

Three manipulator obstacle avoidance techniques were presented in this chap-

ter and representative current research for each approach was given. The generalized

inverse approaches provide a promising compromise between the computationally

expensive C-space approaches and the tightly coupled control solution offered by

the impedance-based scheme. Specifically, Wang’s simple electrostatic model of the

manipulator and obstacle environment is attractive and his recommendation of us-

ing charged line segment obstacles fits well with this research’s goal of preventing

camera occlusion.

In the next chapter the theory is developed for extending Wang’s approach

to three-dimensions and adding an additional potential field for avoiding manipu-

lator singularities. In Chapter 4, Wang’s work is extended further by providing an

approach for implementing line obstacles.
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Chapter 3

Obstacle Avoidance Theory

This chapter describes the potential field models used for obstacle avoidance,

the equations governing the resulting joint torques on the manipulator, and the

algorithm used to find the minimum potential solution. The approach described here

is an extension of Wang’s approach [5] to three-dimensions and also incorporates

singularity avoidance. Several examples are outlined to demonstrate the resulting

joint torques and minimum potential configuration for a 3-link planar manipulator.

3.1 Potential Field Models

Three potential fields were used for this research. The first potential field is

used to guide the manipulator away from obstacles. The second potential field is

used to prevent the joint solutions from migrating towards joint limits. The third

potential field is used to avoid singular configurations of the manipulator.

3.1.1 Potential Field Model for Obstacles

One possible potential field for modeling the interaction between the obstacles

and the manipulator is an electric potential field. This research models the manipu-

lator and its obstacles as electrically charged bodies in space. The major links of the

manipulator, those with significant length, are modeled with charged line segments.
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The obstacles are modeled as point charges. The sum of all obstacle point charges

produce an electric field which repels the charged line segments of the manipulator.

Although obstacles are modeled as point charges, a single obstacle can be modeled

as multiple point charges in order to obtain enough fidelity to achieve the desired

obstacle avoidance behavior. In addition, the obstacle position does not need to

be stationary and can thus represent different points on the same obstacle that are

most in danger of contacting the manipulator.

3.1.1.1 Electric Field and Electric Potential

In electromagnetic theory, a body of charge is described as an amount of charge

∆Q′(R′) in a volume ∆v′ located at R′ [20]. Therefore the volume charge density,

ρv, at point R′ is defined as:

ρv(R′) ≡ ∆Q′(R′)

∆v′ (3.1)

The surface and line equivalents for charge density are denoted ρs(R
′) and ρl(R

′)

and are defined as the amount of charge per unit area and length respectively.

An electric field is created by an accumulation of charge. Electric field intensity

is the force on a unit test charge at a point if a test charge were placed there. The

electric field at point R due to a body of charge with volume charge density ρv at

point R′ is:

E(R) =
1

4πεo

∫
v

R−R′

|R−R′|3
ρv(R′)∂v′ (3.2)

where |R−R′| is the magnitude of the distance between the unit test charge and the

differential charged volume at R′ and εo is the dielectric permittivity of free-space.
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For a point charge this simplifies to:

E(R) =
Q′

4πεo

R−R′

|R−R′|3
(3.3)

Electric potential is defined as the work required to move a unit charge from

point A to B in an electric field and is independent of the path taken. Electric

potential is represented in terms of the electric field as:

VAB = −
∫ B

A
EdL (3.4)

The zero-potential reference point is typically chosen at an infinite distance away

from the source of the electric field so Equation 3.4 can be rewritten as:

V(R) = −
∫ R

∞
EdL (3.5)

Thus for any set of charges, the potential, V (R) is a scalar function of position. Since

it is desired to direct the manipulator away from obstacles, the negative gradient of

the electric potential field is used to direct the solution towards a lower potential. It

follows from Equation 3.5 that the negative gradient of the electric potential energy

is the electric field itself:

−∇V = E (3.6)

Thus the electric field directs the search of the potential energy space and it will be

important to determine how this manifests itself in the joint space of the manipula-

tor.
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3.1.1.2 Force and Moment on a Line Charge Due to a Point Charge

Since the manipulator’s major links are modeled with charged line segments

and the obstacles are modeled with point charges, it is important to determine

the effect of the electric field created by a point charge on a charged line segment.

Consider the following planar scenario shown in Figure 3.1.

c

a

C

b

OB

P1 P2

x
y

CP

Q’

!l 

E

Figure 3.1: Force and moment on a charged line segment due to a point charge.

There is a point charge Q′ located at position OB which produces an electric

field E. The electric field E acts on a charged line segment with endpoints P1 and

P2 and constant charge density ρl and produces a force and moment. The origin of

the coordinate frame is at P2 as shown. The x-axis points in the direction of P1

to P2. The y-axis points in the direction of CP to OB, where CP is the closest

point on the line containing P1 and P2 to OB. CP is easily calculated using the

mutual perpendicular between the point and the line (See Appendix C). The z-axis
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is defined using the right hand rule and points out of the page. In order to derive the

force and moment equations on the charged line segment, the quantities summarized

in Table 3.1 are used.

Table 3.1: Force-Moment Calculation Variable Descriptions.

Value Description Range

a Length from CP to P1 in the -x-direction -∞ < a < +∞

b Length from CP to P2 in the +x-direction -∞ < b < +∞

c Length from CP to OB in the +y-direction 0 < c < +∞

The value a is defined as the distance from CP to P1 in the -x-direction. The

value b is defined as the distance from CP to P2 in the +x-direction. The value c is

defined as the distance from CP to OB in the +y-direction. Note that both a and

b can have negative values. The value of a is negative if CP ’s x-coordinate is more

negative than P1’s x-coordinate. The value of b is negative if CP ’s x-coordinate is

more positive than P2’s x-coordinate. The value of c is always positive since the

y-axis is defined in the direction from CP to OB.

To determine the force on a body of charge due to an electric field the following

equation is used:

F =
∫
v
E(R)ρv(R)∂v (3.7)

where R is a vector pointing to the differential volume ∂v on the body of charge.

Simplifying Equation 3.7 for the case where the body of charge being acted on by

the electric field is confined to a line produces:

F =
∫
l
E(R)ρl(R)∂l (3.8)
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where ρl is the line charge density which defines the charge per unit length ∂l along a

line. Combining Equation 3.8 and Equation 3.3, the force on a charged line segment

due to a point charge is found to be:

F =
∫
l

Q′

4πεo

R−R′

|R−R′|3
ρl(R)∂l (3.9)

For a constant ρl(R) for the charged line segment, the integral becomes:

F =
Q′ρl

4πεo

∫
l

R−R′

|R−R′|3
∂l (3.10)

The vector R points to the differential length element on the charged line

segment and for the setup in Figure 3.1 can be represented in Cartesian coordinates

as:

R = xx̂ (3.11)

where x̂ is a unit vector in the x-direction. R′ is the vector pointing to the point

charge creating the electric field and can be represented in Cartesian coordinates as:

R′ = −bx̂ + cŷ (3.12)

The integration takes place along the length of the charged line segment which lies

solely in the x-direction and has integration limits of −(a+ b) to 0. Substituting

the values for R and R′ and adding the integration limits to Equation 3.10 gives:

F =
Q′ρl

4πεo

∫ 0

−(a+b)
(

x + b

((x + b)2 + c2)
3
2

x̂ +
−c

((x + b)2 + c2)
3
2

ŷ)∂x (3.13)

Integrating Equation 3.13, the force on the charged line segment due to the point

charge is:

F =
Q′ρl

4πεo
((

1√
a2 + c2

− 1√
b2 + c2

)x̂ + (− a

c
√

a2 + c2
− b

c
√

b2 + c2
)ŷ) (3.14)
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The moment about the origin at P2 can be calculated by integrating the force

in the y-direction multiplied by the moment arm over the length of the charged line

segment.

M =
Q′ρl

4πεo

∫ 0

−(a+b)

−cx

((x + b)2 + c2)
3
2

ẑ∂x (3.15)

Performing the integration yields:

M =
Q′ρl

4πεo
(

ab− c2

c
√

a2 + c2
− −b2 − c2

c
√

b2 + c2
)ẑ (3.16)

For obstacle avoidance, we are interested in creating an artificial potential

field in which only the relative position of the point charge and the charged line

segment are variable. We are not concerned with the particular values of the per-

mittivity constant, the charge density, nor the amount of charge. Consequently, all

of these constants can grouped into a single positive constant kobst which denotes

the influence of a point charge on a line segment. The value of kobst can be adjusted

to provide varying levels of influence of the point charge on the charged line segment

and consequently dictate the obstacle’s influence on the manipulator. The force and

moment equations for a point charge acting on a charged line segment now become:

F = kobst((
1√

a2 + c2
− 1√

b2 + c2
)x̂ + (− a

c
√

a2 + c2
− b

c
√

b2 + c2
)ŷ) (3.17)

M = kobst(
ab− c2

c
√

a2 + c2
− −b2 − c2

c
√

b2 + c2
)ẑ (3.18)

3.1.1.3 Mapping Forces and Moments into Joint Space

Now that the equations have been derived which govern how the the artificial

electric potential field generates forces and moments on the manipulator, this section
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examines how these forces and moments manifest themselves in joint space. Consider

the following scenario. There is one point obstacle which is modeled with a point

charge and a manipulator with N major links, each of which are modeled with

charged line segments. The obstacle induces forces and moments on each of the

N major links of the manipulator. We assign the coordinate frame for the force

calculations as in Figure 3.1 where the origin is at the end of the link furthest from

the base of the manipulator. For example, for major link N , the resulting force

and moment values are applied at the tool tip. To map the forces and moments

calculated from Equations 3.17 and 3.18 into the manipulator’s joint space, the

following equation is used [21]:

τj = JT
j Fj (3.19)

Fj is a partitioned vector containing the force and moment vectors for link j. Jj

is the partitioned Jacobian matrix containing both the translational and rotational

Jacobians for the first j links. τj is the vector of joint torques for all joints prior to

link j. Since we are using a fixed base manipulator, the force and moment on link j

is only reacted in the joints prior to link j. Thus, the transpose of the Jacobian Jj

can be used to transform the Cartesian forces and moments Fj on link j into joint

torques τj for all joints from the base to link j.

For a general scenario with many obstacles, Equation 3.19 is used for each

obstacle and major link combination and the results are summed together to pro-

duce a net joint torque vector that describes the influence of all obstacles on the
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manipulator. This can be expressed in the following summation:

τobst =
M∑
i=1

N∑
j=1

JT
j Fij (3.20)

where M is the number of obstacles, N is the number of major links of the manip-

ulator, and Fij is the force on link j due to obstacle i. Note that the dimensions

of τ vary with the value of j so care must be taken when summing the different

sized vectors, but this is a straightforward formulation. For example, consider the

2-link planar manipulator in Figure 3.2. Forces and moments on link 1 produce

a one-dimensional τobst vector containing the joint torque for only Joint 1, whereas

forces and moments on link 2 produce a two-dimensional τobst vector containing joint

torques for both Joint 1 and Joint 2.

Flink1

Flink2

J1

J2

x0

y0

Link 2

Li
nk

 1

Figure 3.2: Mapping Cartesian link forces into joint space.

Together, equations 3.17, 3.18, and 3.20 describe how to fully map the electric

potential field created by the obstacles into joint torques on the manipulator.
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3.1.2 Potential Field Model for Joint Limits

If the manipulator is controlled by minimizing the potential energy solely due

to the surrounding obstacles, the joint positions will tend to migrate as far away

from the obstacles as possible subject to the end-effector position constraints [7].

This behavior is likely to cause the manipulator to drive into its joint limits. To

prevent this a potential field is added that tends to push the joints towards their

centers of travel.

Following the approach of Mussa-Ivaldi and Hogan [22], the manipulator is

modeled as a structure with rigid links and elastic joints. Each joint is modeled

with a spring constant as defined in the following equation:

τi = ki(qi − qio), ki ≥ 0 (3.21)

where τi is the joint torque required for the joint displacement, ki is the stiffness

constant, qi is the joint position, and qio is the nominal equilibrium position of Joint

i. This can be represented in matrix form as:

τ = K(q− qo) (3.22)

where τ is a vector of joint torques, K is a diagonal matrix of spring constants ki,

q is a vector of joint positions, and qi is a vector of nominal joint positions. The

corresponding potential energy, V (q), for this model is defined as:

V(q) =
1

2
(q− qo)

TK(q− qo) (3.23)

and the negative gradient of the potential is:

−∇V(q) = K(qo − q) (3.24)
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Thus, the joint torques on the manipulator describing the total influence of the joint

limit potential field are:

τjlim = K(qo − q) (3.25)

The joint ranges of the manipulator will likely differ so the following model is

used for each ki:

ki =
kjlim

∆qi

(3.26)

where ∆qi is the range of joint i and kjlim is a constant greater than zero. This

formulation for K allows the single parameter kjlim to be used to adjust the influence

of the joint limit potential field on the manipulator.

3.1.3 Potential Field Model for Singularities

The Jacobian describes the relationship between joint velocities and cartesian

velocities and is defined as follows:

ẋ = Jq̇ (3.27)

For non-redundant manipulators, the Jacobian matrix is square and can be inverted

in order to determine the change in joint positions for a given change in cartesian

position.

∆q = J−1∆x (3.28)

This provides a simple technique for computing the inverse kinematics of a manip-

ulator incrementally. However, for redundant manipulators the Jacobian has more

columns than rows and cannot be inverted. The Moore-Penrose technique uses the
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right pseudo-inverse of the Jacobian

J† = JT(JJT)−1 (3.29)

to compute the pseudo-inverse solution:

∆q = J†∆x (3.30)

which produces the minimum norm solution of the joint movement for a specified

cartesian change.

Singularities occur when the matrix being inverted in Equation 3.29 is singular.

Thus at a singularity, the determinant D ≡ |JJT | becomes zero. This fact can

exploited to create an artificial potential field to help drive the manipulator away

from solutions near singularities. The following potential field for singularities [7] is

used.

V = −kmanip(|JJT|)
1
2 (3.31)

Where (|JJT |) 1
2 is known as the manipulability index for the manipulator and kmanip

is a positive constant. The negative gradient of this potential field is then:

−∇V =
kmanip

2(|JJT|)1
2

∇D (3.32)

Adjustment of kmanip provides a means of controlling the influence of the singularity

potential field on the manipulator.

Thus, the total joint torques on the manipulator due to the manipulability

potential field is:

τmanip =
kmanip

2(|JJT|)1
2

∇D (3.33)
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3.2 Redundancy Resolution Using Potential Fields

Redundant manipulators have more degrees of freedom than specified for a

task. This results in an infinite set of manipulator configurations that satisfy the

task constraints. As introduced in Section 3.1.3, the pseudo-inverse solution can be

used to incrementally compute the inverse kinematics for a redundant manipulator.

It produces the change in manipulator configuration that minimizes the norm of the

joint velocities. This is just one useful solution out of an infinite number of possible

solutions. The generalized inverse solution combines the pseudo-inverse solution

with a component in the nullspace of the Jacobian:

∆q = J†∆x + (I− J†J)n (3.34)

where I is the identity matrix and n is an arbitrary vector that is projected into the

nullspace [7]. The nullspace component provides a means of moving the solution

along the self-motion manifold for the redundant manipulator without affecting the

end-effector Cartesian constraints. Judicious selection of n allows us to produce a

manipulator configuration that satisfies some additional constraints.

For obstacle avoidance, selection of the solution that minimizes the potential

energy modeled in the system is desired. If n is chosen to be the negative gradient of

the potential field, the corresponding ∆q will be the solution that moves the arm to

a lower potential energy the fastest for a given ∆x. This solution lends itself to using

a gradient search to find a locally minimum potential solution as demonstrated by

Wang [5].

Consider a manipulator that is in a locally minimum potential configuration
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with initial joint positions qi and end-effector pose xi as shown in Figure 3.3.

self motion for xf

self motion for xi

qi

q1 = qi + !q

!q = J†(qi)!x

q3

q4

q5
q6

qf

-"V(q1)

q2 = q1 + P(-"V(q1))

Figure 3.3: Minimum potential solution (modified from [5]).

Suppose a change in the end-effector pose ∆x is commanded which produces

a new end-effector pose xf . A two step process is used for determining the new joint

configuration qf corresponding to the minimum potential configuration for xf . First

the pseudo-inverse solution is used to produce a configuration q1 that is on the self

motion manifold corresponding to xf . Then a gradient descent search is used to

move along the self motion manifold to find a locally minimum potential solution

qf corresponding to xf . Each change in joint position for the search is defined by

the following equation:

∆q = (I− J†J)(−∇V) (3.35)

where −∇V is the negative gradient of the potential field expressed in joint space

which is projected onto the self motion manifold by the matrix I−J†J . Pseudo-code

for this process, including the potential field calculations, is outlined in Figure 3.4.

At line 1, the pseudo-inverse is used to calculate the q1. In lines 4-8, the force
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q = qi + J†∆x /* compute q1 */1

while Max(∆q) > ∆qthreshold do /* find min pot sol */2

τobst = 0 /* init total obstcle torque */3

for obstacle i=1 to M do4

for link j=1 to N do5

compute Fij /* force on link j due to obstacle i */6

τij = JT
j Fij /* map to joint torques */7

τobst = τobst + τij /* add to total obstacle torque */8

τjlim = K(qo − q) /* joint torque due to joint limits */9

τmanip = kmanip

2(|JJT |)
1
2
∇D /* joint torque due to singularities */

10

τtot = τobst + τjlim + τmanip /* total joint torque */11

∆q = (I − JT (JJT )−1J)τtot /* self motion joint delta */12

q = q + ∆q /* update joint position */13

Figure 3.4: Minimum potential solution calculation

of each modeled point obstacle on each link is computed, mapped to joint torques,

and added to the sum τobst. At line 9 the torque due to the joint limit potential

field is calculated. At line 10 the torque due to the singularity potential field is

calculated. At line 11 the total contribution of all the potential fields are added

together. At line 12 the the total joint torque is mapped to the self motion manifold

of the manipulator to compute a change in joint positions. Finally at line 13 the

joint position is updated with the computed ∆q. Lines 2 through 13 comprise the

gradient search and are executed until the change in joint angles is below some

threshold indicating a local minimum potential has been reached.

3.3 3-Link Planar Manipulator Demonstrations

The following examples are demonstrated with a planar 3-link manipulator

shown in Figure 3.5 with modified D-H parameters given in Table 3.3. The values
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used for all examples are given in Table 3.2.

Table 3.2: Obstacle avoidance parameters used for moving point obstacle scenario.

Obstacle Avoidance Parameters

kobst 0.1

kmanip 0.1

kjlim 0.1

Joint Ranges (∆θ1,∆θ2,∆θ3) (rads) [+-3.14],[+-3.14],[+-3.14]

Nominal Joint Positions (θ1, θ2, θ3) (rads) 0,0,0

∆qthreshold (rads) 0.001

Link lengths (L1,L2,L3) (m) 1,1,1

3 Link Planar Manipulator

x0,1

y0,1

D-H Parameters

x2

y2

x3

y3

L2 L3L1

i
alpha

i-1

a

i-1

d

i

theta

i

1 0o 0 0 theta1

2 0o L1 0 theta2

3 0o L2 0 theta3

pNT = [L3, 0, 0]Figure 3.5: Planar 3-link manipulator.

Table 3.3: Planar 3-link manipulator modified D-H parameters.

D-H Parameters (Modified)

i αi−1 ai−1 di θi

1 0 0 0 θ1

2 0 L1 0 θ2

3 0 L2 0 θ3
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3.3.1 Example: Joint Limits

Consider the 3-link planar manipulator configuration with joint positions θT

= [0 1.57 -1.57] radians shown in Figure 3.6. The manipulator is in a non-singular

configuration and there are no obstacles. The resulting joint torques are shown in

Table 3.4.
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Figure 3.6: Non-singular configuration with no obstacles.

Table 3.4: Joint torques due to potential fields.

Joint Torques

Source τ1 (Nm) τ2 (Nm) τ3 (Nm)

obstacles 0 0 0

joint limits 0 -0.0250 0.0250

singularities ∼0 ∼0 ∼0

total ∼0 -0.0250 0.0250
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For this scenario, the only significant contributor to the self motion is the joint

limit avoidance caused by the spring potential energy. Examining the joint torque

values, a negative torque is produced in Joint 2 to push it towards the nominal zero

position. Likewise, a positive torque is produced in Joint 3 to return it to its zero

position. Joint 1 has zero torque since it is already at its nominal zero position.

3.3.2 Example: Near a Singularity

Let us examine what happens when the same manipulator is placed near a

singularity and there are no obstacles. The setup is shown in Figure 3.7 with joint

positions θT = [0 0 3.0] radians. The resulting joint torques are shown in Table 3.5.
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Figure 3.7: Near singular configuration with no obstacles.

The manipulator is almost at an internal singularity due to θ3 nearing π. As a

result, non-zero joint torques are produced by the singularity potential. As expected,
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Table 3.5: Joint torques due to potential fields.

Joint Torques

Source τ1 (Nm) τ2 (Nm) τ3 (Nm)

obstacles 0 0 0

joint limits 0 0 -0.0477

singularities ∼0 -0.0804 -0.2425

total ∼0 -0.0804 -0.2902

a significant negative torque is produced in Joint 2 and Joint 3 that will induce self

motion to help prevent the arm from hitting the singularity. Only Joint 3 has torque

due to the spring potential since Joints 1 and 2 are at their nominal equilibrium

positions.

3.3.3 Example: One Obstacle

Consider the setup shown in Figure 3.8. The manipulator is in a non-singular

configuration at θT = [0 1.57 -1.57] radians. There is one point obstacle placed near

link 3 at position (1.5, 1.3) meters.

Using equations 3.17 and 3.18 and transforming the results to base frame the

cartesian force and moment on each link due to the obstacle can be calculated. The

results are listed in Table 3.6.

The force on link 1 due to the obstacle has components in the negative x and

y directions as expected since the obstacle lies above and to the right of the link.

Similarly, the force on link 2 has components in the negative x and y directions. The

force on link 2 is slightly higher than on link 2 since link 2 is closer to the obstacle.
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Figure 3.8: Non-singular configuration with one obstacle.

Table 3.6: Cartesian force and moment values on each link expressed in base frame
for one obstacle.

Link Force/Moment Values (base frame)

Link Fx (N) Fy (N) Mz (Nm)

1 -0.0214 -0.0305 0.0126

2 -0.0838 -0.0997 -0.0247

3 0 -0.5717 0.2858

The force on link 3 is only in the negative y-direction since the obstacle is centered

above the link. The negative x-direction forces due to the charges on the left side of

link 3 exactly cancel the positive x-direction forces due to the charges on the right

side of the link since the obstacle lies on the perpendicular bisector of the link.

Recall from Section 3.1.1.3 that the force and moment for each link is applied

at the end of the link furthest from the base of the manipulator. Hence, the moment
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for link 1 is about the joint 2 position, the moment for link 2 is about the joint 3

position, and the moment for link 3 is about the tool tip position. The moment

on link 1 due to the obstacle is positive since the force would produce a counter-

clockwise rotation about joint 2. Similarly, the moment on link 2 is negative and

the moment on link 3 is positive.

Table 3.7: Joint torques due to potential fields.

Joint Torques

Source τ1 (Nm) τ2 (Nm) τ3 (Nm)

obstacles -0.9161 -0.2268 -0.2858

joint limits 0 -0.0250 0.0250

singularities ∼0 ∼0 ∼0

total -0.9161 -0.2518 -0.2608

The resulting joint torques due to each potential field are shown in Table 3.7.

The obstacle induced joint torque is negative for all three joints which is consistent

with moving each link downward away from the obstacle. The torques due to the

joint limits are consistent with returning the manipulator to its nominal position at

zero. The torques due to singularities are all nearly zero since the manipulator is

not near a singularity.

Figure 3.9 shows the starting configuration and the final minimum potential

configuration after the gradient search. The starting and ending joint positions

are summarized in Table 3.8. The joint torques produced by the potential fields

push the manipulator away from the obstacle, singularities, and joint limits, while

maintaining the tool tip position.
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starting configuration minimum potential configuration
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Figure 3.9: Minimum potential configuration for a point obstacle.

Table 3.8: Initial and minimum potential configurations for a point obstacle.

Initial and Minimum Potential Configurations

Configuration θ1 (rad) θ2 (rad) θ3 (rad)

initial 0 π
2

−π
2

min pot -0.3613 1.7995 -1.0676

The joint limit and singularity potential energies are calculated using Equa-

tions 3.23 and 3.31 respectively. The obstacle potential energy is calculated by

summing the potential due to each link:

Vobst =
M∑
i=1

N∑
j=1

Vobstij (3.36)

where Vobstij is the potential of link j due to obstacle i and is calculated by integrating

the electric potential along the line segment modeling each link:

Vobstij =
∫ 1

0

kobst

||P1 + (P2−P1)t−OB||
dt (3.37)

where P1 and P2 are the endpoints of link j and OB is the position of obstacle i.
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Figure 3.10 plots the potential energy at each iteration of the minimum potential

search. As expected, the total potential energy decreases until the a local minimum

solution is found.
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Figure 3.10: Potential energy vs number of iterations for a point obstacle.

3.4 Summary

In this chapter, the basic theory was outlined to setup the potential fields

for obstacle, joint limit, and singularity avoidance. A gradient search method was

used to find a local minimum potential configuration of the manipulator that avoids

obstacles, joint limits, and singularities for a kinematically redundant manipulator.

Several examples were demonstrated to show the influence of each potential field on

the manipulator and the resulting minimum potential configuration to confirm the

proper behavior.
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In the next chapter incorporation of line obstacles into the presented obstacle

avoidance scheme is addressed and several examples are given to demonstrate the

behavior.
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Chapter 4

Line of Sight Obstacles

The obstacle potential field calculations developed in the previous chapter

rely on modeling obstacles as point charges. However, to prevent occlusion of the

camera’s line of sight to the target we will need to consider the line of sight as a

line obstacle. Incorporating line segment obstacles into the obstacle potential field

calculations was initially investigated, but, because of its complexity, was replaced

with a simpler approach. This chapter develops an alternative method whereby line

segment obstacles are mapped into points to be used in the obstacle potential field

model. The implementation of this approach into the minimum potential solution

search is discussed and demonstrated in simulation on a 3-link planar manipulator.

4.1 Obstacle Modeling Problem

As suggested in Chapter 3, even though the obstacles for this research are

limited to point obstacles, obstacles can be modeled with multiple points in order

to achieve enough fidelity to produce the desired obstacle avoidance behavior. How-

ever, two questions are immediately apparent. Which points should be chosen? How

many points are needed? For each added point, there is an increase in the number of

calculations required and consequently an increase in the calculation time for com-

puting the minimum potential manipulator configuration. It is therefore desirable
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to determine as small a number of points as possible to model the obstacles that

will still achieve the desired avoidance behavior.

For a line segment obstacle, a subset of points that lie along the line segment

need to be chosen as representatives of the full line segment. A simple approach

might be to choose the two endpoints of the line segment and the midpoint to

represent the line segment. The difficulty with this solution is one of scale. Imagine

a very long line obstacle that the manipulator needs to avoid. Suppose the line

is long enough such that the the manipulator could pass in between the midpoint

and one of the endpoints. The modeled points for the line segment will still induce

some torques on the manipulator, but the line can always be made longer such that

their influence is minimal and the arm will be able to pass right through the line

segment. To fix this problem more points could be added to model the line segment

so that the distance between them is close enough that the manipulator cannot pass

between them. This generic technique could be applied to any obstacle field at a

computational cost that increases linearly with the number of obstacles.

A more refined approach might be to use the closest points on the obstacle

to the manipulator as suggested by Harden [4]. These points pose the greatest

threat for collision, which can be exploited to limit the number of points used for

modeling the obstacle’s potential field. Consider again a line segment obstacle and

suppose the closest point on the line segment to the manipulator is chosen. Now,

the point chosen to model the line segment changes depending on the manipulator

configuration and there will no longer exist a scenario in which the manipulator can

slip between the points that are approximating the line segment. This technique
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was chosen to model line segment obstacles in this research.

4.2 Point of Closest Approach

Consider an N -link manipulator. For each major link of the manipulator,

the closest point on the line segment obstacle to the link is chosen. Thus the line

segment obstacle is modeled with N point charges, each of which corresponds to a

point nearest to one of the manipulator’s major links.

Figure 4.1 shows the points of closest approach for a 3-link planar manipulator

with one line segment obstacle. OB1 is the point closest to link 1, OB2 is the closest

point to link 2, and OB3 is the closest point to link 3.
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Figure 4.1: Points of closest approach.

Specifically, for each link and line segment obstacle pair, the algorithm de-

scribed in Appendix A is used, which calculates the points on two line segments
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that correspond to the minimum distance between the segments. First, the mutual

perpendicular between the two lines containing the two segments is determined.

If the mutual perpendicular intersects both line segments, then the intersection of

the mutual perpendicular with each segment defines the closest points. If the mu-

tual perpendicular does not intersect both segments, four additional calculations

are needed. The minimum distance between each line segment endpoint and the

other line segment is then calculated using the algorithm described in Appendix B.

This algorithm first determines the perpendicular to the line containing the line

segment that also intersects the endpoint. If the perpendicular does not intersect

the line segment then the closest endpoint of the line segment is chosen. Finally,

the combination producing the minimum distance, including the original mutual

perpendicular calculation between both segments, is selected.

4.3 Line Segment Obstacles and the Minimum Potential Solution

With the point of closest approach model for line segment obstacles, the cho-

sen points on the line segment obstacles used to create the obstacle potential field

are now dependent on the configuration of the manipulator. Consequently, the

calculation of these points must occur inside the gradient search for the minimum

potential solution, otherwise there is a possibility of numerical instability of the

inverse kinematics.

For example, consider an N-link manipulator placed in configuration C1 with a

stationary line segment obstacle L. Based on C1, N points on L are calculated and
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used as point charges in the potential field. The minimum potential configuration

is determined based on the starting configuration C1 and the N point charges to

produce C2. However, for C2, there is a slightly different set of N points on the

line segment obstacle that are closest to the manipulator’s links which may produce

another minimum potential configuration C3. In this fashion it is possible to produce

oscillating or even divergent behavior of the manipulator configuration where it never

settles to a minimum configuration over several iterations of the inverse kinematics.

4.4 3-Link Planar Manipulator Demonstration

The following demonstration uses the same 3-link planar manipulator and

constant values used in Section 3.3. The constants and modified D-H parameters

are given in Table 3.2 and Table 3.3 respectively.

4.4.1 Example: Line Segment Obstacle

Consider the setup depicted in Figure 4.2. The manipulator is in a non-

singular configuration with joint positions θT = [0 1.57 -1.57] radians. There is one

line segment obstacle as shown with endpoint locations indicated in Table 4.1.

Table 4.1: Line obstacle positions.

Line Obstacle Positions (base frame)

Obstacle P1x (m) P1y (m) P2x (m) P2y (m)

1 0.25 1.60 1.50 1.60
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Figure 4.2: Non-singular configuration with a line segment obstacle.

Using the point of closest approach discussed in Section 4.2, the point approx-

imation of the line segment obstacle can be calculated. The position of these points

for the specified configuration are shown in Figure 4.2 and specified in Table 4.2.

Obstacle 1 corresponds to the closest point on the line segment obstacle to link 1.

Since the line segment obstacle and link 1 are parallel, the mutual perpendicular

solution chosen intersects the line segment obstacle at its midpoint as described in

Appendix D. Since the mutual perpendicular between the line segment obstacle

and link 1 intersects both segments, obstacle 1 lies where the mutual perpendicular

intersects the line segment obstacle.

Obstacle 2 corresponds to the closest point on the line segment obstacle to

link 2. Here, the line containing the line segment obstacle and the line containing

link 2 intersect. The intersection point lies on the line segment obstacle, but not
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on link 2, thus all endpoint-line combinations must be checked. For this case the

intersection point is the closest point to link 2. This is because the line segment

obstacle and link 2 are perpendicular and the intersection of the two lines is on the

line segment obstacle.

Obstacle 3 corresponds to the closest point on the line segment obstacle to

link 3. As with link 1, the line segment obstacle and link 3 are parallel. However,

the mutual perpendicular chosen (the one that bisects the line segment obstacle),

does not intersect link 3. Thus all endpoint-line combinations are checked and the

rightmost endpoint of the line segment obstacle is correctly chosen as the closest

point to link 3.

Table 4.2: Point obstacle approximation of the line obstacle using the point of closest
approach for each link.

Point Obstacle Positions (base frame)

Obstacle x (m) y (m)

1 0.88 1.60

2 1.00 1.60

3 1.50 1.60

The resulting joint torques for the point obstacles in Table 4.2 and the starting

manipulator configuration are shown in Table 4.3.

As expected, the obstacle potential induces negative torques in all three joints

to move the links downward and away from the line segment obstacle.

Figure 4.3 shows the starting configuration and the final minimum potential

configuration after the gradient search. The starting and ending joint positions
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Table 4.3: Joint torques due to potential fields.

Joint Torques

Source τ1 (Nm) τ2 (Nm) τ3 (Nm)

obstacles -1.1355 -1.3426 -0.1920

joint limits 0 -0.0250 0.0250

singularities ∼0 ∼0 ∼0

total -1.1355 -1.3676 -0.1670

are summarized in Table 4.4. The joint torques produced by the potential fields

push the manipulator away from the obstacle, singularities, and joint limits, while

maintaining the tool tip position.
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Figure 4.3: Minimum potential configuration for a line segment obstacle.

4.5 Summary

This chapter discussed some of the issues associated with modeling obstacles.

Specifically, a camera’s LOS was modeled with a line segment and the point of closest
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Table 4.4: Initial and minimum potential configurations for a line segment obstacle.

Initial and Minimum Potential Configurations

Configuration θ1 (rad) θ2 (rad) θ3 (rad)

initial 0 π
2

−π
2

min pot -0.5570 1.7782 -0.5914

approach method was used to approximate the line segment obstacle with N points

for an N-link manipulator. Integration of this model into the obstacle potential field

from Chapter 3 was addressed and a 3-link planar manipulator demonstration was

given.

In the next chapter the behavior of the obstacle avoidance system is investi-

gated for moving point and line obstacles.
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Chapter 5

Dynamic Simulations of a 3-Link Planar Manipulator

One of the key motivations behind choosing an obstacle avoidance approach

over a planning approach for this research was to cope with a dynamic obstacle envi-

ronment. Trajectory planners tend to require more computational time and operate

on a larger temporal scale. Obstacle avoidance approaches are more reactive and are

better suited for moving obstacles. This chapter demonstrates the behavior of the

methodology with moving point and line obstacles with a 3-link planar manipulator.

The limitations of this approach are also discussed.

5.1 Moving Point Obstacle

Consider a moving point obstacle scenario as shown in Figure 5.1. The corre-

sponding obstacle positions are indicated in Table 5.1 and the minimum potential

configurations are shown in Table 5.2. The end-effector position is stationary and a

point obstacle is moved towards the manipulator. In Figure 5.1a, the manipulator

is in a nominal non-singular configuration and the point obstacle is far enough away

from the manipulator that it does not affect the manipulator’s configuration. This

happens because when obstacles are far away, they do not produce high enough

torques for the Max(∆q) > qthreshold condition in the algorithm in Figure 3.4 to

be satisfied and thus no additional self-motion is induced on the manipulator . As
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the point obstacle moves closer to the manipulator, as in Figure 5.1b, the obstacle

induces high enough joint torques to push the manipulator into a new minimum

potential configuration. As the point obstacle continues to move towards the ma-

nipulator, as in Figure 5.1c, the manipulator continues to use its self-motion to keep

the manipulator links away from the obstacle as expected.
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Figure 5.1: Moving point obstacle.

Table 5.1: Point obstacle position vs time for a moving point obstacle.

Point Obstacle Positions (base frame)

time (s) x (m) y (m)

0 1.5 1.5

5 1.5 1.0

10 1.5 0.5
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Table 5.2: Minimum potential configurations vs time for a moving point obstacle.

Joint Positions

time (s) θ1 (rad) θ2 (rad) θ3 (rad)

0 -0.0006 1.5714 -1.5702

5 -0.6373 1.6466 -0.1637

10 -0.5623 1.2003 0.5756

5.2 Moving Line Segment Obstacle

Consider a moving line segment obstacle scenario as depicted in Figure 5.2.

The corresponding obstacle positions are indicated in Table 5.3 and the minimum

potential configurations are shown in Table 5.4. The end-effector position is station-

ary and the line segment obstacle rotates counter clockwise towards the manipulator.

In Figure 5.2a, the manipulator is in a nominal non-singular configuration and the

line segment obstacle is far enough away from the manipulator that it does not cause

self-motion. Figure 5.2b and Figure 5.2c show that as the the line segment rotates

self-motion of the manipulator is induced and configurations are chosen to keep the

manipulator away from the obstacle.

Table 5.3: Line obstacle position vs time for a moving line segment obstacle.

Line Obstacle Positions (base frame)

time(s) P1x (m) P1y (m) P2x (m) P2y (m)

0 0.50 1.60 1.21 2.31

5 0.50 1.60 1.50 1.60

10 0.50 1.60 1.21 0.89
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Figure 5.2: Moving line segment obstacle.

Table 5.4: Minimum potential configurations vs time for a moving line segment
obstacle.

Joint Positions

time (s) θ1 (rad) θ2 (rad) θ3 (rad)

0 -0.0010 1.5718 -1.5698

5 -0.5734 1.7657 -0.5323

10 -0.6028 1.3255 0.4087

5.3 Minimal Nullspace Component from Potential Field

Consider the scenario demonstrated in Figure 5.3. A point obstacle approaches

the manipulator from the left with positions described in Table 5.5. While there exist

configurations that could avoid the obstacle, the manipulator unexpectedly does not

modify its configuration as shown in Table 5.6 and is unable to avoid the approaching

obstacle. Examination of the joint torques induced by the potential field as shown in

Table 5.7 confirm that the joint torques do increase as the obstacle approaches the

manipulator, but they are not producing changes in the joint configuration. Clearly
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there is some disconnect between the input joint torques and the output joint change

in Equation 3.35.

a) t=0 b) t=4 c) t=8
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Figure 5.3: Moving point obstacle.

Table 5.5: Point obstacle position vs time for a moving point obstacle.

Point Obstacle Positions (base frame)

time (s) x (m) y (m)

0 0.1 0.5

2 0.3 0.5

4 0.5 0.5

6 0.7 0.5

8 0.9 0.5

Let us examine Equation 3.35 more closely. The equation is rewritten here for

convenience.

∆q = (I− J†J)(−∇V) (5.1)

We claimed in Chapter 3 that Equation 5.1 completely describes the self-motion of
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Table 5.6: Minimum potential configurations vs time for a moving point obstacle.

Joint Positions

time (s) θ1 (rad) θ2 (rad) θ3 (rad)

0 0.000 1.571 -1.571

2 0.000 1.571 -1.571

4 0.000 1.571 -1.571

6 0.000 1.571 -1.571

8 0.000 1.571 -1.571

Table 5.7: Potential field induced joint torques vs time for a moving point obstacle.

Total Joint Torques

time (s) τ1 (Nm) τ2 (Nm) τ3 (Nm)

0 −0.146 −0.119 0.031

2 −0.212 −0.158 0.035

4 −0.298 −0.230 0.040

6 −0.435 −0.386 0.050

8 −1.052 −1.077 0.067

the manipulator. We know from linear systems theory that for a system of equations:

b = Ax (5.2)

The vector x consists of a row space component and a nullspace component [23]:

x = xr + xn (5.3)

The nullspace component xn is a homogeneous solution and satisfies the equation:

0 = Axn (5.4)
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The row space component xr is a particular solution of the linear system and satisfies:

b = Axr (5.5)

For a given vector x, the nullspace component is determined by rearranging Equa-

tion 5.3:

xn = x− xr (5.6)

It can be shown that all solutions of the linear system have the same row space

component and that vector is the pseudo-inverse solution. Thus for a given vector

x, the row space component can be computed by first computing the image of x

under A, then computing the pseudo-inverse:

xr = A†Ax (5.7)

Combining Equations 5.6 and 5.7 we get:

xn = x−A†Ax = (I−A†A)x (5.8)

which is identical to what was presented in Equation 5.1 where the linear system is:

∆x = J∆q (5.9)

Equation 5.1 projects the negative gradient of the potential field onto the

nullspace of the Jacobian. For a particular manipulator configuration and potential

field, there is a possibility that the nullspace component of the negative gradient is

very small or even zero. If this occurs, there will be little or no self-motion of the

manipulator. This can occur regardless of the magnitude of the negative gradient.
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Table 5.8 shows the magnitudes of the nullspace and row space components

of the negative gradient of the potential field at each time interval for our example.

The nullspace component is an order of magnitude smaller than the row space

component. Athough the potential field is producing increasing joint torques on

the manipulator as the obstacle approaches, the direction of the torques is mostly

in the row space of the manipulator which is not free to move because of the end-

effector constraints. Both magnitudes increase as the obstacle gets closer to the

manipulator, but the nullspace component never gets large enough to produce a ∆q

that exceeds the ∆qthreshold.

Table 5.8: Potential field nullspace and rowspace magnitudes vs time for a moving
point obstacle.

Potential Field Component Magnitudes

time (s) Nullspace Magnitude Row Space Magnitude

0 0.000271 0.001503

2 0.000405 0.002093

4 0.000499 0.002984

6 0.000459 0.004648

8 0.000197 0.012051

Table 5.9 shows the nullspace component as the obstacle approaches the ma-

nipulator. None of the joint position changes ever exceed the ∆qthreshold = 0.001 rad

value we specified for this example and thus no self-motion is ever initiated. At 6

seconds, the joint deltas begin to decrease because as the obstacle approaches link

2, more of the y-direction forces on the manipulator from link 1 and link 3 cancel.

For this example, there is never any configuration change as the obstacle approaches
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Table 5.9: Self motion joint delta vs time for a moving point obstacle.

Nullspace Component

time(s) ∆θ1 (rad) ∆θ2 (rad) ∆θ3 (rad)

0 −0.000156 0.000156 0.000156

2 −0.000234 0.000234 0.000234

4 −0.000288 0.000288 0.000288

6 −0.000265 0.000265 0.000265

8 −0.000114 0.000114 0.000114

and the obstacle hits link 2 of the manipulator once its x-coordinate reaches a value

of 1.0.

Since there is a small nullspace component of the negative gradient of the

potential field, self-motion of the manipulator can be caused for this example if

we sufficiently raise any of the constants that ∆q depends on. Increasing kobst will

increase the force the obstacle produces on the manipulator and in turn increase the

magnitude of ∆q. Lowering ∆qthreshold can also be done so that the existing constants

will suffice. However, the fundamental problem is that the negative gradient of the

potential field may not have a significant component in the nullspace direction. This

is of particular importance for the obstacle potential field which produces forces in

Cartesian space which may or may not map to nullspace forces on the manipulator.

This is entirely dependent on the kinematics of the manipulator as well as which

end-effector constraints are specified. Additional redundancy in the arm will tend

to alleviate this problem since the nullspace will then span more directions.
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5.4 Large Nullspace Motion

Consider again the example provided in Section 5.3 except the obstacle influ-

ence is raised fourfold to kobst = 0.4. Figure 5.4 depicts this scenario with the same

obstacle movement as specified in Table 5.5 and the minimum potential solutions

are given in Table 5.10.
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Figure 5.4: Moving point obstacle.

Table 5.10: Minimum potential configurations vs time for a moving point obstacle.

Joint Positions

time (s) θ1 (rad) θ2 (rad) θ3 (rad)

0 0.000 1.571 -1.571

2 0.000 1.571 -1.571

4 -0.625 1.412 0.281

6 -0.605 1.333 0.397

8 -0.579 1.249 0.514

When the obstacle’s x-coordinate reaches 0.5, the potential field produces a

large enough nullspace component to exceed the ∆qthreshold and cause self-motion
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of the manipulator. However, when this threshold is exceeded, a large amount of

self-motion is abruptly induced to reach the minimum potential solution. Finer

discretization between 2 and 4 seconds still reveals a discontinuous jump as shown

in Table 5.11 and Table 5.12.

Table 5.11: Point obstacle position vs time for a moving point obstacle.

Point Obstacle Positions (base frame)

time (s) x (m) y (m)

2.004 0.34 0.5

2.005 0.35 0.5

Table 5.12: Minimum potential configurations vs time for a moving point obstacle.

Joint Positions

time (s) θ1 (rad) θ2 (rad) θ3 (rad)

2.004 0.000 1.571 -1.571

2.005 -0.635 1.468 0.190

The reason for this behavior lies in the shape of the potential field and in

our methodology. Since the algorithm searches for a locally minimum potential

solution, if the minimum potential solution lies far from the initial manipulator

configuration then a large nullspace motion will be required to reach the minimum

potential solution.

Since the end-effector constraints for the 3-link planar manipulator consists of

the x and y positions, the self-motion for this manipulator can be expressed as a

change in the orientation of link 3. The orientation of link 3 with respect to the
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x-axis is defined as:

φ = θ1 + θ2 + θ3 (5.10)

Figure 5.5 plots the potential energy vs the self-motion manifold for the obsta-

cle position at 2.005 seconds. The slope of this line defines the gradient of the po-

tential field. At the starting configuration of φ = 0 radians, the slope is −0.193739.

At 2.004 seconds the gradient is −0.19501 which is only slightly less negative. This

small change is just enough to increase the nullspace component beyond the thresh-

old ∆qthreshold and induce self-motion. When this happens at 2.005 seconds, the

starting configuration lies directly on a downward slope of the potential field and the

search proceeds down to find the distant local minimum configuration at φ = 1.02

radians.
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Figure 5.5: Potential energy vs self-motion for obstacle at position (0.35,0.5).

Though it is unclear how common these scenarios are and how often they might
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show up during operation, the possibility of distant minimum potential solutions

for small changes in obstacle positions implies the need for a joint velocity limiting

scheme to prevent excessive velocities when run on hardware.

5.5 Limitations Due to End-Effector Constraints

Another fundamental limitation to this obstacle avoidance approach arises be-

cause of the imposed end-effector constraints. All the 3-link planar demonstrations

provided thus far impose an x-position and y-position constraint on the manipulator

and the third redundant DOF is used for obstacle avoidance. While there are an

infinite number of configurations that satisfy the end-effector position constraint,

there is a limited range of self-motion for the manipulator to avoid obstacles. Con-

sider the moving point obstacle scenario depicted in Figure 5.6. A point obstacle

moves in the positive x-direction and approaches link 2 as described in Table 5.13.
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Figure 5.6: Moving point obstacle.

As the obstacle approaches the manipulator, the manipulator configuration

does not change. This is because the manipulator begins at a configuration that is
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Table 5.13: Point obstacle position vs time for a moving point obstacle.

Point Obstacle Positions (base frame)

time (s) x (m) y (m)

0 −1.25 1.0

10 −0.25 1.0

20 0.75 1.0

already as far away from the obstacle and is still the configuration furthest from the

obstacle as it traverses the y = 1.0 line towards the manipulator. Table 5.14 shows

the induced joint torques on the manipulator as the obstacle approaches. The joint

torques get larger as the obstacle approaches as expected, but because of the end-

effector position constraints, the manipulator has reached the end of its self-motion

travel and cannot move the links any further away from the obstacle. If the obstacle

continues to move towards the manipulator in the same direction, the obstacle will

hit the manipulator.

Table 5.14: Potential field induced joint torques vs time for a moving point obstacle.

Total Joint Torques

time (s) τ1 (Nm) τ2 (Nm) τ3 (Nm)

0 −0.083 −0.101 −0.047

10 −0.195 −0.190 −0.080

20 −1.617 −0.891 −0.071

This problem can also be examined using the same analysis as in Section 5.3.

Table 5.15 shows the magnitudes of the negative gradient of the potential field in

the nullspace and row space. Again, the nullspace component is much smaller that

60



the row space component, which suggests that there is no additional self-motion

that can move the manipulator further away from the obstacle.

Table 5.15: Potential field nullspace and rowspace magnitudes vs time for a moving
point obstacle.

Potential Field Component Magnitudes

time (s) Nullspace Magnitude Row Space Magnitude

0 0.000067 0.001113

10 0.000044 0.002272

20 0.000067 0.014779

5.6 Summary

This chapter has shown a few demonstrations of how moving point obstacles

and moving line segment obstacles interact with a planar 3-link manipulator. Nom-

inal moving point obstacle and moving line segment obstacle scenarios were shown.

Off-nominal scenarios were presented that demonstrate the limitations of obstacle

avoidance due to the end-effector constraints as well as what happens when the

potential field gradient does not project into the self-motion of the manipulator.

These limitations show that this method works well for a limited amount of obsta-

cle motion, but is not sufficient to guarantee the manipulator will avoid collisions

with moving obstacles.

The next chapter will describe the implementation of this obstacle avoidance

approach on the Ranger dexterous manipulator and provide several demonstrations

to show the behavior.
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Chapter 6

Ranger Dexterous Manipulator Demonstrations

The Ranger manipulation system is used to demonstrate the utility of the

obstacle avoidance algorithm developed in this research.

6.1 Ranger Manipulation System

The Ranger manipulation system consists of a central body that serves as the

base platform for any subset of three manipulators. Ranger has two 8-DOF dexter-

ous manipulators for object manipulation and a 6-DOF positioning leg that anchors

the robot to a fixed base and provides gross movement of the entire system. Ranger

operates in both 1-G and neutral buoyancy environments and can be assembled in

either a nominal or extended configuration as shown in Figure 6.1. Ranger includes

two boresight cameras mounted inside the head as shown in the nominal configu-

ration. In the extended configuration, cameras are often externally mounted to the

body to provide additional views. Depending on the task, it may be desirable to

avoid occlusion of one or many of these views.

Ranger’s computer architecture is shown in Figure 6.2. The local processing

units (LPUs) provide joint control using feedback from the joint sensors and actu-

ators. The power management units (PMUs) regulate the power to the LPUs and

joint actuators. The main data management unit (DMU) is responsible for control
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Figure 6.1: Ranger short (left) and extended (right) configurations.

of all the manipulators, while the monitor DMU is responsible for safety [6]. The

control stations provide an operator interface to the robot. For this research three

different control stations were used. The engineering control interface, pictured in

Figure 6.3, provides the operator with a graphical interface for operating the robot.

A graphical visualization system, pictured in Figure 6.4, provides a real-time kine-

matic model of the current manipulator positions and any obstacles that are present.

Finally, a simple input-output control station provides an interface for commanding

pose information from the hand controllers to the robot.

The DMU currently runs on x86 processor-based Linux machine or Mac OS

X on either an x86 or PPC-based machine. The DMU runs on a ”vanilla” Linux

distribution with TimeSys Corporation’s kernel extensions to provide a Real-Time

Operating System when running on the Ranger hardware. The DMU operates at

125 Hz and the LPUs operate at 750 Hz.
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ure 3 shows a recent test during which a
manipulator grasped and maneuvered a
mock-up of an HST scientific instrument.

The dexterous arms have also spent many
hours operating in a 1-g lab environment,
evaluating grappling tasks and ORU replace-
ments. Figure 4 shows a pair of dexterous
arms cooperatively removing a mockup of

an HST electronics control unit (ECU). 
In the early summer of 2004, we took a

pair of dexterous arms to the Proximity
Operations Testbed at the Naval Research
Laboratory in Washington DC, to demon-
strate proximity grappling and servicing
operations. Figure 5 shows an HST ECU
mockup being removed while Ranger is

suspended over 7.5 meters in the air on the
end of an NRL robot. These tests involved
over 25 separate ECU removals and inser-
tions, all carried out over video feed by a
distant operator.

Observed system performance
The software safety system is fundamen-

16 www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

Ranger’s autonomous safety system is designed as a fail-safe
system. The vehicle has two fundamental system states: safe, in
which it can’t cause a hazard, and operating. The system safe
state occurs when the control system detects a failure; in this
state, all motors are incapable of motion due to three indepen-
dent inhibits, which satisfies two-fault tolerant requirements.

Figure A shows the computer architecture that implements
the hazard control system. The onboard local processing units
handle joint level control and interact directly with the robot’s
sensors and joint actuators. The power management units
control power relays that feed power to the LPU computers
and to the joint actuators. The two data management units
communicate with the control stations, all LPUs, and the
PMUs. The main DMU executes the arm control algorithms,
while the monitor DMUs acts primarily as a safety monitor. 

We performed software verification according to a NASA-
certified, formal software development process that included
extensive unit, integration, and system testing, as well as
inspection of all safety-critical code. All safety-critical function-
ality resides solely onboard the robot; the control stations
don’t participate in decisions regarding safety. This approach
simplifies the software verification process by removing the
control station and communications subsystem from safety
considerations. We also made this decision because hardware
failure of control station input devices is indistinguishable
from a malicious operator attempting to drive the robot to
cause a hazard. Hence relying on operator input through a
control station for safety critical functions introduces the possi-
bility of inadvertently executing hazard functions. 

The onboard safety system uses only the vehicle’s actual
telemetry in determining whether a hazard is imminent; the
computers do not attempt to process, filter, and reject
commands that would cause a hazard. Given the workspace’s
complexity and the dexterous manipulators’ complexity and
speed, preprocessing all commands before acting on them
would impose a substantial processing burden on the comput-
ers. This processing would interfere with Ranger’s stringent
real-time deadlines imposed by the arm and joint control algo-
rithms, thereby increasing the possibility of instability. The pre-
processing would also introduce substantial additional com-
plexity, increasing the burden of software verification and the
likelihood of system failure. 

This software safety system was the first such system to be
certified by NASA under the Computer Control of a Hazardous
Payload specification.1 This approach differs from the tradi-
tional NASA fault-tolerant approach, in which human or
mechanical elements are required to control hazards and also

because it doesn’t
require extensive
sequence valida-
tion of software
commands.

Passive
concurrence

Although each
LPU and PMU
receives commands
from both DMUs,
no form of active
concurrence occurs
between the two
DMUs. Each LPU
and PMU simply
takes the “most-
safe” of the com-
mands each DMU
supplies. This form
of passive concur-
rence reduces the
communications
system’s complexity
and also lets each DMU be independent from the other DMU. 

An example is a command to change an LPU’s operating
state (see Figure B). Possible states are

• Safe, in which the LPU is incapable of causing a hazard
• Halt, in which the LPU isn’t asserting its electronic motor

inhibits but is commanding the motor to be stationary 
• Running, in which the LPU is actively servoing its actuators 

If one DMU illegally commands running while the other DMU
correctly commands safe, the LPU selects the most-safe com-
mand, the safe state, and notifies the system of the discrepancy. 

Energy impact analysis
Energy impact analysis served in determining the minimum

allowable separation distance between any part of Ranger and
any noncontactable object.2 The safety-related goal was to
guarantee failures causing uncommanded motion couldn’t
impart excessive energy before the system detected the failure
and transitioned to a safe state. This minimum distance is a func-
tion of the robot’s reaction time, the maximum operating veloc-
ity, the inertia seen by the manipulator, and the distance the
manipulators will take to drift to a stop when power is removed
from the actuators.

Autonomous safety system

Control
stations

Main
DMU

LPU
Robot

Primary
PMU

Monitor
DMU

Safety
PMU

LPU Local Processing Unit
PMU Power Management Unit
DMU Data Management Unit

Figure A. Ranger computer architecture.  

Figure 6.2: Ranger computer architecture (from [6]).

Figure 6.3: Engineering control interface (ECI) for operator control of Ranger.

6.1.1 Ranger Dexterous Manipulator Kinematics

The 8-DOF Ranger dexterous manipulator in its nominal configuration, as

pictured in Figure 6.5, was used to demonstrate this research. The Ranger dexterous
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Figure 6.4: Graphical visualization system.

manipulator consists of ten revolute joints: The first eight joints control control the

position and orientation of the tool and the final two joints are (fast and slow) torque-

driven tool drives for actuating end-effectors such as a parallel jaw gripper or a bolt

drive. The modified D-H parameters are given in Table 6.1 and the corresponding

coordinate frame assignments are shown in Figure 6.6. The full coordinate frame

assignment for the Ranger manipulation system is given in Appendix E. For this

research, two charged line segments are used to model the two major links of the

Ranger Dexterous manipulator. The first line segment models the upper arm and

connects the origins of frames two and four. The second line segment models the

forearm and connects the origins of frames four and five. Note that the model for

the forearm does not particularly model the elbow offset of this manipulator, but

this approximation was deemed suitable for initial research.

Prior work developed a partitioned scheme for redundancy resolution of this

class of manipulator [7] [24]. This method segments the manipulator at its wrist

which greatly simplifies the inverse kinematics problem and allows for different and
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Figure 6.5: 8-DOF Ranger dexterous manipulator in its short configuration.

Table 6.1: Ranger DX modified D-H parameters.

D-H Parameters (Modified)

i αi−1 (rad) ai−1 (m) di (m) θi (rad)

1 0 0 0.1524 θ1

2 Π
2

0 0 θ2

3 −Π
2

0 0.5389 θ3

4 Π
2

0 0 θ4

5 −Π
2

0.1524 0.5117 θ5

6 Π
4

0 0 θ6

7 Π
2

0 0 θ7

8 −Π
2

0 0 θ8

potentially competing schemes to be used for controlling the arm. The existing

scheme uses the first 4-DOFs in the arm to position the wrist and an additional

shoulder-elbow-wrist (SEW) angle using the extended Jacobian method. The SEW

angle, ψ, is shown in Figure 6.7 and describes the angle the SEW plane makes with

a reference vector v̂. The last 4-DOFs control the orientation of the wrist. The

generalized inverse method is used to provide joint limit and singularity avoidance.
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Figure 6.6: Ranger dexterous manipulator coordinate frame assignment (from [7]).

A flowchart of the inverse kinematics is shown in Figure 6.8. Either hand controllers

or a trajectory system provide cartesian pose commands to the system including the

additional SEW specification for the upper arm. For the arm inverse kinematics, the

wrist position, which is calculated from the tool pose, is combined with the SEW

angle to solve for the position of Joints 1− 4. For the wrist inverse kinematics, the

wrist orientation is calculated using the tool orientation and the forearm orientation.

The forearm orientation is calculated from the solution for Joints 1−4. The pseudo-

inverse solution is then combined with a nullspace component due to joint limit and

singularity avoidance to produce the solution for Joints 5− 8.

This research uses the potential-based obstacle avoidance approach developed

in Chapters 3-5 to provide the inverse kinematics for the first 4-DOFs of the Ranger

dexterous manipulator in place of the existing extended Jacobian method as shown

in Figure 6.9. This technique uses the same generalized inverse method used in

the wrist to avoid joint limits and singularities, but adds an additional nullspace

component to avoid obstacles as well. Obstacle positions from a world model are
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Figure 6.7: Shoulder-Elbow-Wrist (SEW) angle for the Ranger dexterous manipu-
lator (from [7]).
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Workspace and Singularities: 

Ranger has a reach of 135 cm when fully extended. As in all serial 

manipulators, boundary singularities exist in this configuration.  Moreover, 

precariously large joint torques are required to hold the arm in an outstretched 

position, further limiting the manipulator’s workspace. However, Ranger’s dual-

redundancy ensures that the dexterous workspace is almost as large as reachable 

workspace. By properly choosing the SEW angle and using the skew axis wrist 

design, Ranger can effectively avoid most singularities in its reachable workspace. A 

more detailed workspace description is currently not available because Ranger’s 

dexterous workspace has yet to be fully characterized.  

Figure 4. Path generation

IV. Vision System Calibration

A. Camera Calibration

As with any stereo vision system there are two calibration processes that must be performed to fully define
the system’s parameters - an intrinsic calibration for each camera and an extrinsic calibration between the
two cameras. The Camera Calibration Toolbox for Matlab6 was used to perform both of these calibration
procedures.

First, pictures were taken of a checkerboard pattern using both cameras. After picking out corners of the
pattern for each camera separately, the software determines the intrinsic calibration parameters: focal length,
principal point, skew coefficient, and distortion coefficients. The next step is to match the corresponding
checkerboard images from each camera to determine the extrinsic parameters of the stereo system. The
Matlab toolbox performs this calibration automatically when given the appropriate images pairs. These
parameters define the relative orientation and offset of the two cameras, expressed as a rotation matrix and
translation vector. This information allows a stereo triangulation procedure to calculate the depth, Z, of
points in the field of view of both cameras in addition to the two dimensional planar X, Y values.

This entire procedure was repeated for both 1-G and neutral buoyancy testing environments due to
the use of different camera hardware in addition to the change in optical properties of the environment.
Although the same model of camera was used in each test, Sony XC-999, Ranger’s boresight cameras had
poorer picture quality due to older age and a harsher work environment. This caused the calibration for the
neutral buoyancy testing to be less accurate, although the underwater environment itself has excellent visual
clarity.

B. Vision System to Vehicle Registration

In order to make use of the vision system’s data, the relationship between the vision system’s coordinate
frame and Ranger’s manipulator coordinate frame must be determined. Registration is the process of de-
termining this relationship, which enables the transformation of vision system data into the manipulator’s
coordinate frame. Manipulator paths can then be planned based on this data. The relationship between
the two coordinate frames can be expressed as a homogeneous transformation, which consists of a rotation
and a translation.5 Over the course of our testing, three different methods were used to determine the
transformation in an attempt to improve the system’s performance.

For the 1-G testing, a tape measure was used to determine the translation between the vision system’s
coordinate frame and Ranger’s manipulator coordinate frame. The relative orientation was assumed based
on the mounting arrangement. After a few tests it was clear that a constant rotation offset was causing posi-
tioning errors and resulting in the manipulator missing the sampling target. We then manually added small
angular corrections into the transformation until the manipulator was consistently grabbing the sampling
target at many different locations within the manipulator’s workspace.

For the neutral buoyancy testing, Ranger’s wide-body configuration prohibited accurate determination
of the transformation using only a tape measure. This was mainly due to the larger distance between the
coordinate frames and limited access to the vision system’s cameras inside the electronics housing. As an
alternative, we constructed a small checkerboard that could be grasped by Ranger’s manipulator and held
within the field-of-view (FOV) of the vision system as shown in Figure 5.
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Figure 6.8: Inverse kinematics flowchart for the Ranger dexterous manipulator
(modified from [7]).

combined with the joint telemetry to produce the nullspace component for the first

4-DOFs of the arm.

A smooth cartesian straight-line trajectory system was developed and used for

this research. This system provides constant velocity motion between waypoints and
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IV. Vision System Calibration

A. Camera Calibration

As with any stereo vision system there are two calibration processes that must be performed to fully define
the system’s parameters - an intrinsic calibration for each camera and an extrinsic calibration between the
two cameras. The Camera Calibration Toolbox for Matlab6 was used to perform both of these calibration
procedures.

First, pictures were taken of a checkerboard pattern using both cameras. After picking out corners of the
pattern for each camera separately, the software determines the intrinsic calibration parameters: focal length,
principal point, skew coefficient, and distortion coefficients. The next step is to match the corresponding
checkerboard images from each camera to determine the extrinsic parameters of the stereo system. The
Matlab toolbox performs this calibration automatically when given the appropriate images pairs. These
parameters define the relative orientation and offset of the two cameras, expressed as a rotation matrix and
translation vector. This information allows a stereo triangulation procedure to calculate the depth, Z, of
points in the field of view of both cameras in addition to the two dimensional planar X, Y values.

This entire procedure was repeated for both 1-G and neutral buoyancy testing environments due to
the use of different camera hardware in addition to the change in optical properties of the environment.
Although the same model of camera was used in each test, Sony XC-999, Ranger’s boresight cameras had
poorer picture quality due to older age and a harsher work environment. This caused the calibration for the
neutral buoyancy testing to be less accurate, although the underwater environment itself has excellent visual
clarity.

B. Vision System to Vehicle Registration

In order to make use of the vision system’s data, the relationship between the vision system’s coordinate
frame and Ranger’s manipulator coordinate frame must be determined. Registration is the process of de-
termining this relationship, which enables the transformation of vision system data into the manipulator’s
coordinate frame. Manipulator paths can then be planned based on this data. The relationship between
the two coordinate frames can be expressed as a homogeneous transformation, which consists of a rotation
and a translation.5 Over the course of our testing, three different methods were used to determine the
transformation in an attempt to improve the system’s performance.

For the 1-G testing, a tape measure was used to determine the translation between the vision system’s
coordinate frame and Ranger’s manipulator coordinate frame. The relative orientation was assumed based
on the mounting arrangement. After a few tests it was clear that a constant rotation offset was causing posi-
tioning errors and resulting in the manipulator missing the sampling target. We then manually added small
angular corrections into the transformation until the manipulator was consistently grabbing the sampling
target at many different locations within the manipulator’s workspace.

For the neutral buoyancy testing, Ranger’s wide-body configuration prohibited accurate determination
of the transformation using only a tape measure. This was mainly due to the larger distance between the
coordinate frames and limited access to the vision system’s cameras inside the electronics housing. As an
alternative, we constructed a small checkerboard that could be grasped by Ranger’s manipulator and held
within the field-of-view (FOV) of the vision system as shown in Figure 5.
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Joint Telem.
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Tool Orientation

Figure 6.9: Arm inverse kinematics flowchart for the Ranger dexterous manipulator
with obstacle avoidance (modified from [7]).

constant acceleration regions around each waypoint to smoothly transition between

the constant velocity segments. Waypoints are specified in files and loaded into the

system and run through the ECI. A world model system was also extended and used

in this research. Obstacles and their constant velocity straight-line trajectories are

specified in an XML file and loaded using the ECI or automatically loaded in a tra-

jectory file for the manipulator. This functionality provided a script-based method

for loading a desired obstacle scenario and executing a manipulator trajectory.

6.2 Ranger Testing in Simulation

Ranger can operate in either hardware or simulation mode. In hardware mode,

the joint positions produced by the arm controllers are commanded to the LPUs

which then actuate the joints on the robot. In simulation mode, the LPUs, sens-

ing, and actuation hardware are by-passed and the commanded joint positions are

directly tied to the actual joint positions. This provides a very convenient kine-
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matic simulation of the hardware for testing control software in the DMU without

requiring or risking damage to the actual hardware. This set of tests use Ranger in

simulation mode and the visualization system is used to provide graphical feedback

of the arm behavior. For these tests, only the right dexterous manipulator (DXR)

is being controlled while the left dexterous manipulator (DXL) and the PXL remain

stationary.

The potential field influence constants kobst, kjlim, and kmanip were chosen in

the following manner for both simulation and hardware demonstrations. kmanip was

first chosen to provide adequate self-motion near singularities. In particular the

shoulder singularity was used to verify proper behavior. kobst and kjlim were then

chosen to provide adequate obstacle avoidance for the demonstration. The values

were modified depending on the example to show the desired avoidance behavior

but also to prevent the manipulator from hitting joint limits. A deeper investigation

into determining a set of values that work for the majority of scenarios still needs

to be carried out.

6.2.1 Moving Point Obstacle

Consider the moving point obstacle scenario shown in Figure 6.10. A single

point obstacle, shown as a black sphere, moves downward from P T
1 = [-0.381 -1.000

0.533] to P T
2 = [-0.381 1.000 0.533] in base frame coordinates at a rate of 0.1m/s

towards the initial elbow position while the tool position of the manipulator remains

static. The constants used for this example are shown in Table 6.2.
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t=0 t=20 t=40

Figure 6.10: Moving point obstacle scenario with Ranger.

Table 6.2: Obstacle avoidance parameters used for moving point obstacle scenario.

Obstacle Avoidance Parameters

kobst 0.005

kmanip 0.010

kjlim 0.001

Joint Ranges (∆θ1,∆θ2,∆θ3,∆θ4) (rads) [+-3.84],[+-1.87],[+-3.84],[-0.02,2.95]

Nominal Joint Positions (θ1, θ2, θ3, θ4) (rads) 0,0,0,1.466

∆qthreshold (rads) 0.00005

The manipulator joint positions and velocities are given in Figure 6.11. There

is no manipulator motion until the obstacle starts moving at six seconds. Over

the interval t = [6, 23] seconds there is a gradual change in joint positions to avoid

the obstacle as it approaches. However, near 23 seconds, there is a drastic change

in position for Joints 1-3 causing a large velocity spike approaching 6 rads/sec for

Joints 1 and 2 and 10 rads/sec for Joint 3.

The velocity spike is caused by a sudden change in the obstacle induced po-

tential field as the obstacle passes below the elbow. The total joint torques induced

71



0 5 10 15 20 25 30 35
!1

!0.5

0

0.5

1

1.5

2
Joint Position vs Time

Time (seconds)

J
o
in

t 
P

o
s
it
io

n
 (

ra
d
ia

n
s
)

 

 
!

1

!
2

!
3

!
4

0 5 10 15 20 25 30 35
!10

!8

!6

!4

!2

0

2

4

6
Joint Velocity vs Time

Time (seconds)

J
o
in

t 
V

e
lo

c
it
y
 (

ra
d
s
/s

e
c
)

 

 
!

1
 Vel

!
2
 Vel

!
3
 Vel

!
4
 Vel

Figure 6.11: Joint positions and velocities for a moving point obstacle.

by the potential field are shown in Figure 6.12. From t = [6, 15] seconds there is a

gradual magnitude increase in torques for all joints as the obstacle gets closer to the

manipulator. Over t = [15, 23] seconds there is a gradual decrease in magnitudes

as the manipulator moves away from the obstacle. At 23 seconds there is a sudden

large decrease in torque for Joint 1 while the torques for Joints 2 − 4 experience a

large enough change to cause a sign change. As a result the potential field suddenly

forces the joints in the opposite direction as seen in Figure 6.11.

To examine this further, consider the joint torques due to each potential field

independently as shown in Figure 6.13. As the obstacle approaches during the

interval t = [6, 23] seconds the obstacle potential produces a large positive torque

on Joint 2 while the joint limit potential produces a moderate negative torque on

Joint 2 and the singularity potential produces minimal torque since the manipulator

is far from singularities. However, near 23 seconds, the torque on Joint 3 due to

the obstacle potential drops off significantly as the obstacle passes below the elbow
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Figure 6.12: Moving point obstacle total joint torques due to potential field.

allowing the negative torque on Joint 3 due to the build up in joint limit potential to

dominate and reverse the direction of motion. This occurs because as the obstacle

passes below the elbow, the obstacle only produces forces along the longitudinal axis

of the upper arm which do not map to forces on Joint 3.

Examining the torques for Joint 1 is even more revealing. During the interval

t = [6, 15] seconds, the obstacle potential produces a large negative torque while the

joint limit potential produces a slight positive torque on Joint 1 and the singularity

potential produces negligible torque. From t = [15, 23] seconds the manipulator

approximately maintains the same configuration shown pictorially in Figure 6.10b

while the obstacle continues to move downward. When the obstacle passes below

the elbow, the torque on Joint 2 becomes dominated by the joint limit potential

energy and begins moving back towards its nominal joint position at zero. As the

elbow swings above the obstacle, the obstacle potential now produces a large positive

torque on Joint 2 to push the manipulator upward away from the obstacle in the

73



same direction that it is being driven by the joint limit potential energy.
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Figure 6.13: Moving point obstacle joint torques due to each potential field. Note
that the scale for the singularity potential is two orders of magnitude smaller since
the manipulator is not near a singularity.

Figure 6.14 shows the directions of the forces due to the joint limit and obstacle

potential fields. While the obstacle approaches the manipulator from above the

elbow the joint limit and obstacle potential forces oppose each other. However,

when the obstacle passes below the elbow, both forces are in the same direction and

force the elbow to swing upward.

Fjlim, Fobst

Fobst

Fjlim

Figure 6.14: Obstacle and joint limit induced forces oppose each other as obstacle
approaches from above (left), but reinforce each other after the obstacle passes below
the elbow (right).

Manipulator motion and obstacle motion cause the potential field to change.
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As discussed in Section 5.4, scenarios such as this one can arise where small changes

in the manipulator configuration or obstacle position can give rise to a new mini-

mum potential solution that is far from the current manipulator configuration. To

limit the joint velocities and provide safe operation of the manipulator for these

situations joint velocity limits were implemented. This scheme caps the maximum

joint velocity for any joint and scales the velocities of the other joints accordingly

to maintain the same tool path.

Suppose a joint velocity limit is specified such that q̇ilim > 0. For a system

frequency of f , the maximum magnitude change in position for any joint is:

∆qilim =
q̇ilim

f
(6.1)

Suppose a minimum potential configuration requires a joint change of ∆q where the

magnitude of one or more of the individual joint deltas exceeds the specified ∆qilim

limit. Each joint delta is then scaled by:

∆qi =
∆qilim

|∆qi|max

∆qi (6.2)

where |∆qi|max is the largest magnitude of the individual joint deltas in ∆q.

Consider again, the same moving point obstacle scenario, but with the joint

velocity limit set to 0.15 rads/sec. The joint positions and velocities are shown

in Figure 6.15. During the first few seconds there are small position changes in

Joints 3 and 4. This occurs when the manipulator is not at a local minimum

solution when obstacle avoidance is enabled. The likelihood of starting at a local

minimum configuration when obstacle avoidance is enabled is very small and thus

it is common to see self-motion at the start. In fact, the same position transient
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exists in Figure 6.11 for this scenario without velocity clamping. Since there is no

velocity limiting, this transient is very short, but the change in joint positions is

exactly the same. Velocity clamping slows down this transient and provides safer

operation. For the rest of the trajectory, the limiting scheme limits the velocity

on Joint 3 and scales the other joints accordingly. This provides a much smoother

and slower transition to the new minimum potential solution as the obstacle moves

below the elbow.
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Figure 6.15: Joint positions and velocities for a moving point obstacle with joint
velocity limiting.

A plot of the SEW angle in Figure 6.16 shows the self-motion of the manip-

ulator. The SEW angle increases as the obstacle approaches the manipulator then

at 20 seconds the SEW angle changes direction once the obstacle passes the elbow

and the manipulator swings back up to its nominal configuration.

A side effect of implementing velocity limiting is that the speed at which

the manipulator can react to the obstacle environment is reduced. If an obstacle

approaches the manipulator too quickly, the manipulator will not be able to avoid
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Figure 6.16: SEW angle for a moving point obstacle with joint velocity limiting.

the obstacle. Consider again the same moving point obstacle scenario, but with

the obstacle moving at 0.4 m/s towards the elbow. Figure 6.17 shows a plot of the

distance between the obstacle and the two line segments modeling the major links

of the manipulator. Both plots show two lines corresponding to the distance to

each link, however, due to the symmetry of the scenario, the distances are almost

the same and the lines lie on top of each other. Figure 6.17a shows the distance

to each link when the velocity clamping is turned off. Without limits on how fast

the manipulator’s joints can move during the self-motion, the manipulator is able

to maintain a distance of at least 30 cm from the line segments modeling the links.

However, with velocity clamping set to 0.15 rad/sec, the obstacle comes within 3 cm

of the link line segments as shown in Figure 6.17b. If the sum of the obstacle or link

dimensions exceed the 3 cm of clearance there will be a collision. Increasing kobst in

an attempt to push the arm further from the obstacle and provide more clearance

will help, but not fix this problem. The fundamental problem is that the speed at
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which the manipulator can move is being capped and if the obstacle is moving faster

there will be a collision.
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Figure 6.17: Obstacle distance to each manipulator link without velocity limiting
(a) and with velocity limiting (b).

6.2.2 Moving Line Obstacle

Consider the moving line obstacle scenario shown in Figure 6.18. The black

line segment represents the camera LOS and the small spheres show the points of

closest approach used to model the line segment obstacle. The line segment obstacle

begins vertically above the manipulator and rotates 180 degrees about the endpoint

near the shoulder. As the line obstacle rotates the manipulator is able to provide

sufficient self-motion to avoid it. The constants used for this example are shown in

Table 6.3.

The joint positions of the manipulator describing the self-motion are shown

in Figure 6.19. The first interval of motion during t = [0, 8] seconds is the initial
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Figure 6.18: Moving line obstacle scenario with Ranger. The black line represents
the line obstacle and the small spheres that lie on the line obstacle represent the
points of closest approach.

Table 6.3: Obstacle avoidance parameters used for moving line obstacle scenario.

Obstacle Avoidance Parameters

kobst 0.003

kmanip 0.010

kjlim 0.001

Joint Ranges (∆θ1,∆θ2,∆θ3,∆θ4) (rads) [+-3.84],[+-1.87],[+-3.84],[-0.02,2.95]

Nominal Joint Positions (θ1, θ2, θ3, θ4) (rads) 0,0,0,1.466

∆qthreshold (rads) 0.00005

Joint Velocity Limit (rads/sec) 0.125

self-motion transient after enabling obstacle avoidance. Over the interval t = [8, 30]

seconds very little motion occurs as the obstacle begins its motion. This is because

the points of closest approach modeling the line segment obstacle are both at the
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stationary endpoint of the segment for the first 32 seconds, as seen in Figure 6.18 at

20 seconds, and they don’t change until the obstacle rotates closer to the manipula-

tor. During t = [32, 75] seconds we see significant joint motion as the manipulator

swings its elbow downwards to avoid the line obstacle. The joint motion is smooth

and well behaved even after the elbow begins to swing back up at 55 seconds when

the obstacle passes because of the joint velocity clamping.
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Figure 6.19: Joint positions for a moving line obstacle.

Figure 6.20 shows the distance of the two points of closest approach, OB1 and

OB2, to each line segment modeling the manipulator’s two major links. OB1 is the

point closest to the upper arm link and OB2 is the point closest to the forearm

link. For the first eight seconds the transient self-motion after enabling obstacle

avoidance is observed. From t = [8, 20] seconds there is no change in the distance

since the points of closest approach are both at the stationary end of the line segment

obstacle. Over the whole trajectory neither points come any closer than 20 cm to

either link.
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Figure 6.20: Obstacle distance to each manipulator link for a line obstacle using the
point of closest approach method.

Over the interval t = [25, 35] seconds OB2 quickly transitions away from the

stationary endpoint as the line obstacle becomes close to horizontal. Of particular

interest is that OB2 becomes very close to the forearm which causes the self-motion

shown in Figure 6.19 starting at approximately 30 seconds. At 40 seconds, the self-

motion of the manipulator stops OB2 from getting any closer and then continues to

move further away.

At 47 seconds there is a oscillation of about 35 cm in the distance from OB1

to the forearm for approximately one second. This oscillation also produces large

oscillations in the resulting joint torques on the manipulator due to obstacles as

shown in Figure 6.21. Figure 6.22 shows the configuration at 47 seconds when the

observed oscillations occur. The line obstacle is parallel with the upper arm of the

manipulator. The oscillations are occurring because of the choice to use the line

segment obstacle midpoint when it is parallel with a manipulator link. For two

parallel line segments, there exist an infinite number of solutions for the point of
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closest approach. The midpoint of the line segment obstacle was chosen so that the

average transition distance between the prior point of closest approach before the

line segments become parallel and the chosen point of closest approach when they

become parallel is minimum. Oscillatory behavior as seen here was not anticipated.

Instead of just two position jumps for the transition in and out of parallel there are

many due to the fact that the manipulator and the line segment obstacle are both

moving.
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Figure 6.21: Joint torques due to obstacle potential field for a moving line obstacle.

Fortunately, for this example the joint velocity limiting filters out these oscilla-

tions and there are no oscillations in the joint positions in Figure 6.19. However, an

interpolation scheme needs to be devised and implemented in order to eliminate the

discontinuity in the obstacle position when a link and line obstacle become parallel.

6.2.3 Static Line Obstacle with End-Effector Motion

Consider the static line obstacle scenario shown in Figure 6.23. A line segment

obstacle is positioned with one endpoint at the origin of the manipulator’s base frame
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Figure 6.22: Line obstacle is parallel with upper arm of the manipulator at 47
seconds.

and points in front of the vehicle along the negative x-axis of the base frame. The line

segment obstacle maintains static while the end-effector trajectory outlines a square

around the obstacle by first going around the line segment from above as show in

Figure 6.23 at 30 seconds, then retracing the trajectory back to the starting position

shown at 0 seconds, and finally going around the line segment from below as shown

at 80 seconds. The base frame end-effector trajectory is shown in Figure 6.24. The

trajectory is plotted in the y-z plane only as the x-position remains constant at x =

−0.842 meters. Over the duration of the trajectory, the manipulator’s self-motion

is used to prevent the links from colliding with the obstacle. This example uses the

same constants used in the moving line obstacle scenario discussed in Section 6.2.2.

Figure 6.25 shows the joint positions for the manipulator trajectory. There

are eight distinct arcs for each joint corresponding to each cartesian movement of

the end-effector as it traverses around the line obstacle. The transitions are smooth

between each waypoint even with the additional self-motion for obstacle avoidance.
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Figure 6.23: Static line obstacle scenario with end-effector motion on Ranger.
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Figure 6.24: Ranger end-effector trajectory for static line obstacle scenario.

The symmetry in the plot over the first 55 seconds is due to the retracing of the

end-effector path after moving around the line obstacle from above.

The base frame positions of the points of closest approach for the line obstacle

are plotted in Figure 6.26. Since the line obstacle lies along the base frame x-axis,

only the x-positions are shown. At 30 and 80 seconds, both points diverge from

their starting positions as the arm wraps around the obstacle from above and below

respectively as shown in Figure 6.23. OB1, which corresponds to the point closest to

the upper arm, maintains a more positive x-position, while OB2, which corresponds
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Figure 6.25: Joint positions for the static line obstacle.

to the point closest to the forearm, maintains a more negative x-position as expected.

OB2
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Figure 6.26: Obstacle positions for the static line obstacle in base frame coordinates.

Figure 6.27 plots the distance between the points of closest approach and

each major manipulator link. As expected, at 30 and 80 seconds the distances are

minimal because the end-effector path causes the manipulator to wrap around the

line obstacle. However, the manipulator is still able to maintain clearance between

the links and the line obstacle over the entire trajectory.
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Figure 6.27: Distance of the points of closest to each manipulator major link for the
static line obstacle scenario.

Figure 6.28 shows the resulting joint torques on the manipulator due to the

line obstacle. As expected, as the manipulator becomes close to the obstacle at 30

and 80 seconds, the magnitudes of the joint torque are highest.
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Figure 6.28: Obstacle induced joint torques for the static line obstacle in base frame
coordinates.
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6.3 Ranger Hardware Demonstration

This section describes a demonstration of the obstacle avoidance system run-

ning on the actual Ranger dexterous manipulator hardware. For this scenario, a

video camera was mounted on top of the head of the Ranger body and pointed

downward at a field of mock sample targets as depicted in Figure 6.29. One of

the sample targets, the yellow rubber duck, was chosen to be the sample target

of interest for this demonstration and measurements were taken to determine the

location of the LOS between the camera and the sample target. The measurements

were used to construct a line segment obstacle and used in the obstacle avoidance

software. In real operations, the vision system would determine the position of the

sample target which would define the LOS position. Figure 6.30 shows an external

view of Ranger taken with a camera and the simulated view with the line segment

obstacle shown.

Figure 6.29: Setup for Ranger hardware demonstration.
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Figure 6.30: Real and simulated external views of Ranger hardware demonstration.

A similar square trajectory to Section 6.2.3 was used for this demonstration.

Figure 6.31 indicates the sequence of waypoints as the manipulator traverses above

(top row), and then below (bottom row) the line segment obstacle.

Figure 6.31: Ranger end-effector trajectory sequence for static line obstacle scenario.
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Figure 6.32 shows the view from the camera mounted on the head of Ranger.

The view on the left shows the unobstructed LOS to the yellow duck sample target

while the manipulator end-effector traverses above the LOS line obstacle while the

view on the right shows the unobstructed view while the end-effector moves below

the obstacle.

Figure 6.32: Unobstructed camera view for Ranger hardware demonstration.

Figure 6.33, 6.34, and 6.35 show the joint positions, line obstacle distance to

each link, and the resulting joint torques respectively. Each show very similar results

to the demonstration in Section 6.2.3 since they are almost identical scenarios.
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Figure 6.33: Joint positions for the Ranger hardware demonstration.
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Figure 6.34: Obstacle distance to each manipulator link for Ranger hardware demon-
stration.
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Figure 6.35: Obstacle induced joint torques for the Ranger hardware demonstration.

6.4 Summary

This chapter demonstrated the use of the obstacle avoidance algorithm on the

Ranger dexterous manipulator. The extended Jacobian method was replaced with

the generalized inverse technique to provide obstacle avoidance with the first four

joints of Ranger. Demonstrations for moving point and line segment obstacles were

shown as well as interaction with a line obstacle during an end-effector trajectory.
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A hardware demonstration was also given providing a clear view of a sample target

during operations.

The next chapter discusses the use of the obstacle avoidance technique for non-

redundant manipulators and offers two potential approaches. The most promising

approach is further outlined with mock scenarios.
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Chapter 7

Obstacle Avoidance for Non-Redundant Manipulators

This chapter briefly overviews a methodology that could be used to provide ob-

stacle avoidance to non-redundant manipulators using the same techniques outlined

in this research. The approach is described and two examples are given.

7.1 Approach

The methodology used in this research relies on kinematic redundancy of the

manipulator with respect to the task. Traditionally, for tool positioning in three-

dimensions, an excess of three degrees of freedom is required for redundancy. There

are many commercial and research manipulators that are not redundant from this

perspective. However, there may be a way to add redundancy to these manipulators

and take advantage of the obstacle avoidance theory used in this research.

From a theoretical point of view there are two ways to add redundancy to a

non-redundant manipulator. The first option involves removing dimensions from

the task space. For example, a 2-link planar manipulator has two joints which is

sufficient to satisfy the two-dimensionsal task space. The tool can be positioned

anywhere within the workspace of the manipulator. Though there are multiple joint

solutions for a given tool position, there are not infinite solutions as there would

be for a redundant manipulator. However, if one of the constraints in the task
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space is ignored, the manipulator becomes redundant for the one-dimensional task

space. Suppose the task space is in the x-y plane. The constraint in the y-direction

can be removed by eliminating the second row in the Jacobian. Using the same

obstacle avoidance theory presented in this research, the manipulator can satisfy

the x-direction constraint, but also avoid obstacles by deviating in the y-direction.

Initial experiments with this method have indicated potential difficultly with this

approach because there is no clear way to limit the tool position deviation in task

space. Specifically, for the 2-link planar example, it would be desirable to limit

how far away the tool position can deviate in the y-direction from the original two-

dimensional trajectory. Implementation of this approach would likely involve mode

switching between a nominal mode when full task space tracking is required and an

obstacle avoidance mode when obstacle avoidance is needed.

Another seemingly more promising approach for adding redundancy is to re-

lax the end-effector constraint by adding ”virtual” links to the terminal link of the

manipulator. The nominal unsprung joint position and weighting used in the joint

limit potential field for a virtual prismatic joint can be set such that during nom-

inal operations the position of the virtual link is coincident with the original tool

position. Thus under nominal operations away from obstacles, the virtual tool posi-

tion is the same as the actual manipulator tool position and the manipulator tracks

trajectories as expected. However, when the manipulator approaches obstacles the

actual manipulator tool position is allowed to deviate from the desired tool trajec-

tory using the added prismatic joint degree of freedom. The virtual tool still follows

the desired trajectory, while the real manipulator avoids collisions with obstacles.
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Assigning joint limits to the prismatic joint provides a straightforward means

of limiting the tool deviation from the desired trajectory, which was not possible in

the prior task space reduction approach. The virtual link would not be modeled as

a charged line segment as the links of the actual manipulator so that it can pass

freely through obstacles without imposing undesirable self-motion.

7.2 Virtual Link with 2-Link Planar Manipulator

To demonstrate this approach consider the 2-link planar manipulator scenario

shown in Figure 7.1. The end-effector is commanded along the vertical line and there

is an obstacle along the path shown in red. An additional two degrees of freedom

are added to the manipulator using a virtual link. A prismatic joint controls the

displacement of the virtual link (d3) and a revolute joint attached at the original

tool tip rotates the virtual link (θ3).

t=0 t=10

d3

t=20

!3

Figure 7.1: 2-link planar manipulator with a virtual link.

At 0 seconds the manipulator is far enough way from the obstacle that the pris-

matic joint is at minimum extension due to the joint limit potential field. However,
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when the end-effector becomes close to the obstacle, the prismatic joint extends

due to the obstacle potential field forces on the manipulator to move the actual

end-effector away from the obstacle as shown at 10 seconds while the virtual end-

effector continues to traverse the commanded trajectory. If the obstacle force is

strong enough, the prismatic joint will reach its maximum extension and limit the

end-effector’s divergence from the desired path. When the end-effector moves past

the obstacle, the joint limit potential dominates and returns the prismatic joint back

to zero and the end-effector continues to follow the commanded trajectory.

7.3 Application to SAMURAI

Now consider the the same virtual link approach applied to the 6-DOF SAMU-

RAI manipulator shown in Figure 7.2. The manipulator is mounted vertically as

it would be on JAGUAR and is setup to perform a sample task on the ocean floor

simulated here by the blue sheet on the table. The sample target is the yellow

rubber duck placed at the end of the table.

Figure 7.3 shows a potential nominal trajectory sequence to perform a sam-

pling task. The view is from a camera mounted above and to the left of the manip-

ulator’s shoulder so that it looks down on the ocean floor. The part of SAMURAI

seen from this view is the top of the manipulator’s elbow. At 0 seconds the ma-

nipulator is folded back in a nominal stow configuration. At 10 seconds the arm

travels in a strait line from the stow position to the target. As the manipulator

takes this path the view of the sample target becomes partially occluded by the
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Figure 7.2: SAMURAI mock sampling scenario.

manipulator. At 20 seconds the manipulator has reached out far enough that the

elbow has lowered and the sample target is visible again.

t=0 t=10 t=20

Figure 7.3: SAMURAI nominal sampling trajectory.

Figure 7.4 shows a possible trajectory sequence when SAMURAI makes use

of obstacle avoidance with the virtual link. The virtual link could be attached to

the end-effector such that the revolute joint causes the link to sweep through a

plane parallel to the ocean floor. Since the camera is offset slightly to the left of

the manipulator, a line segment obstacle modeling the line of sight to the sample
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target would produce a force component to the right and cause the manipulator

end-effector to diverge from its nominal straight-line path which would occlude the

camera view. Once the elbow of the manipulator becomes low enough, the joint

limit potential will dominate the virtual link and bring the end-effector back to the

nominal trajectory while the elbow swings underneath the line obstacle.

t=0 t=10 t=20

Figure 7.4: SAMURAI obstacle avoidance with a virtual link.

7.4 Summary

This chapter presented a virtual link approach to allow non-redundant manip-

ulator to make use of the obstacle avoidance scheme used in this research. A simple

demonstration for a 2-link planar manipulator was described for demonstration pur-

poses and a cursory look at how this could apply to the SAMURAI manipulator for

the ASTEP mission was presented.

The next chapter provides an overview of this research, draws some conclu-

sions, and offers ideas for future directions.
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Chapter 8

Conclusions and Future Work

This chapter discusses the contributions of this research and draws some con-

clusions about its effectiveness. Future research directions are presented.

8.1 Summary

This research developed and implemented a successful obstacle avoidance scheme

that provides automatic prevention of camera occlusion for visually guided manip-

ulators. The energy-based generalized inverse approach enables real-time avoidance

necessary in unstructured dynamic environments, while still maintaining isolation

from the control scheme and trajectory system used for the manipulator. This al-

lows the system to be retrofitted to other robotic systems with minimal changes to

the existing system.

The technique presented by Wang was extended to three-dimensions and added

a scheme for incorporating line obstacles. This research also added singularity avoid-

ance necessary for application on real manipulators. The system behavior was eval-

uated in simulation for static and dynamic scenarios on a 3-link planar manipulator

and then implemented on the Ranger dexterous manipulator. Testing on the Ranger

dexterous manipulator produced promising results once a velocity limiting scheme

was implemented.
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Use of virtual links was proposed to add additional virtual degrees of freedom

to a manipulator that allow deviation of the end-effector from the commanded path.

This provides a methodology for using the same obstacle avoidance scheme presented

in this thesis for non-redundant manipulators. Virtual links can also be added to

redundant manipulators to allow end-effector deviations to further the manipulator’s

obstacle avoidance capability.

Though this thesis focused on obstacle avoidance, the method has broader im-

plications. In the absence of obstacles the system helps produce feasible paths that

do not violate workspace bounds due to joint limits. For non-redundant manipu-

lators, such as SAMURAI, singularities cannot be avoided unless the end-effector

path is modified. Use of the virtual link scheme in the absence of obstacles allows

deviation of the end-effector path to automatically avoid the singularities.

8.2 Future Work

Immediate follow-on work includes devising and implementing an interpolation

scheme to prevent the oscillations seen when a line obstacle becomes parallel with

one of the manipulator’s links. The scheme needs to provide continuous positions of

the points of closest approach as the link and line obstacle transition into and out

of parallel.

A collision detection system should also be implemented. This system would

provide additional checks on the minimum potential solution to determine whether

the manipulator has collided with an obstacle. Since there are no guarantees that
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the obstacle avoidance system will prevent collisions, this system would provide a

last resort check that does not update the manipulator joint positions if a collision

is detected for the next inverse kinematics solution. This system will be essential

for the safety of the manipulator when the obstacles are not virtual.

Further, a higher fidelity model of the Ranger dexterous manipulator that

accounts for the elbow offset would be preferable. The elbow offset is currently

not accounted for in the manipulator model. Additionally, dimensional properties

need to be assigned to the manipulator for the collision detection system to op-

erate. A recommended simple first step would be to assign a radius to the line

segment currently modeling the manipulator major links so that a cylinder is used

to approximate the manipulator’s dimensions.

Further research needs to be conducted to more adequately understand the

interaction of the manipulator and the potential field models. Ranges of kobst, kjlim,

kmanip, qthresh, and the joint velocity limit need to be further studied to try to gain

insight into how to adjust these parameters to achieve the desired results. All of

these parameters influence the activation of the minimum potential search, when

the search ends, how far the manipulator is from the minimum potential solution,

and how many iterations it takes to get to the minimum potential solution.

Investigation of other potential fields is also recommended. Though the electric

potential field is simple and well understood, other potential fields may offer more

desirable dynamic characteristics for the manipulator solutions. This may eliminate

the need for joint velocity limiting. Additionally, a further study of the current joint

velocity limiting scheme should be carried out in order to determine its effectiveness.
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The current scheme provides a hard limit on the joint velocity which produces a joint

acceleration spike. A more gradual limiting scheme would eliminate these spikes and

be less harsh on the hardware.

Finally, the virtual link approach proposed offers a way of perturbing the

end-effector position to avoid obstacles. This is currently not seen in the literature

for the energy-based generalized inverse approaches and if successful may produce

a very practical and flexible manipulator obstacle avoidance scheme. Simulation

of this technique for the planar scenario needs to be conducted and if successful

implemented on the SAMURAI manipulator. Virtual links also provide additional

flexibility for redundant manipulators. Further research on this technique should

also include implementation on the Ranger dexterous manipulators.

Robot motion planning in unstructured environments continues to be an ac-

tive area of research for both manipulators and mobile robots. Additional research

will continue to provide systems with increased autonomy and enable exploration

in previously unreachable terrestrial environments as well as on other planets and

moons. Whereas current manipulators are dangerous to be around, improvements

will allow safe interaction between humans and robots. This will open the door to

a wide variety of new applications that are not possible today.
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Appendix A

Minimum Distance Between Two Line Segments

Input: Line segment 1 endpoints: L11 and L12

Input: Line segment 2 endpoints: L21 and L22

Output: Minimum distance between line segments 1 and 2: dcp

Output: Line segment 1 point closest to line segment 2: L1cp

Output: Line segment 2 point closest to line segment 1: L2cp

Assumes: MutualPerp2Lines uses the following parameterizations for a
line: L1 + (L2 − L1)t. See Appendix D.

begin1

/* mutual perpendicular between lines 1 and 2 */

{dcp, L1cp, L2cp, t1, t2} = MutualPerp2Lines(L11, L12, L21, L22)2

/* if mutual perpendicular does not intersect both line

segments, compute endpoint-line min distances and use

the shortest result */

if t1 < 0 or t1 > 1 or t2 < 0 or t2 > 1 then3

L1cp1 = L114

{dcp1 , L2cp1} = MinDistPtLineSeg(L11, L21, L22)5

L1cp2 = L126

{dcp2 , L2cp2} = MinDistPtLineSeg(L12, L21, L22)7

L2cp3 = L218

{dcp3 , L1cp3} = MinDistPtLineSeg(L21, L11, L12)9

L2cp4 = L2210

{dcp4 , L1cp4} = MinDistPtLineSeg(L22, L11, L12)11

foreach dcpi
∈ {dcp1 , dcp2 , dcp3 , dcp4} do12

if dcpi
< dcp then13

dcp = dcpi
14

L1cp = L1cpi
15

L2cp = L2cpi
16

return {dcp, L1cp, L2cp}17

end18
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Appendix B

Minimum Distance Between a Point and a Line Segment

Input: Point P
Input: Line segment endpoints: L1 and L2

Output: Minimum distance between point and line segment: dcp

Output: Line segment point closest to P : Lcp

Assumes: MutualPerpPtLineSeg uses the following parameterization for
the line: L1 + (L2 − L1)t. See Appendix C.

begin1

/* mutual perpendicular between point and line */

{dcp, Lcp, t} = MutualPerpPtLineSeg(P,L1, L2)2

/* if mutual perpendicular is to the outside of L1, then

L1 is the closest point on the segment */

if t < 0 then3

Lcp = L14

dcp = Distance(P,L1)5

/* if mutual perpendicular is to the outside of L2, then

L2 is the closest point on the segment */

else if t > 1 then6

Lcp = L27

dcp = Distance(P,L2)8

return {dcp, Lcp}9

end10
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Appendix C

Mutual Perpendicular Between a Point and a Line

The following calculations are used to determine the intersection of the mutual

perpendicular between a point and a line with the line.

C

P1

P2 P P3

Figure C.1: Mutual perpendicular between a point and a line.

Consider the setup depicted in Figure C.1. Let us define P1 as the point, P2

and P3 as two non-coindident points that lie on the line, and P as the point of inter-

section of the mutual perpendicular with the line. Since the mutual perpendicular

and the line are orthogonal we know:

(P1−P) · (P3−P2) = 0 (C.1)

A parametric equation for the mutual perpendicular line is:

P = P2 + t(P3−P2) (C.2)

Substituting Equation C.2 into Equation C.1 we get:

(P1− (P2 + t(P3−P2))) · (P3−P2) = 0 (C.3)
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Solving for t and simplifying Equation C.3 we get:

t =
(P1−P2) · (P3−P2)

(P3−P2) · (P3−P2)
(C.4)

Substituting Equation C.5 into Equation C.2 we our desired equation for the inter-

section point P :

P = P2 +

[
(P1−P2) · (P3−P2)

(P3−P2) · (P3−P2)

]
(P3−P2) (C.5)

The result in C.5 is always defined as long as points P2 and P3 are not coincident.
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Appendix D

Mutual Perpendicular Between Two Lines

The following calculations are used to determine the mutual perpendicular

between two lines. Specifically, the intersection of the mutual perpendicular with

each line is calculated.

C

P5

P6P3 P4

P1

P2

Line 1

Line 2

Figure D.1: Mutual perpendicular between two lines.

Consider the setup depicted in Figure D.1. P1 and P2 are non-coincident

points on line 1. P3 and P4 are non-coincident points on line 2. P5 is the point of

intersection of the mutual perpendicular and line 1. P6 is the point of intersection

of the mutual perpendicular and line 2.

Lines 1 and 2 can be defined parametrically as:

L1(t1) = P1 + v1t1 (D.1)

L2(t2) = P3 + v2t2 (D.2)
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where t1 and t2 are the parameters and v1 and v2 are the directions of line 1 and

line 2 respectively. We define the directions as:

v1 = P2−P1 (D.3)

v2 = P4−P3 (D.4)

Similarly, the mutual perpendicular can be defined parametrically as:

Lperp(t3) = P5 + v3t3 (D.5)

with direction:

v3 = P6−P5 (D.6)

Since P5 and P6 lie on lines 1 and 2 respectively, we can substitute the para-

metric line equations from D.1 and D.2 into D.6 to produce an equation for the

direction of the mutual perpendicular in terms of the line 1 and line 2 parameters:

v3 = (P3 + (P4−P3)t2)− (P1 + (P2−P1)t1) (D.7)

Since the mutual perpendicular is orthogonal to both lines, we know the dot

product of the directions of line 1 and line 2 with the mutual perpendicular direction

is zero.

v1 · v3 = 0 (D.8)

v2 · v3 = 0 (D.9)

Subsituting Equations D.3, D.4, and D.6 into D.8 and D.9 and simplifying we have:

(P2−P1) · (P2−P1)t1 − (P2−P1) · (P4−P3)t2 = (P2−P1) · (P3−P1)

(D.10)
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(P4−P3) · (P2−P1)t1 − (P4−P3) · (P4−P3)t2 = (P4−P3) · (P3−P1)

(D.11)

Solving these two equations for t1 and t2 yields:

t1 = ((P2−P1)·(P4−P3))((P4−P3)·(P3−P1))−((P2−P1)·(P3−P1))((P4−P3)·(P4−P3))
((P2−P1)·(P4−P3))((P4−P3)·(P2−P1))−((P2−P1)·(P2−P1))((P4−P3)·(P4−P3))

(D.12)

t2 = ((P2−P1)·(P2−P1))((P4−P3)·(P3−P1))−((P2−P1)·(P3−P1))((P4−P3)·(P2−P1))
((P2−P1)·(P4−P3))((P4−P3)·(P2−P1))−((P2−P1)·(P2−P1))((P4−P3)·(P4−P3))

(D.13)

These results for t1 and t2 can be substituted back into Equations D.1 and D.2 to

produce the intersecting points P5 and P6 respectively.

The equations in D.12 and D.13 are well defined provided P1 and P2 are not

coincident, P3 and P4 are not coincident, and the lines are not parallel. If the lines

are parallel, there are an infinite number of solutions that are perpendicular to both

lines. Thus, for software implementation, one of the solutions needs to be chosen

using a reasonable scheme. For this research, a value of t1 = 0.5 is chosen, which

determines a result for P5. Then P6 is determined using the mutual perpendicular

between a point and a line for P5 and line 2 (See Appendix C). Alternatively, if the

lines intersect, P5 and P6 are equal to the point of intersection of the two lines.
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Appendix E

Ranger Coordinate Frames

Figure E.1: Ranger coordinate frames.
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Appendix F

Ranger Arm Inverse Kinematics
/** \file libs/armkinematics/src/arminvkin_rprp.c

Arm inverse kinematics routine for RPRP style arm

*/

/*--------------------------------------------------------------------------------

$Id: arminvkin_rprp_oa.cpp 2844 2007-05-15 01:34:47Z nscott $

(c) Copyright 1999. Space Systems Laboratory, UMCP. All rights reserved

FILE: arminvkin_rprp_oa.c

ABSTRACT: Computes the inverse kinematics for the 4-dof RPRP arm with

the following nonzero D-H parameters: a4, d1, d3, d5

The extra degree of freedom is used to avoid obstacles, joint limits,

and singularities. A potential field is created and the negative

gradient of the potential field is used to direct the nullspace

solution of the jacobian.

REVISION HISTORY:

21-Feb-2007 N Scott Created

--------------------------------------------------------------------------------*/

#include "armkin.h"

#include "arminvkin_rprp_oa.h"

#include <math.h>

#include <boost/assign/list_of.hpp>

#include <boost/assign/std/vector.hpp>

#include "vector_crc.h"

#include "inverse_crc.h"

#include "armPrintSetMacros.h"

// from log4cpp

#include "log4cpp/Category.hh"

#include "log4cpp/RollingFileAppender.hh"

#include "log4cpp/SimpleLayout.hh"

// currently only handles obstacles of these shape types

#ifndef __SPHERE_H

#include "world/h/sphere.h"

#endif

#ifndef __CYLINDER_H

#include "world/h/cylinder.h"

#endif

// for FREQ_SYSTEM

#include "include/TSXNUMS.H"

__BEGIN_DECLS

/*********************************************************************************

VERBOSE PRINTF OUTPUT

*********************************************************************************/

//#define VERBOSE

/*********************************************************************************

DEFINES

*********************************************************************************/

#define D2R(x) (((x)*M_PI)/180.0)

/*********************************************************************************

MODULE-LEVEL VARIABLES FOR BOTH RPRP AND RPRP_OA INVKIN

*********************************************************************************/

// enable/disable obstacle avoidance

static BOOLEAN OAEnabled = true;

/* DOF numbers */

#define SPDOF 1 /* shoulder pitch */

#define EPDOF 3 /* elbow pitch */

static float SPLIMIT = 0.1;

static float EPLIMIT = 0.4;

// logger

static BOOLEAN isLogging = false;
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static log4cpp::Category* logger = NULL;

/*********************************************************************************

MODULE-LEVEL VARIABLES FOR OBSTACLE AVOIDANCE RPRP INVKIN

*********************************************************************************/

/// pointer to global world object

static ssl::world::WorldAPI* world = NULL;

/// constant for scaling with system frequency

// THIS NEEDS TO BE ADDED TO UNIT TESTS SO THEY DONT BREAK IF FREQ_SYSTEM CHANGES

// SOMEWHERE DOWN THE ROAD

static float DT = 125.0*(1.0/FREQ_SYSTEM);

/// DX joint ranges (froM CFG.C)

static float jointRanges[4] = {D2R(220) - D2R(-220),

D2R(107) - D2R(-107),

D2R(220) - D2R(-220),

D2R(169) - D2R(-1)};

/// nominal joint configuration

// Middle of joint ranges (joint limits from CFG.C for DX)

static float nominalJointConfiguration[4] = {(D2R(220)-D2R(-220))/2.0 + D2R(-220),

(D2R(107)-D2R(-107))/2.0 + D2R(-107),

(D2R(220)-D2R(-220))/2.0 + D2R(-220),

(D2R(169)-D2R(-1))/2.0 + D2R(-1)};

/// obstacle stiffness constant (based on coulomb force constant)

static float Ko = 0.001;

/// joint stiffness matrix (normalized by joint range)

static float Kj = 0.01;

/// manipulability constant for singularity avoidance

static float Km = 0.001;

/// change in joint angle (radians) threshold for finding minimum potential solution

static float deltaJointThreshold = 0.00005;

/// max joint velocity (rad/s)

static float maxJointVelocity = 0.15;

/// maximum number of iterations

static unsigned int maxNumIterOA = 35;

/// number of iterations for last execution

static unsigned int numIterOA = 0;

/// jacobian masks

static BOOLEAN cartMask[3] = {1,1,1};

static BOOLEAN jointMask[4] = {1,1,1,1};

/*********************************************************************************

MODULE-LEVEL VARIABLES FOR REGULAR RPRP INVKIN

*********************************************************************************/

static int NITER = 3;

/*********************************************************************************

INITIALIZATION AND SHUTDOWN FUNCTIONS

*********************************************************************************/

/*

Sets the local module pointer to reference the global world model object

ASSUMES:

None

PARAMETERS

None

SIDE-EFFECTS:

Unknown

RETURNS:

None

NOTES:

None

*/

void

arminvkin_rprp_oa_Initialize(ssl::world::WorldAPI* in_world)

{

assert(in_world!=NULL);

// point to global world object

world = in_world;

// create logger

logger = &log4cpp::Category::getInstance(s_ARMINVKIN_RPRP_OA_LOGFILE_CATEGORY);

assert(logger != NULL);

logger->debug("arminvkin_rprp_oa_Initialize(): started");

logger->setPriority(log4cpp::Priority::EMERG);
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}

/*

Releases pointer to world object

ASSUMES:

None

PARAMETERS

None

SIDE-EFFECTS:

Unknown

RETURNS:

None

NOTES:

None

*/

void

arminvkin_rprp_oa_Shutdown(void)

{

world = NULL;

assert(logger!=NULL);

logger->debug("arminvkin_rprp_oa_Shutdown: finished");

// do not delete logger as it belongs to the log4cpp library. See #438

}

/*********************************************************************************

VARIABLE ACCESSOR FUNCTIONS FOR REGULAR RPRP INVKIN

*********************************************************************************/

/*

Get and set value of each of this module’s variables

ASSUMES:

None

PARAMETERS

value - for set functions, the value to set the variable to

SIDE-EFFECTS:

None.

RETURNS:

for get functions, the current value of the variable

NOTES:

None

*/

float

arminvkin_rprp_oa_GetSPLIMIT(void)

{

return SPLIMIT;

}

float

arminvkin_rprp_oa_GetEPLIMIT(void)

{

return EPLIMIT;

}

int

arminvkin_rprp_oa_GetNITER(void)

{

return NITER;

}

void

arminvkin_rprp_oa_SetSPLIMIT(float value)

{

SPLIMIT = value;

}

void

arminvkin_rprp_oa_SetEPLIMIT(float value)

{

EPLIMIT = value;

}

void

arminvkin_rprp_oa_SetNITER(int value)

{

NITER = value;

}

/*********************************************************************************

VARIABLE ACCESSOR FUNCTIONS FOR OBSTACLE AVOIDANCE RPRP INVKIN

*********************************************************************************/

/*
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Get and set value of each of this module’s variables

ASSUMES:

None

PARAMETERS

value - for set functions, the value to set the variable to

SIDE-EFFECTS:

None.

RETURNS:

for get functions, the current value of the variable

NOTES:

None

*/

BOOLEAN

arminvkin_rprp_oa_ToggleOAEnabled(void)

{

OAEnabled = !OAEnabled;

return OAEnabled;

}

BOOLEAN

arminvkin_rprp_oa_GetOAEnabled(void)

{

return OAEnabled;

}

void

arminvkin_rprp_oa_SetOAEnabled(BOOLEAN value)

{

OAEnabled = value;

}

unsigned int

arminvkin_rprp_oa_GetMaxNumIterOA(void)

{

return maxNumIterOA;

}

void

arminvkin_rprp_oa_SetMaxNumIterOA(unsigned int value)

{

maxNumIterOA = value;

}

unsigned int

arminvkin_rprp_oa_GetNumIterOA(void)

{

return numIterOA;

}

BOOLEAN

arminvkin_rprp_oa_GetIsLogging(void)

{

return isLogging;

}

void

arminvkin_rprp_oa_StartLogging(void)

{

if (logger != NULL)

{

logger->setPriority(log4cpp::Priority::DEBUG);

isLogging = true;

logger->debug("#MESSAGE Logging Started");

}

}

void

arminvkin_rprp_oa_StopLogging(void)

{

if (logger != NULL)

{

logger->debug("#MESSAGE Logging Stopped");

logger->setPriority(log4cpp::Priority::EMERG);

isLogging = false;

}

}

void

arminvkin_rprp_oa_SetJointMask(BOOLEAN in_jointMask[4])

{

for (unsigned int i=0; i<4; i++)

{

jointMask[i] = in_jointMask[i];

}

}

void
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arminvkin_rprp_oa_GetJointMask(BOOLEAN out_jointMask[4])

{

for (unsigned int i=0; i<4; i++)

{

out_jointMask[i] = jointMask[i];

}

}

void

arminvkin_rprp_oa_SetCartMask(BOOLEAN in_cartMask[3])

{

for (unsigned int i=0; i<3; i++)

{

cartMask[i] = in_cartMask[i];

}

}

void

arminvkin_rprp_oa_GetCartMask(BOOLEAN out_cartMask[3])

{

for (unsigned int i=0; i<3; i++)

{

out_cartMask[i] = cartMask[i];

}

}

/* the following are NOT used for diagnostics, but are useful for unit testing */

void

arminvkin_rprp_oa_GetNominalJointConfiguration(float out_nominalJointConfiguration[4])

{

for (unsigned int i=0; i<4; i++)

{

out_nominalJointConfiguration[i] = nominalJointConfiguration[i];

}

}

void

arminvkin_rprp_oa_SetNominalJointConfiguration(float in_nominalJointConfiguration[4])

{

for (unsigned int i=0; i<4; i++)

{

nominalJointConfiguration[i] = in_nominalJointConfiguration[i];

}

}

float

arminvkin_rprp_oa_GetKj()

{

return Kj;

}

void

arminvkin_rprp_oa_SetKj(float in_Kj)

{

Kj = in_Kj;

}

float

arminvkin_rprp_oa_GetKo()

{

return Ko;

}

void

arminvkin_rprp_oa_SetKo(float in_Ko)

{

Ko = in_Ko;

}

float

arminvkin_rprp_oa_GetKm()

{

return Km;

}

void

arminvkin_rprp_oa_SetKm(float in_Km)

{

Km = in_Km;

}

float

arminvkin_rprp_oa_GetDeltaJointThreshold()

{

return deltaJointThreshold;

}

void

arminvkin_rprp_oa_SetDeltaJointThreshold(float in_deltaJointThreshold)

{

deltaJointThreshold = in_deltaJointThreshold;

}
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float

arminvkin_rprp_oa_GetMaxJointVelocity()

{

return maxJointVelocity;

}

void

arminvkin_rprp_oa_SetMaxJointVelocity(float in_maxJointVelocity)

{

maxJointVelocity = in_maxJointVelocity;

}

/*********************************************************************************

FUNCTION PROTOTYPES FOR FUNCTIONS DEFINED ONLY IN THIS FILE

*********************************************************************************/

void

arminvkin_rprp_oa_disabled(float a[],

float d[],

float vhat[3],

float p05next[3],

float sewnext,

float thetaarm[4],

int *shoulderSingular,

int *elbowSingular);

void

arminvkin_rprp_oa_enabled(float a[],

float d[],

float p05next[3],

float thetaarm[4],

int *shoulderSingular,

int *elbowSingular);

void

arminvkin_rprp_oa_ObstacleInducedTorques(float dh_a[],

float dh_d[],

float thetaarm[4],

float OB[4],

linkType_t linkType,

float Ko,

float jointTorques[4]);

void

arminvkin_rprp_oa_StiffnessInducedTorques(float jointConfiguration[4],

float nominalJointConfiguration[4],

float Kj,

float jointRanges[4],

float tStiffness[4]);

void

arminvkin_rprp_oa_SingularityInducedTorques(float dh_a[],

float dh_d[],

float thetaArm[4],

float Km,

float tauSingularities[4]);

bool

arminvkin_rprp_oa_MutualPerpendicular_PointAndLine(float P1[3],

float P2[3],

float P3[3],

float P4[3],

float& t);

bool

arminvkin_rprp_oa_MutualPerpendicular_TwoLines(float P1[3],

float P2[3],

float P3[3],

float P4[3],

float P5[3],

float P6[3],

float& t1,

float& t2);

float

arminvkin_rprp_oa_MinimumDistance_PointAndLineSegment(float P1[3],

float P2[3],

float P3[3],

float out_P4[3]);

float

arminvkin_rprp_oa_MinimumDistance_TwoLineSegments(float P1[3],

float P2[3],

float P3[3],

float P4[3],

float out_P5[3],

float out_P6[3]);

void

arminvkin_rprp_oa_RightPseudoInverse(float* J,

unsigned int numRows,

unsigned int numCols,

float* Jpseudo);
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void

arminvkin_rprp_oa_MatrixInv22(float* A,

float* AInv);

void

arminvkin_rprp_oa_MatrixInv33(float* A,

float* AInv);

float

arminvkin_rprp_oa_MatrixDet33(float* A);

/*********************************************************************************

FUNCTIONS

*********************************************************************************/

/*

Computes the inverse kinematics for the 4DOF RPRP arm with the following

non-zero D-H parameters: a4, d1, d3, d5

ASSUMES:

Unknown

PARAMETERS

a[] input: dh link length parameters

d[] input: dh link offset parameters

vhat[3] input: ?

p05next[3] input: desired cartesian position

sewnext input: desired sew angle

thetaarm[4] input: current joint positions

output: next joint positions corresponding to p05next[3]

SIDE-EFFECTS:

Unknown

RETURNS:

Nothing.

NOTES:

Wrapper around internal implementatiton function. Just hides the

extra parameters needed internally.

*/

void

arminvkin_rprp_oa(float a[],

float d[],

float vhat[3],

float p05next[3],

float sewnext,

float thetaarm[4])

{

int shoulderSingular;

int elbowSingular;

arminvkin_rprp_oa_Imp(a,

d,

vhat,

p05next,

sewnext,

thetaarm,

&shoulderSingular,

&elbowSingular);

}

/*

The internal implementation function.

ASSUMES:

All parameters are not NULL

Unknown

PARAMETERS

a[] input: dh link length parameters

d[] input: dh link offset parameters

vhat[3] input: ?

p05next[3] input: desired cartesian position

sewnext input: desired sew angle

thetaarm[4] input: current joint positions

output: next joint positions corresponding to p05next[3]

shoulderSingular output: TRUE (1) if on the last iteration the arm was near/in the

shoulder pitch singularity, otherwise FALSE (0)

elbowSingular output: TRUE (1) if after all iterations the arm was near/in the

elbow pitch singularity, otherwise FALSE (0)

SIDE-EFFECTS:

Unknown

RETURNS:

Values in thetaarm and singular.

NOTES:

’shoulderSingular’ and ’elbowSingular’ defaults to FALSE if no

iterations are done.

*/

void
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arminvkin_rprp_oa_Imp(float a[],/* input */

float d[],/* input */

float vhat[3],/* input */

float p05next[3],/* input */

float sewnext,/* input */

float thetaarm[4],/* input, output */

int *shoulderSingular,/* output */

int *elbowSingular) /* output */

{

if (OAEnabled)

{

// call invkin routine with obstacle avoidance

arminvkin_rprp_oa_enabled(&a[0],

&d[0],

&p05next[0],

&thetaarm[0],

shoulderSingular,

elbowSingular);

}

else

{

// call normal newton raphson routine with no obstacle avoidance

arminvkin_rprp_oa_disabled(a,

d,

vhat,

p05next,

sewnext,

thetaarm,

shoulderSingular,

elbowSingular);

}

}

/*

The internal implementation function with obstacle avoidance enabled

ASSUMES:

All parameters are not NULL

arminvkin_rprp_oa_Initialize has been called

PARAMETERS

a[] input: dh link length parameters

d[] input: dh link offset parameters

p05next[3] input: desired cartesian position

thetaArm[4] input: current joint positions

output: next joint positions corresponding to p05next[3]

shoulderSingular output: TRUE (1) if on the last iteration the arm was near/in the

shoulder pitch singularity, otherwise FALSE (0)

elbowSingular output: TRUE (1) if after all iterations the arm was near/in the

elbow pitch singularity, otherwise FALSE (0)

SIDE-EFFECTS:

Unknown

RETURNS:

Values in thetaarm and singular.

NOTES:

TODO: Add singularity avoidance

TODO: Add collision detection

*/

void

arminvkin_rprp_oa_enabled(float a[],/* input */

float d[],/* input */

float p05next[3],/* input */

float thetaArm[4],/* input, output */

int *shoulderSingular,/* output */

int *elbowSingular)

{

// indicate execution of this function

logger->debug("#FUNCTION arminvkin_rprp_oa_enabled()");

// log settings

logger->debug("#SETTINGS Ko = %5.6f",

Ko);

logger->debug("#SETTINGS Kj = %5.6f",

Kj);

logger->debug("#SETTINGS Km = %5.6f",

Km);

logger->debug("#SETTINGS nomJointConfig = %5.6f %5.6f %5.6f %5.6f",

nominalJointConfiguration[0],

nominalJointConfiguration[1],

nominalJointConfiguration[2],

nominalJointConfiguration[3]);

logger->debug("#SETTINGS deltaJointThreshold = %5.6f",

deltaJointThreshold);

logger->debug("#SETTINGS maxJointVelocity = %5.6f",

maxJointVelocity);

logger->debug("#SETTINGS maxNumIterOA = %d",

maxNumIterOA);

// log input data
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logger->debug("#INPUT p05next[3] = %5.6f %5.6f %5.6f",

p05next[0],

p05next[1],

p05next[2]);

logger->debug("#INPUT thetaArm[4] = %5.6f %5.6f %5.6f %5.6f",

thetaArm[0],

thetaArm[1],

thetaArm[2],

thetaArm[3]);

/**

preconditions

*/

assert(world != NULL);

assert(shoulderSingular!=NULL);

assert(elbowSingular!=NULL);

/**

Variable declarations

*/

// joint torques

float tau[4];

float tauObstacle[4];

float tauObstacles[4];

float tauStiffness[4];

float tauSingularities[4];

float tauTotal[4];

// misc variables

float Je[3][4]; // full elbow jacobian

float Jt[3][4]; // full tool jacobian

float dp05[3]; // change in cartesian position in base frame for all cart dimensions

float dthetaArmIter[4]; // change in joint position for one iter

float thetaArmNext[4]; // next joint position for all joints

float OB[3];

std::vector<unsigned int> cartDimEnabled; // jacobian rows to use (x,y,z)

std::vector<unsigned int> jointDimEnabled; // jacobian cols to use (j1,j2,j3,j4)

/**

set cart and joint enabled dimensions based on mask values

*/

cartDimEnabled.clear();

for (unsigned int i=0; i<3; i++)

{

if (cartMask[i] == 1)

{

cartDimEnabled.push_back(i);

}

}

jointDimEnabled.clear();

for (unsigned int i=0; i<4; i++)

{

if (jointMask[i] == 1)

{

jointDimEnabled.push_back(i);

}

}

/**

setup dynamic variables based on enabled cart and joint dimensions

*/

unsigned int JNumRows = cartDimEnabled.size();

unsigned int JNumCols = jointDimEnabled.size();

float* tempArrayRowSize1 = new float[JNumRows]; // temp

float* tempArrayColSize1 = new float[JNumCols]; // temp

float* tempArrayColSize2 = new float[JNumCols]; // temp

float* identityMatrix = new float[JNumCols*JNumCols]; // holds identity matrix for calc of dthetaArm that moves down the gradient of the potential

float* dp = new float[JNumRows]; // change in cartesian position for enabled cartesian dimensions

float* dthetaArm = new float[JNumCols]; // change in joint positions for enabled joints which is computed at each iteration in search for min potential

float* J = new float[JNumRows*JNumCols]; // jacobian

float* Jpseudo = new float[JNumCols*JNumRows]; // pseudo-inverse of the jacobian

float* tauTotalEnabledJoints = new float[JNumCols]; // total joint torque for enabled joints

assert(tempArrayRowSize1!=NULL);

assert(tempArrayColSize1!=NULL);

assert(tempArrayColSize2!=NULL);

assert(identityMatrix!=NULL);

assert(dp!=NULL);

assert(dthetaArm!=NULL);

assert(J!=NULL);

assert(Jpseudo!=NULL);

assert(tauTotalEnabledJoints!=NULL);

/**

setup max joint delta for one invkin call based on max joint velocity

*/

float deltaJointMax[4] = {fabs(maxJointVelocity/FREQ_SYSTEM),

fabs(maxJointVelocity/FREQ_SYSTEM),

fabs(maxJointVelocity/FREQ_SYSTEM),

fabs(maxJointVelocity/FREQ_SYSTEM)};

/**

determine current cartesian position
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*/

float p02[3], p04[3], p05[3];

float R04[3][3];

armfwdkin_rprp(a,d,thetaArm,p02,p04,p05,R04);

logger->debug("#CALC p02 = %5.6f %5.6f %5.6f",

p02[0],

p02[1],

p02[2]);

logger->debug("#CALC p04 = %5.6f %5.6f %5.6f",

p04[0],

p04[1],

p04[2]);

logger->debug("#CALC p05 = %5.6f %5.6f %5.6f",

p05[0],

p05[1],

p05[2]);

/**

determine cartesian delta position

*/

vecsub(p05next,p05,3,dp05);

logger->debug("#CALC dp05 = %5.6f %5.6f %5.6f",

dp05[0],

dp05[1],

dp05[2]);

/**

determine masked jacobian for current joint config

*/

armjac_rprp(a,d,thetaArm,Je,Jt);

for (unsigned int i=0; i<JNumRows; i++)

{

for (unsigned int j=0; j<JNumCols; j++)

{

assert((JNumCols*i + j) < JNumRows*JNumCols);

assert((cartDimEnabled[i]*jointDimEnabled[j]) < 3*4);

*(J + JNumCols*i + j) = Jt[cartDimEnabled[i]][jointDimEnabled[j]];

}

}

/**

find pseudoinverse solution for given cartesian delta

*/

arminvkin_rprp_oa_RightPseudoInverse(J,JNumRows,JNumCols,Jpseudo);

// pull out change in cartesian position for cartesian dimensions specified

for (unsigned int i=0; i<cartDimEnabled.size(); i++)

{

assert(i < JNumRows);

assert(cartDimEnabled[i]<3);

*(dp + i) = dp05[cartDimEnabled[i]]; // dp is (JNumRows x 1)

}

matvec(Jpseudo,dp,JNumCols,JNumRows,dthetaArm);

// copy starting theta position

for (unsigned int i=0; i<4; i++)

{

assert(i<4);

thetaArmNext[i] = thetaArm[i];

}

// add change in theta for only the selected joints

for (unsigned int i=0; i<jointDimEnabled.size(); i++)

{

assert(jointDimEnabled[i] < 4);

assert(i < JNumCols);

thetaArmNext[jointDimEnabled[i]] += dthetaArm[i];

}

logger->debug("#CALC thetaArmNext (pseudo-inverse solution) = %5.6f %5.6f %5.6f %5.6f",

thetaArmNext[0],

thetaArmNext[1],

thetaArmNext[2],

thetaArmNext[3]);

/**

find minimum potential joint configuration for new cartesian position using potential fields

*/

numIterOA = 0;

do

{

// increment num of iterations

numIterOA++;

// forward kinematics for thetaArmNext needed for line obstacles

// because the points chosen on the line obstacles are dependent on manip config

armfwdkin_rprp(a,d,thetaArmNext,p02,p04,p05,R04);

// iterate through all shapes in the world

// if the shape is an obstacle deal with it

std::vector<ssl::world::Point> obstaclePositions;

obstaclePositions.clear();

for (std::vector<ssl::world::Shape*>::const_iterator iter = world->GetShapeIteratorBegin(); iter != world->GetShapeIteratorEnd(); iter++)

{

// only consider shapes that are obstacles

if ((*iter)->isObstacle())
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{

// if sphere obstacle, use center as point obstacle

if (dynamic_cast<ssl::world::Sphere*>(*iter) != NULL)

{

obstaclePositions.push_back((*iter)->GetPosition());

}

// if cylinder obstacle, determine closest point on cylinder’s line segment

// to each arm link segment and use the two points as obstacles

else if (dynamic_cast<ssl::world::Cylinder*>(*iter) != NULL)

{

ssl::world::Cylinder* cylinder = dynamic_cast<ssl::world::Cylinder*>(*iter);

ssl::world::Point p1;

ssl::world::Point p2;

float P1[3];

float P2[3];

float OB[3] = {-1,-1,-1};

float trash[3];

ssl::world::Point obstaclePosition;

// get endpoints of cylinder line segment

p1 = cylinder->GetPosition();

p2 = cylinder->GetP2Position();

p1.GetCoords(P1);

p2.GetCoords(P2);

logger->debug("#CALC cylinder P1 = %5.6f %5.6f %5.6f",

P1[0],

P1[1],

P1[2]);

logger->debug("#CALC cylinder P2 = %5.6f %5.6f %5.6f",

P2[0],

P2[1],

P2[2]);

// upper arm link obstacle calc

arminvkin_rprp_oa_MinimumDistance_TwoLineSegments(P1,P2,p02,p04,OB,trash);

obstaclePosition.SetPoint(OB[0],OB[1],OB[2]);

obstaclePositions.push_back(obstaclePosition);

// forearm link obstacle calc

arminvkin_rprp_oa_MinimumDistance_TwoLineSegments(P1,P2,p04,p05,OB,trash);

obstaclePosition.SetPoint(OB[0],OB[1],OB[2]);

obstaclePositions.push_back(obstaclePosition);

}

}

}

// init total torque due to all obstacles to zero

for (int i=0; i<4; i++)

{

assert(i<4);

tauObstacles[i] = 0;

}

for (std::vector<ssl::world::Point>::iterator obstaclePosition = obstaclePositions.begin(); obstaclePosition != obstaclePositions.end(); obstaclePosition++)

{

// init torque due to this obstacle to zero

for (int i=0; i<4; i++)

{

assert(i<4);

tauObstacle[i] = 0;

}

// get obstacle position

OB[0] = obstaclePosition->d_xCoord;

OB[1] = obstaclePosition->d_yCoord;

OB[2] = obstaclePosition->d_zCoord;

for (linkType_t linkType = linkType_t_Min; linkType<=FOREARM; linkType++)

{

// calculate joint torques due to force on current link by current obstacle

arminvkin_rprp_oa_ObstacleInducedTorques(&a[0],&d[0],&thetaArmNext[0],&OB[0],linkType,Ko,&tau[0]);

// add joint torques due to current link/obstacle pair into sum for current obstacle

for (int i=0; i<4; i++)

{

assert(i<4);

tauObstacle[i] += tau[i];

}

}

// add joint torques due to this obstacle into the sum for all obstacles

for (int i=0; i<4; i++)

{

assert(i<4);

tauObstacles[i] += tauObstacle[i];

}

}

// calculate joint torques due to manipulator stiffness

arminvkin_rprp_oa_StiffnessInducedTorques(&thetaArmNext[0],&nominalJointConfiguration[0],Kj,&jointRanges[0],&tauStiffness[0]);
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// calculate joint torques due to singularity stiffness

arminvkin_rprp_oa_SingularityInducedTorques(&a[0],&d[0],&thetaArmNext[0],Km,&tauSingularities[0]);

// calculate the total joint torques due to all sources

for (int i=0; i<4; i++)

{

tauTotal[i] = tauObstacles[i] + tauStiffness[i] + tauSingularities[i];

}

// pull out joint torques corresponding to only the enabled joints

for (unsigned int i=0; i<jointDimEnabled.size(); i++)

{

assert(i<JNumCols);

assert(jointDimEnabled[i]<4);

*(tauTotalEnabledJoints + i) = tauTotal[jointDimEnabled[i]];

}

// determine jacobian for current configuration

armjac_rprp(a,d,thetaArmNext,Je,Jt);

for (unsigned int i=0; i<JNumRows; i++)

{

for (unsigned int j=0; j<JNumCols; j++)

{

{

assert(JNumCols*i + j < JNumRows*JNumCols);

assert(cartDimEnabled[i]*jointDimEnabled[j] < 3*4);

*(J + JNumCols*i + j) = Jt[cartDimEnabled[i]][jointDimEnabled[j]];

}

}

}

// determine change in joint angles

// dq = [I - Jpseudo.J]tauTotal = [I - JTrans.(J.JTrans)^-1.J]tTotal

IdentityMatrix(identityMatrix,JNumCols); // I (JNumCols x JNumCols)

arminvkin_rprp_oa_RightPseudoInverse(J,JNumRows,JNumCols,Jpseudo); // Jpseudo (JNumCols x JNumRows)

matvec(J,tauTotalEnabledJoints,JNumRows,JNumCols,tempArrayRowSize1); // J.tTotal (JNumRows x 1)

matvec(Jpseudo,tempArrayRowSize1,JNumCols,JNumRows,tempArrayColSize1); // Jpseudo.J.tTotal (JNumCols x 1)

matvec(identityMatrix,tauTotalEnabledJoints,JNumCols,JNumCols,tempArrayColSize2); // I.tTotal (JNumCols x 1)

vecsub(tempArrayColSize2,tempArrayColSize1,JNumCols,dthetaArm);

// construct the desired change in joint position for all 4 dofs

for (unsigned int i=0; i<4; i++)

{

dthetaArmIter[i] = 0.0;

}

for (unsigned int i=0; i<jointDimEnabled.size(); i++)

{

assert(jointDimEnabled[i]<4);

assert(i<JNumCols);

dthetaArmIter[jointDimEnabled[i]] = DT*dthetaArm[i]; // scale with system freq

}

// calculate the next joint positions

for (unsigned int i=0; i<4; i++)

{

thetaArmNext[i] += dthetaArmIter[i];

}

// log data only on first iteration

if (numIterOA == 1)

{

// log obstacle positions and their distance from to each link

int i=1;

for (std::vector<ssl::world::Point>::iterator iter=obstaclePositions.begin(); iter!=obstaclePositions.end(); iter++)

{

// obstacle position

logger->debug("#CALC obstaclePosition %d (base frame) = %5.6f %5.6f %5.6f",

i,

iter->d_xCoord,

iter->d_yCoord,

iter->d_zCoord);

// distance from obstacle to each link

float OB[3];

float p[3];

OB[0] = iter->d_xCoord;

OB[1] = iter->d_yCoord;

OB[2] = iter->d_zCoord;

float distUpperArm = arminvkin_rprp_oa_MinimumDistance_PointAndLineSegment(OB,p02,p04,p);

float distForearm = arminvkin_rprp_oa_MinimumDistance_PointAndLineSegment(OB,p04,p05,p);

logger->debug("#CALC obstacleDistanceUpperArm %d = %5.6f",

i,

distUpperArm);

logger->debug("#CALC obstacleDistanceForearm %d = %5.6f",

i,

distForearm);

i++;

}

// log torques from all sources

logger->debug("#CALC tauObstacles = %5.6f %5.6f %5.6f %5.6f",tauObstacles[0],tauObstacles[1],tauObstacles[2],tauObstacles[3]);
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logger->debug("#CALC tauStiffness = %5.6f %5.6f %5.6f %5.6f",tauStiffness[0],tauStiffness[1],tauStiffness[2],tauStiffness[3]);

logger->debug("#CALC tauSingularities = %5.6f %5.6f %5.6f %5.6f",tauSingularities[0],tauSingularities[1],tauSingularities[2],tauSingularities[3]);

}

}

while((fabs(dthetaArmIter[0]) > deltaJointThreshold ||

fabs(dthetaArmIter[1]) > deltaJointThreshold ||

fabs(dthetaArmIter[2]) > deltaJointThreshold ||

fabs(dthetaArmIter[3]) > deltaJointThreshold) &&

numIterOA < maxNumIterOA);

logger->debug("#CALC thetaArmNext (min potential sol) = %5.6f %5.6f %5.6f %5.6f",

thetaArmNext[0],

thetaArmNext[1],

thetaArmNext[2],

thetaArmNext[3]);

/**

Limit the joint velocity if needed

Alternatively limit an "arm velocity" which is the sum of squares of the joint velocities:

static float maxArmVelocity = 0.5;

float armVelocity;

armVelocity = sqrt( pow((dthetaArmNext[0]*FREQ_SYSTEM),2) +

pow((dthetaArmNext[1]*FREQ_SYSTEM),2) +

pow((dthetaArmNext[2]*FREQ_SYSTEM),2) +

pow((dthetaArmNext[3]*FREQ_SYSTEM),2) );

*/

// compute desired joint delta for the minimum potential solution

float dthetaArmNext[4]; // change in joint position for all joints

for (unsigned int i=0; i<4; i++)

{

dthetaArmNext[i] = thetaArmNext[i] - thetaArm[i];

}

// determine scaling value

float jointVelocityScaleFactor = 1; // nominal scale factor = 1 (ie no scaling)

for (unsigned int i=0; i<4; i++)

{

// check for joint i, if scale factor is more restrictive than previous scale factor

// set the new scale factor to the more restrictive scaling

float scale = fabs(deltaJointMax[i]/dthetaArmNext[i]);

if (scale < jointVelocityScaleFactor)

{

jointVelocityScaleFactor = scale;

}

}

// apply velocity clamp if necessary

if (jointVelocityScaleFactor < 1)

{

for (unsigned int i=0; i<4; i++)

{

dthetaArmNext[i] = jointVelocityScaleFactor*dthetaArmNext[i];

thetaArmNext[i] = thetaArm[i] + dthetaArmNext[i];

}

}

logger->debug("#CALC thetaArmNext (velocity clamped sol) = %5.6f %5.6f %5.6f %5.6f",

thetaArmNext[0],

thetaArmNext[1],

thetaArmNext[2],

thetaArmNext[3]);

logger->debug("#CALC dthetaArmNext (velocity clamped sol) = %5.6f %5.6f %5.6f %5.6f",

dthetaArmNext[0],

dthetaArmNext[1],

dthetaArmNext[2],

dthetaArmNext[3]);

/**

\todo check for collisions with obstacles

if detect collision, DO NOT update joint positions

*/

/**

if no collisions update thetaArm to the new theta value

*/

for (unsigned int i=0; i<4; i++)

{

thetaArm[i] = thetaArmNext[i];

}

/**

set singular flags

*/

if (-SPLIMIT < thetaArm[SPDOF] && thetaArm[SPDOF] < SPLIMIT)

{

*shoulderSingular = 1; /* TRUE */

}

else

{

*shoulderSingular = 0; /* FALSE */

}

if (-EPLIMIT < thetaArm[EPDOF] && thetaArm[EPDOF] < EPLIMIT)
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{

*elbowSingular = 1; /* TRUE */

}

else

{

*elbowSingular = 0; /* FALSE */

}

// delete dynamically allocated memory

delete[] tempArrayRowSize1;

delete[] tempArrayColSize1;

delete[] tempArrayColSize2;

delete[] identityMatrix;

delete[] dp;

delete[] dthetaArm;

delete[] J;

delete[] Jpseudo;

delete[] tauTotalEnabledJoints;

logger->debug("#OUTPUT numIterOA = %d",

numIterOA);

logger->debug("#OUTPUT thetaArm = %5.6f %5.6f %5.6f %5.6f",

thetaArm[0],

thetaArm[1],

thetaArm[2],

thetaArm[3]);

// printf("numIterOA = %d\n",numIterOA);

}

/*

Computes the cartesian force-moment vector in the base frame due to an obstacle-link pair.

This function does NOT take into account the jointDimEnabled and cartDimEnabled masks.

It computes the torques on all joints assuming all joints are enabled and all cartesian

dimensions are enabled.

ASSUMES:

Link position and obstacle position are expressed in base frame.

RPRP arm has two major links: UPPERARM, FOREARM

PARAMETERS

dh_a[] input: D-H a parameters

dh_d[] input: D-H d parameters

thetaarm input: joint positions

OB input: point object containing the position of the obstacle (base frame)

linkType input: indicates which link we are computing for: eg UPPERARM or FOREARM

this dictates which jacobian to use when computing corresponding

joint torques

Ko input: coulomb force constant

jointTorque[4] output: resulting joint torques on the arm due to object force on link

SIDE-EFFECTS:

Unknown

RETURNS:

Nothing.

NOTES:

The forces and moments are calculated in a 2D frame (plane containing the link and obstacle).

The forces and moments are then transformed back into 3D coordinates using the link and obstacle base frame coordinates.

The proper jacobian is selected to map the cartesian force-moment into joint space

*/

void

arminvkin_rprp_oa_ObstacleInducedTorques(float dh_a[],

float dh_d[],

float thetaArm[],

float OB[3],

linkType_t linkType,

float Ko,

float jointTorques[4])

{

// these calculations are for the 2D origin on the right side of the link at P2

// the x - axis is defined as the unit vector pointing from P1 to P2

// the y - axis is defined as the unit vector pointing from CP to OB

// a is defined as the distance from CP to the - x most endpoint in the - x dir

// b is defined as the distance from CP to the + x most endpoint in the + x dir

// c is defined as the distance from CP to OB in the + y dir. Note that C is always positive

// because we assign the + y - axis as the vector from CP to OB

/**

get link endpoints, obstacle position, and determine the closest point

on the link line to the obstacle

*/

// get endpoint positions of desired link (base frame)

float p02[3], p05[3];

float R04[3][3];

float P1[3], P2[3];

switch (linkType)

{

case UPPERARM:

armfwdkin_rprp(dh_a,dh_d,thetaArm,&P1[0],&P2[0],p05,R04);

break;
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case FOREARM:

armfwdkin_rprp(dh_a,dh_d,thetaArm,p02,P1,P2,R04);

break;

default:

assert(0 && "arminvkin_rprp_oa_ObstacleInducedTorques() uknown linkType");

break;

}

// determine closest point on link line to obstacle (base frame)

float CP[3];

float t;

arminvkin_rprp_oa_MutualPerpendicular_PointAndLine(OB,P1,P2,CP,t);

#ifdef VERBOSE

printf("\narminvkin_rprp_oa_ObstacleInducedTorques VERBOSE:\n");

PRINT_VEC3(P1);

PRINT_VEC3(P2);

PRINT_VEC3(OB);

PRINT_VEC3(CP);

printf("END VERBOSE:\n");

#endif

/**

calculate the magnitudes of a, b, and c

*/

float aMag = sqrt(pow((CP[0]-P1[0]),2) + pow((CP[1]-P1[1]),2) + pow((CP[2]-P1[2]),2));

float bMag = sqrt(pow((P2[0]-CP[0]),2) + pow((P2[1]-CP[1]),2) + pow((P2[2]-CP[2]),2));

float cMag = sqrt(pow((OB[0]-CP[0]),2) + pow((OB[1]-CP[1]),2) + pow((OB[2]-CP[2]),2));

/**

calculate the unit vectors of the 2D frame expressed in base frame for conversion of

force-moment back to base frame

*/

float xUnit[3];

float yUnit[3];

float zUnit[3];

// get the 2D x-dir expressed in base frame

for (int i=0; i<3; i++)

{

xUnit[i] = (P2[i] - P1[i])/sqrt(pow((P2[0]-P1[0]),2) + pow((P2[1]-P1[1]),2) + pow((P2[2]-P1[2]),2));

}

if (cMag != 0)

{

// get the 2D y-dir expressed in base frame

for (int i=0; i<3; i++)

{

yUnit[i] = (OB[i] - CP[i])/cMag;

}

}

else

{

// y-axis not defined when the obstacle is on the link so we choose a y-axis to prevent failure

// choose a y-direction that is perpendicular to x

float vec[3] = {1,0,0};

cross(xUnit,vec,yUnit);

}

// get the 2D z-dir expressed in base frame

cross(xUnit,yUnit,zUnit);

/*

Determine the signs of a, b, and c

*/

int aSign;

int bSign;

int cSign;

float delta[3] = {0.01, 0.01, 0.01};

float temp[3];

// determine the sign of a

if (aMag != 0)

{

for (int i=0; i<3; i++)

{

temp[i] = ((CP[i] - P1[i])/aMag) - xUnit[i];

}

if (fabs(temp[0]) < delta[0] &&

fabs(temp[1]) < delta[1] &&

fabs(temp[2]) < delta[2])

{

aSign = 1;

}

else

{

aSign = -1;

}

}

else

{

aSign = 0; // doesn’t matter because amag == 0

}

// determine the sign of b

if (bMag != 0)
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{

for (int i=0; i<3; i++)

{

temp[i] = ((P2[i] - CP[i])/bMag) - xUnit[i];

}

if (fabs(temp[0]) < delta[0] &&

fabs(temp[1]) < delta[1] &&

fabs(temp[2]) < delta[2])

{

bSign = 1;

}

else

{

bSign = -1;

}

}

else

{

bSign = 0; // doesn’t matter because bMag == 0

}

// sign of c is always posative due to definition

cSign = 1;

/**

calculate a,b,and c values based on the computed magnitude and sign

*/

float a = aSign*aMag;

float b = bSign*bMag;

float c = cSign*cMag;

#ifdef VERBOSE

printf("\narminvkin_rprp_oa_ObstacleInducedTorques VERBOSE:\n");

PRINT_FLOAT(a);

PRINT_FLOAT(b);

PRINT_FLOAT(c);

printf("END VERBOSE:\n");

#endif

/**

calculate the force and moment on the current link in the 2D frame

*/

float Fx;

float Fy;

float Mo;

Fx = Ko*( (1)/(sqrt(a*a + c*c)) + (-1)/(sqrt(b*b + c*c)) );

if (c != 0)

{

Fy = Ko*( (-a)/(c*sqrt(a*a + c*c)) + (-b)/(c*sqrt(b*b + c*c)) );

Mo = Ko*( (a*b-c*c)/(c*sqrt(a*a + c*c)) + (b*b+c*c)/(c*sqrt(b*b + c*c)) );

}

else

{

Fy = 0;

Mo = 0;

}

/**

convert the forces and moments to base frame coordinates

*/

float forceMomentVector[6];

if (cMag != 0)

{

// add the Fx components

forceMomentVector[0] = Fx*xUnit[0];

forceMomentVector[1] = Fx*xUnit[1];

forceMomentVector[2] = Fx*xUnit[2];

// add the Fy components

forceMomentVector[0] += Fy*yUnit[0];

forceMomentVector[1] += Fy*yUnit[1];

forceMomentVector[2] += Fy*yUnit[2];

// add the Moment

forceMomentVector[3] = Mo*zUnit[0];

forceMomentVector[4] = Mo*zUnit[1];

forceMomentVector[5] = Mo*zUnit[2];

}

else // only x-dir force

{

// add the Fx components

forceMomentVector[0] = Fx*xUnit[0];

forceMomentVector[1] = Fx*xUnit[1];

forceMomentVector[2] = Fx*xUnit[2];

// moment is zero

forceMomentVector[3] = 0;

forceMomentVector[4] = 0;

forceMomentVector[5] = 0;

}
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#ifdef VERBOSE

printf("\narminvkin_rprp_oa_ObstacleInducedTorques VERBOSE:\n");

PRINT_VEC6(forceMomentVector);

printf("END VERBOSE:\n");

#endif

/**

compute jacobians

*/

float Je[6][4]; // elbow jacobian for rprp

float Jt[6][4]; // tool jacobian for rprp

armjac6x4_rprp((float *)dh_a,(float *)dh_d,(float *)thetaArm,Je,Jt);

/**

compute the joint torques

*/

float JTrans[4][6];

switch (linkType)

{

case UPPERARM:

transpose(*Je,6,4,*JTrans);

matvec(*JTrans,forceMomentVector,4,6,jointTorques);

break;

case FOREARM:

transpose(*Jt,6,4,*JTrans);

matvec(*JTrans,forceMomentVector,4,6,jointTorques);

break;

default:

assert(0 && "arminvkin_rprp_oa_ObstacleInducedTorques() bad linkType");

break;

}

}

/*

Computes the joint torques due to the modeled stiffness in the arm

ASSUMES:

Unknown

PARAMETERS

thetaArm[4] input: joint positions

nominalJointConfiguration[4] input: nominal joint configuration that stiffness is applied from

Kj input: joint stiffness for manipulator

tauStiffness[4] output: joint torques due to modeled stiffness in the arm

SIDE-EFFECTS:

Unknown

RETURNS:

Nothing.

NOTES:

*/

void

arminvkin_rprp_oa_StiffnessInducedTorques(float thetaArm[4],

float nominalJointConfiguration[4],

float Kj,

float jointRanges[4],

float tauStiffness[4])

{

float dthetaArm[4];

float K[4][4] = {{1,0,0,0},

{0,1,0,0},

{0,0,1,0},

{0,0,0,1}};

// normalize by joint range

K[0][0] = Kj/jointRanges[0];

K[1][1] = Kj/jointRanges[1];

K[2][2] = Kj/jointRanges[2];

K[3][3] = Kj/jointRanges[3];

vecsub(&nominalJointConfiguration[0],&thetaArm[0],4,&dthetaArm[0]);

matvec(&K[0][0],&dthetaArm[0],4,4,&tauStiffness[0]);

}

void

arminvkin_rprp_oa_SingularityInducedTorques(float dh_a[],

float dh_d[],

float thetaArm[4],

float Km,

float tauSingularities[4])

{

float gradD1 = 0;

float gradD2 = (pow(dh_d[3],2)*pow(dh_a[4]*cos(thetaArm[3]) - dh_d[5]*sin(thetaArm[3]), 2)*

(8*cos(thetaArm[2])*pow(sin(thetaArm[1]), 2)*

(dh_d[3] + dh_d[5]*cos(thetaArm[3]) + dh_a[4]*sin(thetaArm[3]))*

(dh_a[4]*cos(thetaArm[3]) - dh_d[5]*sin(thetaArm[3])) + 8*pow(cos(thetaArm[1]), 2)*

cos(thetaArm[2])*(dh_d[3] + dh_d[5]*cos(thetaArm[3]) + dh_a[4]*sin(thetaArm[3]))*

(-(dh_a[4]*cos(thetaArm[3])) + dh_d[5]*sin(thetaArm[3])) +

4*dh_a[4]*dh_d[5]*pow(cos(thetaArm[2]), 2)*sin(2*thetaArm[1])*sin(2*thetaArm[3]) +

sin(2*thetaArm[1])*(2*pow(dh_a[4], 2) + 4*pow(dh_d[3], 2) + 2*pow(dh_d[5], 2) - 2*(pow(dh_a[4], 2) + pow(dh_d[5], 2))*
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cos(2*thetaArm[2]) + (-pow(dh_a[4], 2) + pow(dh_d[5], 2))*

cos(2*(thetaArm[2] - thetaArm[3])) +

8*dh_d[3]*dh_d[5]*cos(thetaArm[3]) -

2*pow(dh_a[4], 2)*cos(2*thetaArm[3]) +

2*pow(dh_d[5],2)*cos(2*thetaArm[3]) -

pow(dh_a[4], 2)*cos(2*(thetaArm[2] + thetaArm[3])) +

pow(dh_d[5], 2)*cos(2*(thetaArm[2] + thetaArm[3])) +

8*dh_a[4]*dh_d[3]*sin(thetaArm[3]) +

4*dh_a[4]*dh_d[5]*sin(2*thetaArm[3]) -

4*dh_a[4]*dh_d[5]*pow(sin(thetaArm[2]), 2)*sin(2*thetaArm[3]))))/4.;

float gradD3 = -(pow(dh_d[3], 2)*cos(thetaArm[1])*

sin(thetaArm[2])*pow(dh_a[4]*cos(thetaArm[3]) - dh_d[5]*sin(thetaArm[3]),3)*

(-2*sin(thetaArm[1])*(dh_d[3] + dh_d[5]*cos(thetaArm[3]) + dh_a[4]*sin(thetaArm[3])) +

4*cos(thetaArm[1])*cos(thetaArm[2])*(dh_a[4]*cos(thetaArm[3]) - dh_d[5]*sin(thetaArm[3]))));

float gradD4 = (pow(dh_d[3], 2)*(dh_a[4]*cos(thetaArm[3]) - dh_d[5]*sin(thetaArm[3]))*

(-16*(dh_a[4]*cos(thetaArm[3]) - dh_d[5]*sin(thetaArm[3]))*

(2*cos(thetaArm[1])*cos(thetaArm[2])*pow(cos(thetaArm[3]), 2)*

(2*dh_a[4]*dh_d[5]*cos(thetaArm[1])*cos(thetaArm[2]) +

(pow(dh_a[4], 2) - pow(dh_d[5], 2))*sin(thetaArm[1])) +

2*dh_d[3]*sin(thetaArm[1])*(-(dh_a[4]*cos(thetaArm[1])*cos(thetaArm[2])) + dh_d[5]*sin(thetaArm[1]))*

sin(thetaArm[3]) - 2*cos(thetaArm[1])*cos(thetaArm[2])*

(2*dh_a[4]*dh_d[5]*cos(thetaArm[1])*cos(thetaArm[2]) +

(pow(dh_a[4], 2) - pow(dh_d[5], 2))*sin(thetaArm[1]))*pow(sin(thetaArm[3]), 2) +

cos(thetaArm[3])*

(-(dh_a[4]*dh_d[3]) - dh_d[3]*dh_d[5]*cos(thetaArm[2])*sin(2*thetaArm[1]) +

pow(dh_a[4], 2)*sin(thetaArm[3]) - pow(dh_d[5],2)*sin(thetaArm[3]) +

pow(dh_a[4], 2)*pow(cos(thetaArm[2]), 2)*sin(thetaArm[3]) -

pow(dh_d[5], 2)*pow(cos(thetaArm[2]), 2)*sin(thetaArm[3]) - pow(dh_a[4],2)*

pow(sin(thetaArm[2]), 2)*sin(thetaArm[3]) + pow(dh_d[5],2)*

pow(sin(thetaArm[2]), 2)*sin(thetaArm[3]) + pow(cos(thetaArm[1]), 2)*

(dh_a[4]*dh_d[3] + 2*(pow(dh_a[4], 2) - pow(dh_d[5], 2))*pow(cos(thetaArm[2]),2)*

sin(thetaArm[3])) - pow(sin(thetaArm[1]), 2)*

(dh_a[4]*dh_d[3] +2*(pow(dh_a[4], 2) -pow(dh_d[5], 2))*pow(cos(thetaArm[2]), 2)*sin(thetaArm[3]))) -

2*dh_a[4]*dh_d[5]*cos(thetaArm[2])*sin(2*thetaArm[1])*sin(2*thetaArm[3])) -

2*(-(dh_d[5]*cos(thetaArm[3])) - dh_a[4]*sin(thetaArm[3]))*

(-12*pow(dh_a[4], 2) - 8*pow(dh_d[3],2) -12*pow(dh_d[5], 2) + 4*(pow(dh_a[4], 2) +2*pow(dh_d[3], 2) +pow(dh_d[5], 2))*

cos(2*thetaArm[1]) - 2*(pow(dh_a[4], 2) + pow(dh_d[5], 2))*cos(2*(thetaArm[1] - thetaArm[2])) - 4*pow(dh_a[4],2)*

cos(2*thetaArm[2]) - 4*pow(dh_d[5], 2)*cos(2*thetaArm[2]) - 2*pow(dh_a[4],2)*

cos(2*(thetaArm[1] + thetaArm[2])) - 2*pow(dh_d[5], 2)*cos(2*(thetaArm[1] + thetaArm[2])) + 2*pow(dh_a[4], 2)*

cos(2*thetaArm[1] - thetaArm[2] - 2*thetaArm[3]) - 2*pow(dh_d[5], 2)*

cos(2*thetaArm[1] - thetaArm[2] - 2*thetaArm[3]) +2*pow(dh_a[4], 2)*cos(2*thetaArm[1] + thetaArm[2] - 2*thetaArm[3]) -

2*pow(dh_d[5], 2)*cos(2*thetaArm[1] + thetaArm[2] - 2*thetaArm[3]) - 2*pow(dh_a[4],2)*cos(2*(thetaArm[1] - thetaArm[3])) +

2*pow(dh_d[5], 2)*cos(2*(thetaArm[1] - thetaArm[3])) + 8*dh_d[3]*dh_d[5]*cos(2*thetaArm[1] - thetaArm[3]) -

pow(dh_a[4], 2)*cos(2*(thetaArm[1] - thetaArm[2] -thetaArm[3])) + pow(dh_d[5], 2)*

cos(2*(thetaArm[1] -thetaArm[2] - thetaArm[3])) - 4*dh_d[3]*dh_d[5]*cos(2*thetaArm[1] -thetaArm[2] - thetaArm[3]) -

2*pow(dh_a[4], 2)*cos(2*(thetaArm[2] - thetaArm[3])) + 2*pow(dh_d[5], 2)*

cos(2*(thetaArm[2] - thetaArm[3])) - pow(dh_a[4], 2)*cos(2*(thetaArm[1] + thetaArm[2] -thetaArm[3])) + pow(dh_d[5], 2)*

cos(2*(thetaArm[1] + thetaArm[2] - thetaArm[3])) - 4*dh_d[3]*dh_d[5]*

cos(2*thetaArm[1] +thetaArm[2] - thetaArm[3]) - 16*dh_d[3]*dh_d[5]*cos(thetaArm[3]) - 4*pow(dh_a[4], 2)*

cos(2*thetaArm[3]) + 4*pow(dh_d[5], 2)*cos(2*thetaArm[3]) - 2*pow(dh_a[4], 2)*

cos(2*(thetaArm[1] +thetaArm[3])) + 2*pow(dh_d[5], 2)*cos(2*(thetaArm[1] + thetaArm[3])) + 8*dh_d[3]*dh_d[5]*cos(2*thetaArm[1] + thetaArm[3]) -

pow(dh_a[4], 2)*cos(2*(thetaArm[1] - thetaArm[2] + thetaArm[3])) + pow(dh_d[5], 2)*

cos(2*(thetaArm[1] - thetaArm[2] + thetaArm[3])) + 4*dh_d[3]*dh_d[5]*

cos(2*thetaArm[1] - thetaArm[2] + thetaArm[3]) - 2*pow(dh_a[4], 2)*cos(2*(thetaArm[2] + thetaArm[3])) +

2*pow(dh_d[5], 2)*cos(2*(thetaArm[2] + thetaArm[3])) -

pow(dh_a[4], 2)*cos(2*(thetaArm[1] + thetaArm[2] + thetaArm[3])) + pow(dh_d[5],2)*

cos(2*(thetaArm[1] + thetaArm[2] + thetaArm[3])) + 4*dh_d[3]*dh_d[5]*cos(2*thetaArm[1] + thetaArm[2] + thetaArm[3]) - 2*pow(dh_a[4],2)*

cos(2*thetaArm[1] - thetaArm[2] + 2*thetaArm[3]) + 2*pow(dh_d[5], 2)*cos(2*thetaArm[1] - thetaArm[2] + 2*thetaArm[3]) -

2*pow(dh_a[4], 2)*cos(2*thetaArm[1] + thetaArm[2] + 2*thetaArm[3]) + 2*pow(dh_d[5], 2)*

cos(2*thetaArm[1] + thetaArm[2] +2*thetaArm[3]) + 4*dh_a[4]*dh_d[5]*sin(2*thetaArm[1] - thetaArm[2] -2*thetaArm[3]) +

4*dh_a[4]*dh_d[5]*sin(2*thetaArm[1] + thetaArm[2] -2*thetaArm[3]) - 4*dh_a[4]*dh_d[5]*sin(2*(thetaArm[1] - thetaArm[3])) -

8*dh_a[4]*dh_d[3]*sin(2*thetaArm[1] - thetaArm[3]) -2*dh_a[4]*dh_d[5]*sin(2*(thetaArm[1] - thetaArm[2] - thetaArm[3])) +

4*dh_a[4]*dh_d[3]*sin(2*thetaArm[1] - thetaArm[2]- thetaArm[3]) - 4*dh_a[4]*dh_d[5]*sin(2*(thetaArm[2] - thetaArm[3])) - 2*dh_a[4]*dh_d[5]*

sin(2*(thetaArm[1] +thetaArm[2] - thetaArm[3])) + 4*dh_a[4]*dh_d[3]*sin(2*thetaArm[1] +thetaArm[2] - thetaArm[3]) - 16*dh_a[4]*dh_d[3]*sin(thetaArm[3]) +

8*dh_a[4]*dh_d[5]*sin(2*thetaArm[3]) + 4*dh_a[4]*dh_d[5]*sin(2*(thetaArm[1]+ thetaArm[3])) + 8*dh_a[4]*dh_d[3]*sin(2*thetaArm[1] + thetaArm[3]) +

2*dh_a[4]*dh_d[5]*sin(2*(thetaArm[1] - thetaArm[2] + thetaArm[3])) + 4*dh_a[4]*dh_d[3]*

sin(2*thetaArm[1] - thetaArm[2] + thetaArm[3]) + 4*dh_a[4]*dh_d[5]*sin(2*(thetaArm[2] +thetaArm[3])) +

2*dh_a[4]*dh_d[5]*sin(2*(thetaArm[1] + thetaArm[2] + thetaArm[3])) + 4*dh_a[4]*dh_d[3]*

sin(2*thetaArm[1] + thetaArm[2] + thetaArm[3]) + 4*dh_a[4]*dh_d[5]*sin(2*thetaArm[1] - thetaArm[2] + 2*thetaArm[3]) + 4*dh_a[4]*dh_d[5]*

sin(2*thetaArm[1] + thetaArm[2] + 2*thetaArm[3]))))/16.;

float gradD[4] = {gradD1,gradD2,gradD3,gradD4};

// get current jacobian

float Je[3][4]; // elbow jacobian for rprp

float Jt[3][4]; // tool jacobian for rprp

armjac_rprp((float *)dh_a,(float *)dh_d,(float *)thetaArm,Je,Jt);

// compute manipulability

float JTrans[4][3];

float JJTrans[3][3];

transpose((float *)Jt,3,4,(float *)JTrans);

matmul((float *)Jt,(float *)JTrans,3,4,3,(float *)JJTrans);

float D = arminvkin_rprp_oa_MatrixDet33((float *)JJTrans);

// use negative gradient of potential field to determine joint torques

for (unsigned int i=0; i<4; i++)

{

tauSingularities[i] = (Km/(2*sqrt(D)))*gradD[i];

}

127



}

/**

Computes the mutual perpendicular between a point an a line in 3D

ASSUMES:

Unknown

PARAMETERS

P1 input: point

P2 input: line point 1

P3 input: line point 2

P4 output: intersecting point of the mutual perpendicular with the line

t output: line parametric value for P4 where the line is defined as

P2 + (P3 - P2)*t

SIDE-EFFECTS:

Uknown

RETURNS:

true/false indicating success

If function fails, P4 and t values are left alone

Divide by zero occurs in P2 = P3. This case is caught in the code and returns false

if it is detected.

NOTES:

We know that (P1 - P4)dot(P3 - P2) = 0

We know P4 lies on the line so we can describe it in terms of the parametric equation for

the mutual perpendicular line:

P4 = P2 + (P3 - P2)*t

Substituting the equation for P4 into the dot product equation we get:

(P1 - (P2 + (P3 - P2)*t))dot(P3 - P2) = 0

We can solve this equation for t in terms of P1, P2, and P3. The equation is omitted here

for brevity, but is in the code.

Finally we can substitute the value for t back into the following equation to determine P4

P4 = P2 + (P3 - P2)*t

*/

bool

arminvkin_rprp_oa_MutualPerpendicular_PointAndLine(float P1[3],

float P2[3],

float P3[3],

float P4[3],

float& t)

{

bool rc = false;

// if P2 != P3 computation will succeed (ie denom != 0)

if (P2[0] != P3[0] ||

P2[1] != P3[1] ||

P2[2] != P3[2])

{

float num = (pow(P2[0],2) -

P1[1]*P2[1] +

pow(P2[1],2) -

P1[2]*P2[2] +

pow(P2[2],2) -

P2[0]*P3[0] +

P1[0]*(-P2[0] + P3[0]) +

P1[1]*P3[1] -

P2[1]*P3[1] +

P1[2]*P3[2] -

P2[2]*P3[2]);

float denom = (pow(P2[0],2) +

pow(P2[1],2) +

pow(P2[2],2) -

2*P2[0]*P3[0] +

pow(P3[0],2) -

2*P2[1]*P3[1] +

pow(P3[1],2) -

2*P2[2]*P3[2] +

pow(P3[2],2));

// compute t

t = num/denom;

// compute P4

for (unsigned int i=0; i<3; i++)

{

P4[i] = P2[i] + (P3[i] - P2[i])*t;

}

rc = true;

}
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return rc;

}

/**

Computes the mutual perpendicular between two lines in 3D

ASSUMES:

Unknown

PARAMETERS

P1 input: line 1 point 1

P2 input: line 1 point 2

P3 input: line 2 point 1

P4 input: line 2 point 2

P5 output: mutual perpendicular line point 1 which lies on line 1

P6 output: mutual perpendicular line point 2 which lies on line 2

t1 output: line 1 parametric value for P5 where line 1 is defined as

P1 + (P2 - P1)*t1

t2 output: line 2 parametric value for P6 where line 2 is defined as

P3 + (P4 - P3)*t2

SIDE-EFFECTS:

Uknown

RETURNS:

true/false indicating success

If function fails, P5, P6, t1, and t2 values are left alone

Divide by zero is error is caught and returns false if detected.

Know that if P1 = P2 or P3 = P4 the lines are ill defined and

this will cause a divide by zero. Not sure if there are other

conditions that will cause a divide by zero.

NOTES:

All points on Line 1 can be represented parametrically as:

p = P1 + (P2 - P1)*t1 = P1 + m1*t1

All points on Line 2 can be represented parametrically as:

p = P3 + (P4 - P3)*t2 = P3 + m2*t2

Denote the mutual perpendicular line in parametric form as:

p = P5 + (P6 - P5)*t3 = P5 + m3*t3

where we define P5 on line 1 and P6 on line 2

Mutual perpendicular lies where

m1 dot m3 = 0 and

m2 dot m3 = 0

Since P5 lies on line 1 we can express it as:

P5 = P1 + m1*t1

Similarly, since P6 lies on line 2 we can express it as:

P6 = P3 + m2*t2

Note that

m3 = (P6 - P5) = (P3 + m2*t2) - (P1 - m1*t1)

Substituting this into our dot prod equations we have

m1 dot (P3 + m2*t2 - P1 - m1*t1) = 0

and

m2 dot (P3 + m2*t2 - P1 - m1*t1) = 0

which produces a system of equations for t1 and t2 which we can solve for.

Finally we can determine P5 and P6 based on t1 and t2

P5 = P1 + (P2 - P1)*t1

P6 = P3 + (P4 - P3)*t2

!!!!!!IF THE LINES ARE PARALLEL!!!!!

We have an infinate number of solutions. We choose here to select the solution

that passes through the midpoint between P1 and P2 on line 1

*/

bool

arminvkin_rprp_oa_MutualPerpendicular_TwoLines(float P1[3],

float P2[3],

float P3[3],

float P4[3],

float P5[3],

float P6[3],

float& t1,

float& t2)

{

bool rc = false;

float m1[3];

float m2[3];

float zeroDelta = 0.0001;

// intermediate calculations

float a = (pow(P1[0],2) +
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pow(P1[1],2) +

pow(P1[2],2) -

P1[2]*P2[2] +

P2[0]*P3[0] -

P1[0]*(P2[0] + P3[0]) +

P2[1]*P3[1] -

P1[1]*(P2[1] + P3[1]) -

P1[2]*P3[2] +

P2[2]*P3[2]);

float b= (-pow(P3[0] - P4[0],2) -

pow(P3[1] - P4[1],2) -

pow(P3[2] - P4[2],2));

float c =((P1[0] - P2[0])*(P3[0] - P4[0]) +

(P1[1] - P2[1])*(P3[1] - P4[1]) +

(P1[2] - P2[2])*(P3[2] - P4[2]));

float d = (-pow(P3[0],2) +

P1[1]*P3[1] -

pow(P3[1],2) +

P1[2]*P3[2] -

pow(P3[2],2) +

P1[0]*(P3[0] - P4[0]) +

P3[0]*P4[0] -

P1[1]*P4[1] +

P3[1]*P4[1] -

P1[2]*P4[2] +

P3[2]*P4[2]);

float e = (pow(P1[0] - P2[0],2) +

pow(P1[1] - P2[1],2) +

pow(P1[2] - P2[2],2));

float denom = ((pow(P1[0] - P2[0],2) +

pow(P1[1] - P2[1],2) +

pow(P1[2] - P2[2],2))*

(-pow(P3[0] - P4[0],2) -

pow(P3[1] - P4[1],2) -

pow(P3[2] - P4[2],2)) +

pow(P1[1]*P3[1] -

P2[1]*P3[1] +

P1[2]*P3[2] -

P2[2]*P3[2] +

P1[0]*(P3[0] - P4[0]) +

P2[0]*(-P3[0] + P4[0]) -

P1[1]*P4[1] +

P2[1]*P4[1] -

P1[2]*P4[2] +

P2[2]*P4[2],2));

// for computation of the normalized slopes of line1 and line2

float mag1 = sqrt(pow(P2[0]-P1[0],2) +

pow(P2[1]-P1[1],2) +

pow(P2[2]-P1[2],2));

float mag2 = sqrt(pow(P4[0]-P3[0],2) +

pow(P4[1]-P3[1],2) +

pow(P4[2]-P3[2],2));

// if P1 != P2 and P3 != P4

if ((fabs(mag1) > zeroDelta) &&

(fabs(mag2) > zeroDelta))

{

// compute the normalized slopes of line1 and line2

for (unsigned int i=0; i<3; i++)

{

m1[i] = (P2[i] - P1[i])/mag1;

m2[i] = (P4[i] - P3[i])/mag2;

}

// if not parallel lines

if ((fabs(m1[0] - m2[0]) > 0.0001) ||

(fabs(m1[1] - m2[1]) > 0.0001) ||

(fabs(m1[2] - m2[2]) > 0.0001))

{

// catch divide by zero error

// in case there are other situations that cause denom == 0

if (denom != 0)

{

// calculate parametric parameters t1 and t3

t1 = (a*b + c*d)/denom;

t2 = (a*(-c) + e*d)/denom;

// calculate the mutual perpendicular points

for (unsigned int i=0; i<3; i++)

{

P5[i] = P1[i] + (P2[i] - P1[i])*t1;

P6[i] = P3[i] + (P4[i] - P3[i])*t2;

}

rc = true;

}
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}

else // parallel lines (infinate solutions)

{

// we choose the midpoint between P1 and P2 on line 1

// this selection is arbitrary, we have to select some solution

t1 = 0.5;

// calculate P5

for (unsigned int i=0; i<3; i++)

{

P5[i] = P1[i] + (P2[i] - P1[i])*t1;

}

// determine P6

if (arminvkin_rprp_oa_MutualPerpendicular_PointAndLine(P5,P3,P4,P6,t2))

{

rc = true;

}

}

}

return rc;

}

/**

Computes the minimum distance between a point and a line segment

and returns the point on the line closest to the point.

PARAMETERS

P1 input: point coordinates

P2 input: line segment endpoint 1 coordinates

P3 input: line segment endpoint 2 coordinates

P4 output: point on line segment that is closest to P1

RETURNS:

Minimum distance between the point and line segment (-1 on failure)

NOTES:

Computes the perpendicular from the point to the line containing the

line segment. If the perpendicular does not intersect the segment

the closest endpoint is the closest point on the line segment to

the point.

*/

float

arminvkin_rprp_oa_MinimumDistance_PointAndLineSegment(float P1[3],

float P2[3],

float P3[3],

float P4[3])

{

float minimumDistance = -1;

float P[3];

float t;

// find mutual perpendicular

if (arminvkin_rprp_oa_MutualPerpendicular_PointAndLine(P1,P2,P3,P,t))

{

// if mutual perpendicular intersects line segment

if ((t >= 0) &&

(t <= 1))

{

for (unsigned int i=0; i<3; i++)

{

P4[i] = P[i];

}

}

// if mutual perpendicular does not intersect the segment and

// intersects the line outside of P2, the P2 is the closest

// point on the segment to P1

else if (t < 0)

{

for (unsigned int i=0; i<3; i++)

{

P4[i] = P2[i];

}

}

// if mutual perpendicular does not intersect the segment and

// intersects the line outside of P3, then P3 is the closest

// point on the segment to P1

else if (t > 1)

{

for (unsigned int i=0; i<3; i++)

{

P4[i] = P3[i];

}

}

else

{

assert(0);

}

// calculate the distance from P1 to P4

minimumDistance = sqrt(pow((P4[0] - P1[0]),2) +
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pow((P4[1] - P1[1]),2) +

pow((P4[2] - P1[2]),2));

}

return minimumDistance;

}

/**

Computes the minimum distance between two line segments

PARAMETERS

P1 input: line 1 segment endpoint 1

P2 input: line 1 segment endpoint 2

P3 input: line 2 segment endpoint 1

P4 input: line 2 segment endpoint 2

P5 output: line 1 closest point

P6 output: line 2 closest point

RETURNS:

Minimum distance between two line segments. The distance between P5 and P6.

NOTES:

Uses the mutual perpendicular calculation as a start, but then modifies because we are dealing

with a line segment and not an infinate line.

Note, we are actually concerned with the minimum distance between two line

segments and not two lines. Thus we define the following

t1Modified = 0 if t1 < 0

t1Modified = 1 if t1 > 1

t1Modified = t1 if 0<=t1<=1

t2Modified = 0 if t3 < 0

t2Modified = 1 if t3 > 1

t2Modified = t3 if 0<=t3<=1

So if t1 or t2 are outside the bounds 0 <= t1 <= 1, 0 <= t2 <= 1

We have to determine if the perpendicular distance to any of the endpoints produce a smaller distance, thus

we search all four combinations (P1 and P2 with line 2 and P3 and P4 with line 1) to

see if they produce values smaller distances than the above P5 and P6 values chosen for t1 and t2

We can then plug in the values for t1 and t2 to produce P5 and P6.

*/

float

arminvkin_rprp_oa_MinimumDistance_TwoLineSegments(float P1[3],

float P2[3],

float P3[3],

float P4[3],

float P5[3],

float P6[3])

{

float minimumDistance;

float trash[3];

float p5[3];

float p6[3];

float t1;

float t2;

// compute the mutual perpendicular

arminvkin_rprp_oa_MutualPerpendicular_TwoLines(P1,P2,P3,P4,trash,trash,t1,t2);

// compute modified parametric values provided we are only considering the

// line segments P1P2 and P3P4. If the p

float t1Modified;

float t2Modified;

// mutual perpendicular intersects line 1 segment

if ((t1 >= 0) &&

(t1 <= 1))

{

t1Modified = t1;

}

// off of line 1 segment, beyond P1

else if (t1 < 0)

{

t1Modified = 0;

}

// off of line 1 segment, beyond P2

else if (t1 > 1)

{

t1Modified = 1;

}

else

{

assert(0);

}

// mutual perpendicular intersects line 2 segment

if ((t2 >= 0) &&

(t2 <= 1))

{

t2Modified = t2;

}
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// off of line 2 segment beyond P3

else if (t2 < 0)

{

t2Modified = 0;

}

// off of line 2 segment beyond P4

else if (t2 > 1)

{

t2Modified = 1;

}

// within segment P3P4

else

{

assert(0);

}

// set P5 and P6 based on t1Modified and t2Modified

for (unsigned int i=0; i<3; i++)

{

p5[i] = P1[i] + (P2[i] - P1[i])*t1Modified;

p6[i] = P3[i] + (P4[i] - P3[i])*t2Modified;

}

// determine minimum distance

minimumDistance = sqrt(pow((p6[0]-p5[0]),2) +

pow((p6[1]-p5[1]),2) +

pow((p6[2]-p5[2]),2));

// if t1Modified!=t1 or t2Modifed!=t2 check all endpoint-line combinations to see

// if there is a shorter distance

float distance;

float p[3];

if (t1Modified != t1 ||

t2Modified != t2)

{

// P1 and line 2

distance = arminvkin_rprp_oa_MinimumDistance_PointAndLineSegment(P1,P3,P4,p);

if (distance < minimumDistance)

{

minimumDistance = distance;

for (unsigned int i=0; i<3; i++)

{

p5[i] = P1[i];

p6[i] = p[i];

}

}

// P2 and line 2

distance = arminvkin_rprp_oa_MinimumDistance_PointAndLineSegment(P2,P3,P4,p);

if (distance < minimumDistance)

{

minimumDistance = distance;

for (unsigned int i=0; i<3; i++)

{

p5[i] = P2[i];

p6[i] = p[i];

}

}

// P3 and line 1

distance = arminvkin_rprp_oa_MinimumDistance_PointAndLineSegment(P3,P1,P2,p);

if (distance < minimumDistance)

{

minimumDistance = distance;

for (unsigned int i=0; i<3; i++)

{

p5[i] = p[i];

p6[i] = P3[i];

}

}

// P4 and line 1

distance = arminvkin_rprp_oa_MinimumDistance_PointAndLineSegment(P4,P1,P2,p);

if (distance < minimumDistance)

{

minimumDistance = distance;

for (unsigned int i=0; i<3; i++)

{

p5[i] = p[i];

p6[i] = P4[i];

}

}

}

// set output P5 and P6

for (unsigned int i=0; i<3; i++)

{

P5[i] = p5[i];

P6[i] = p6[i];

}

return minimumDistance;
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}

/*

Computes the right pseudo-inverse of a matrix

ASSUMES:

NumCols > NumRows

NumRows <= MAXROWS

NumCols <= MAXCOLS

PARAMETERS

J input: matrix

numRows input: number of rows in J

numCols input: number of cols in J

Jpseudo: output: right pseudo-inverse of J. It has dimensions NumCols x NumRows

SIDE-EFFECTS:

RETURNS:

None

NOTES:

Jpseudo = JTrans x (J x JTrans)^-1

*/

void

arminvkin_rprp_oa_RightPseudoInverse(float* J,

unsigned int numRows,

unsigned int numCols,

float* Jpseudo)

{

#define MAXROWS 3

#define MAXCOLS 4

// preconditions

assert(J!=NULL);

assert(numRows > 0 && numRows <= MAXROWS && "0 < numRows <= MAXROWS");

assert(numCols > 0 && numCols <= MAXCOLS && "0 < numCols <= MAXCOLS");

assert(numCols >= numRows && "Row size is greater than cols size");

float* JTrans = new float[numCols*numRows];

float* JJTrans = new float[numRows*numRows];

float* JJTransInv = new float[numRows*numRows];

assert(JTrans!=NULL);

assert(JJTrans!=NULL);

assert(JJTransInv!=NULL);

transpose(J, numRows, numCols, JTrans);

matmul(J,JTrans,numRows,numCols,numRows,JJTrans);

// compute the inverse of JJTrans

switch(numRows)

{

case 1: // scalar inversion

*JJTransInv = 1/(*JJTrans);

break;

case 2: // 2x2 inversion

arminvkin_rprp_oa_MatrixInv22(JJTrans,JJTransInv);

break;

case 3: // 3x3 inversion

arminvkin_rprp_oa_MatrixInv33(JJTrans,JJTransInv);

break;

default:

assert(0 && "arminvkin_rprp_oa_RightPseudoInverse cannot handle row dimensions");

break;

}

matmul(JTrans,JJTransInv,numCols,numRows,numRows,Jpseudo);

// release dynamically allocated memory

delete[] JTrans;

delete[] JJTrans;

delete[] JJTransInv;

#undef MAXROWS

#undef MAXCOLS

}

/*

Computes the inverse of a 2x2 matrix

ASSUMES:

Matrix is 2x2

A and AInv have correct memory allocation and are not null

PARAMETERS

A input: matrix

AInv: output: inverse of A

SIDE-EFFECTS:

Unknown
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RETURNS:

None

NOTES:

*/

void

arminvkin_rprp_oa_MatrixInv22(float* A,

float* AInv)

{

assert(A!=NULL);

assert(AInv!=NULL);

const unsigned int NUMCOLS = 2;

double det = (*(A + 0*NUMCOLS + 0)) * (*(A + 1*NUMCOLS + 1)) - (*(A + 1*NUMCOLS + 0)) * (*(A + 0*NUMCOLS + 1));

*(AInv + 0*NUMCOLS + 0) = *(A + 1*NUMCOLS + 1)/det;

*(AInv + 0*NUMCOLS + 1) = -*(A + 0*NUMCOLS + 1)/det;

*(AInv + 1*NUMCOLS + 0) = -*(A + 1*NUMCOLS + 0)/det;

*(AInv + 1*NUMCOLS + 1) = *(A + 0*NUMCOLS + 0)/det;

}

/*

Computes the inverse of a 3x3 matrix

ASSUMES:

Matrix is 3x3

A and AInv have correct memory allocation and are not null

PARAMETERS

A input: matrix

AInv: output: inverse of A

SIDE-EFFECTS:

Unknown

RETURNS:

None

NOTES:

*/

void

arminvkin_rprp_oa_MatrixInv33(float* A,

float* AInv)

{

assert(A!=NULL);

assert(AInv!=NULL);

const unsigned int NUMCOLS = 3;

float det,a,b,c,d,e,f,g,h,i,k0,k1,k2,k3,k4,k5,k6,k7,k8;

a=*(A + 0*NUMCOLS + 0); b=*(A + 0*NUMCOLS + 1); c=*(A + 0*NUMCOLS + 2);

d=*(A + 1*NUMCOLS + 0); e=*(A + 1*NUMCOLS + 1); f=*(A + 1*NUMCOLS + 2);

g=*(A + 2*NUMCOLS + 0); h=*(A + 2*NUMCOLS + 1); i=*(A + 2*NUMCOLS + 2);

k0=e*i-h*f; k1=d*i-g*f; k2=d*h-g*e;

k3=b*i-c*h; k4=a*i-g*c; k5=a*h-g*b;

k6=b*f-e*c; k7=a*f-d*c; k8=a*e-d*b;

det=a*k0-b*k1+c*k2;

*(AInv + 0*NUMCOLS + 0) = k0/det;

*(AInv + 0*NUMCOLS + 1) = -k3/det;

*(AInv + 0*NUMCOLS + 2) = k6/det;

*(AInv + 1*NUMCOLS + 0) = -k1/det;

*(AInv + 1*NUMCOLS + 1) = k4/det;

*(AInv + 1*NUMCOLS + 2) = -k7/det;

*(AInv + 2*NUMCOLS + 0) = k2/det;

*(AInv + 2*NUMCOLS + 1) = -k5/det;

*(AInv + 2*NUMCOLS + 2) = k8/det;

}

/*

Computes the inverse of a 3x3 matrix

ASSUMES:

Matrix is 3x3

A and AInv have correct memory allocation and are not null

PARAMETERS

A input: matrix

AInv: output: inverse of A

SIDE-EFFECTS:

Unknown

RETURNS:

None

NOTES:

*/
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float

arminvkin_rprp_oa_MatrixDet33(float* A)

{

assert(A!=NULL);

const unsigned int NUMCOLS = 3;

float det,a,b,c,d,e,f,g,h,i,k0,k1,k2,k3,k4,k5,k6,k7,k8;

a=*(A + 0*NUMCOLS + 0); b=*(A + 0*NUMCOLS + 1); c=*(A + 0*NUMCOLS + 2);

d=*(A + 1*NUMCOLS + 0); e=*(A + 1*NUMCOLS + 1); f=*(A + 1*NUMCOLS + 2);

g=*(A + 2*NUMCOLS + 0); h=*(A + 2*NUMCOLS + 1); i=*(A + 2*NUMCOLS + 2);

k0=e*i-h*f; k1=d*i-g*f; k2=d*h-g*e;

k3=b*i-c*h; k4=a*i-g*c; k5=a*h-g*b;

k6=b*f-e*c; k7=a*f-d*c; k8=a*e-d*b;

det=a*k0-b*k1+c*k2;

return det;

}

void

arminvkin_rprp_oa_disabled(float a[],/* input */

float d[],/* input */

float vhat[3],/* input */

float p05next[3],/* input */

float sewnext,/* input */

float thetaarm[4],/* input, output */

int *shoulderSingular,/* output */

int *elbowSingular)

{

int i, j, cycle;

float sew, dsew, pvec[3] ;

float p02[3], p04[3], p05[3], dp[3], dtheta123[3] ;

float dthetaarm[4], Jsew[4], dx[4] ;

float R04[3][3], Jac33[3][3], Jac33inv[3][3] ;

float Jt[3][4], Je[3][4] ;

float Jac[4][4], Jacinv[4][4] ;

/* set default return values */

*shoulderSingular = 0;

*elbowSingular = 0;

/* Start Newton-Raphson iteration to determine the new arm joint angles */

for (cycle=0; cycle<NITER; cycle++)

{

/* Calculate the current position of the wrist and the sew angle to

determine the errors */

armfwdkin_rprp(a,d,thetaarm,p02,p04,p05,R04) ;

sewfwdkin(p02,p04,p05,vhat,pvec,&sew) ;

vecsub3_inline(p05next,p05,dp) ;

dsew = sewnext - sew ;

/* Check whether sew has crossed from +Pi TO -Pi radians or vice versa:

A jump of approximately 2*Pi means that a rollover has occurred and

dsew should be adjusted accordingly */

if ( dsew < -M_PI ) { /* sewnext>+PI and is on -PI side of boundary */

dsew = dsew + 2*M_PI ; /* and current sew is < PI and is increasing */

} else if ( dsew > M_PI ) { /* sewnext<-PI and is on +PI side of boundary */

dsew = dsew - 2*M_PI ; /* and current sew is > -PI and is decreasing */

}

/* This is invoked if the arm is near the shoulder pitch singularity:

- Jac33 is the last three columns of Jt

- thetadot[0] is set equal to zero

- sewdot is set equal to zero (Jsew is ignored) */

armjac_rprp(a, d, thetaarm, Je, Jt) ;

sewjac(p02, p04, p05, vhat, Je, Jt, Jsew) ;

if (-SPLIMIT < thetaarm[SPDOF] && thetaarm[SPDOF] < SPLIMIT)

{

*shoulderSingular = 1; /* TRUE */

for(i=0;i<3;++i) {

for(j=0;j<3;++j) {

Jac33[i][j] = Jt[i][j+1] ;

}

}

inv33(Jac33,Jac33inv) ;

matvec33(*Jac33inv,dp,dtheta123) ;

dthetaarm[0] = 0.0f;

dthetaarm[1] = dtheta123[0] ;

dthetaarm[2] = dtheta123[1] ;

dthetaarm[3] = dtheta123[2] ;

}

/* if shoulder pitch okay, invoke the normal inverse kinematics approach

which uses all four joints and allows changes in sew */
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else

{

*shoulderSingular = 0; /* FALSE */

for(i=0;i<3;++i) {

dx[i] = dp[i] ;

}

dx[3] = dsew ;

for(i=0;i<3;++i) {

for(j=0;j<4;++j) {

Jac[i][j] = Jt[i][j] ;

}

}

for(j=0;j<4;++j) {

Jac[3][j] = Jsew[j] ;

}

inv44(Jac,Jacinv) ;

matvec44(*Jacinv,dx,dthetaarm) ;

}

vecadd4_inline(thetaarm,dthetaarm,thetaarm) ;

} /* END NR ITERATION CYCLES */

if (-EPLIMIT < thetaarm[EPDOF] && thetaarm[EPDOF] < EPLIMIT)

{

*elbowSingular = 1; /* TRUE */

}

else

{

*elbowSingular = 0; /* FALSE */

}

}

__END_DECLS

/* END OF FILE */
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