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Abstract— Visual servoing consists of positioning a robot end-
effector based on the matching of some object features in
the image. However, due to the presence of image noise, this
matching can never be ensured, hence introducing an error
on the final location of the robot. This paper addresses the
problem of estimating the worst-case location error introduced
by image points matching. In particular, we propose some
strategies for computing upper bounds and lower bounds of
such an error according to several possible measures for certain
image noise intensity and camera-object configuration. These
bounds provide an admissible region of the sought worst-case

location error, and hence allow one to establish performance
limitation of visual servo systems. Some examples are reported
to illustrate the proposed strategies and their results.

Index Terms— Visual servoing, Image noise, Positioning ac-
curacy, Convex optimization.

I. INTRODUCTION

Eye-in-hand visual servoing consists of positioning a robot

end-effector in a desired location by exploiting the visual

information of some reference objects provided by a camera

mounted on the end-effector itself. In particular, in the

teaching-by-showing approach the camera (and, hence, the

robot) is located in a location of interest, called desired

location, from which some reference objects are visible. The

view of the camera in this location, called desired view, is

hence stored. Then, the camera is moved to another location

of the scene from which the same reference objects are

visible. The target is hence to steer the camera from its

current location to the desired location by exploiting as

feedback information the view of the camera in the current

location, called current view, and the desired view previously

stored.

In order to allow the camera to reach the desired location

in the teaching-by-showing approach, several methods have

been proposed, such as position-based visual servoing (see

e.g. [1]), image-based visual servoing (see e.g. [2]), and

2 1/2 D visual servoing [3]. Other methods have proposed

partition of the degrees of freedoms (see e.g. [4], [5]),

global motion plan via navigation functions (see e.g. [6]),

control invariant with respect to intrinsic parameters (see

e.g. [7], [8]), use of complex image features via image

moments (see e.g. [9]), switching strategies for ensuring the

visibility constraint (see e.g. [10]), generation of circular-

like trajectories for minimizing the trajectory length (see

e.g. [11]), and path-planning methods for taking into account

constraints (see e.g. [12]–[16]). See also [17]–[20].
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In visual servoing the goal condition is defined as the

matching of some object features in the image. However, this

matching can never be ensured due to the presence of image

noise, and this introduces an error on the final location of the

robot. See also [21] which investigates the effect of image

noise on the control law of position-based visual servoing

and 2 1/2 D visual servoing.

This paper addresses the estimation of the worst-case loca-

tion error introduced by image points matching. Specifically,

we consider the computation of upper bounds and lower

bounds of such an error, and propose to this end a strategy

based on linear matrix inequality (LMI) for the former, and

a strategy based on barrier functions for the latter. In these

strategies the location error can be defined according to

several possible measures, and it is a function of the image

noise intensity and camera-object configuration. The derived

upper bounds and lower bounds delimit an admissible region

of the sought worst-case location error, and hence allow one

to establish performance limitation of visual servo systems.

Some examples are reported to illustrate the application of

the proposed approach. This paper extends our previous

results in [22] by introducing the derivation of lower bounds

of the sought worst-case location error, allowing for the use

of several different measures used to quantify such an error,

and exploiting a complete parametrization for the rotational

part which does not present singularities.

The organization of the paper is as follows. Section II

defines the problem and notation. Section III describes the

computation of the proposed upper and lower bounds for

different measures. Section IV presents some illustrative ex-

amples. Lastly, Section V reports some concluding comments

and possible directions for future research.

II. FRAMEWORK DEFINITION

A. Notation and problem statement

The notation exploited in this paper is as follows:

- R: real number set;

- SO(3): set of all rotation matrices of size 3 × 3;

- 0n: null vector of size n× 1;

- 0m×n: null matrix of size m× n;

- In: identity matrix of size n× n;

- ei: null vector of size 3× 1 with the ith component set

to 1;

- ‖X‖: euclidean norm of vector/matrix X;

- ‖X‖∞: infinity norm of vector/matrix X;

- XT : transpose of a vector/matrix X;

- s.t.: subject to.
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Let us consider an eye-in-hand visual servo system, such

as a robotic manipulator or a mobile platform with a camera

mounted on an end-effector. The task consists of controlling

the robot so that the end-effector reaches a desired location

by exploiting in closed-loop the camera view of some object

features. In particular, the motion is terminated when the

object features in the current camera view satisfactorily

match those in the desired camera view, which have been

previously recorded.

Let us observe that image noise unavoidably affects the

image projections of the object features, and in particular it

does each time in a different way being random image noise.

Hence, even supposing that the camera has perfectly reached

the desired location, the object features in the current camera

view can be (and in generally are) different from those

ones previously recorded from the same location. Vice versa,

even supposing that the object features in the current camera

view perfectly match those in the desired camera view, the

current location can be (and in generally is) different from

the desired one. This means that image noise unavoidably

introduces a final location error in visual servoing as the

goal condition is defined via visual matching.

In this paper we address the problem of bounding this

error, which depends on the level of image noise, on the

camera parameters, and on the object features.

B. Mathematical formulation

Let F abs be an absolute frame in the 3D space. We denote

with F = (O, c) the frame of the current camera of the

visual servo system expressed with respect to the absolute

frame F abs, where O ∈ SO(3) is a rotation matrix which

defines the orientation, and c ∈ R
3 is a vector which defines

the translation. Similarly we denote with F ∗ = (O∗, c∗) the

frame of the desired camera of the visual servo system.

Let q1, . . . ,qN ∈ R
3 be a set of 3D points expressed

with respect to the absolute frame F abs. The ith 3D point

qi projects onto the camera frame F at the point pi =
(pi,1, pi,2, 1)T ∈ R

3 expressed in homogeneous coordinates

and given by

dipi = AOT (qi − c) (1)

where di is the depth of the point with respect to F , and A ∈
R

3×3 is the upper-triangular matrix containing the camera

intrinsic parameters:

A =





fx s ux

0 fy uy

0 0 1



 , (2)

being fx, fy ∈ R the focal lengths, ux, uy ∈ R the

coordinates of the principal point, and s ∈ R the aspect

ratio. Similarly, the ith 3D point qi projects onto the camera

frame F ∗ at the point p∗
i = (p∗i,1, p

∗
i,2, 1)T ∈ R

3 expressed

in homogeneous coordinates and given by

d∗i p
∗
i = AO∗T (qi − c∗) (3)

where d∗i is the depth of the point with respect to F ∗.

The motion (or camera pose) between F and F ∗ can be

described by the pair

(R, t) ∈ SO(3) × R
3 (4)

where R and t are the rotational and translational compo-

nents respectively given by

R = O∗T O (5)

while t is given by

t =
O∗T (c− c∗)

‖O∗T (c − c∗) ‖ (6)

(these components are expressed with respect to the desired

camera frame F ∗).

In this paper we consider the situation where the object

features used in the teaching-by-showing approach described

in Section II-A are points, which is the typical case. Hence,

let p,p∗ ∈ R
2N be the vectors containing the image

projections of the 3D points q1, . . . ,qN according to

p = (p1,1, p1,2, . . . , pN,1, pN,2)
′

p∗ = (p∗1,1, p
∗
1,2, . . . , p

∗
N,1, p

∗
N,2)

′.
(7)

The goal condition of the visual servoing in Step 3 can be

expressed as

‖p− p∗‖∞ ≤ ε (8)

where ε ∈ R is a threshold chosen to limit the distance

between p and p∗ (for example, via the infinity norm).

The problem addressed in this paper can be formulated

as computing upper and lower bounds of the worst-case

location error introduced by image points matching through

the goal condition (8). In particular we consider the worst-

case rotational error

sr(ε) = sup
(R,t)∈SO(3)×R3

µ(R)

s.t. ‖p− p∗‖∞ ≤ ε
(9)

and the worst-case translational error

st(ε) = sup
(R,t)∈SO(3)×R3

ν(t)

s.t. ‖p− p∗‖∞ ≤ ε
(10)

where µ : SO(3) → R and ν : R
3 → R are some norms of

interest (we will consider several cases in the next sections).

In the sequel we will consider without loss of generality

that the desired camera frame F ∗ coincides with the absolute

frame F abs.

III. BOUNDS COMPUTATION

First of all, let us observe how image noise affects the goal

condition (8). Let us denote with p̂∗ and p̂ the estimates of

p∗ and p corrupted by image noise, in particular according

to
{

p̂ = p + n

p̂∗ = p∗ + n∗ (11)
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where n,n∗ ∈ R
2N are vectors containing image noise

(for instance due to image quantization, lighting, features

extraction, etc...). Suppose that n,n∗ are bounded by

‖n‖∞ ≤ ζ
‖n∗‖∞ ≤ ζ

(12)

where ζ ∈ R is a bound of the image noise intensity in both

current and desired views. Then, it clearly follows that

‖p̂ − p̂∗‖∞ ≤ ε guarantees only ‖p− p∗‖∞ ≤ ε+ 2ζ
(13)

i.e., one cannot guarantee that the real image error

‖ptrue − p∗
true‖∞ converges to a value smaller than 2ζ.

This clearly motivates the investigation of the location error

introduced by image points matching.

Therefore, from now on we will consider the computation

of the errors
{

sr(δ) and st(δ)
δ = ε+ 2ζ

(14)

where δ ∈ R represents the total image error.

Before proceeding, let us parameterize the rotation matrix

through the Euler parameter as follows:
{

R = Ω(a)
‖a‖ = 1

(15)

where a = (a1, . . . , a4)
T ∈ R

4 is a unit-norm vector which

represents the Euler parameter of R, and Ω(a) is the matrix

function

Ω(a) =





a2
1 − a2

2 − a2
3 + a2

4 2 (a1a2 − a3a4)
2 (a1a2 + a3a4) −a2

1 + a2
2 − a2

3 + a2
4

2 (a1a3 − a2a4) 2 (a2a3 + a1a4)
2 (a1a3 + a2a4)
2 (a2a3 − a1a4)

−a2
1 − a2

2 + a2
3 + a2

4



 .

(16)

Let us observe that this parametrization is complete, in the

sense that:

1) for any unit-norm vector a ∈ R
4 it follows that Ω(a)

is a rotation matrix in SO(3);
2) for any rotation matrix R ∈ SO(3) there exists a

vector a ∈ R
4 with unit-norm such that R = Ω(a).

A. Upper bounds

Let us consider first the computation of upper bounds of

sr(δ) and st(δ) in (9)–(10). We will show that this step

can be solved by exploiting convex optimizations. Indeed,

consider the constraint ‖p − p∗‖∞ < δ in the computation

of sr(δ) and st(δ). From (1), (3), (5) and (6) it follows that

for the ith point we can write

pi − p∗
i = A

Ω(a)qi + t

eT
3 (Ω(a)qi + t)

− A
qi

eT
3 qi

(17)

where it has been taken into account that qi is expressed with

respect to the desired camera frame F ∗, which coincides with

the absolute frame F abs. Hence, we have that

‖pi − p∗
i ‖∞ ≤ δ (18)

if and only if






|fi,3gi,1 − fi,1gi,3| ≤ δfi,3gi,3

|fi,3gi,2 − fi,2gi,3| ≤ δfi,3gi,3

gi,3 > 0
(19)

where fi,j ∈ R is a constant and gi,j is a polynomial (in a

and t) given by

fi,j = eT
j Aqi

gi,j = eT
j A (Ω(a)qi + t) .

(20)

This means that the constraint ‖p − p∗‖∞ < δ can be

compactly expressed by defining the polynomials

hi,j,k = (−1)k (fi,3gi,j − fi,jgi,3)
+δfi,3gi,3.

(21)

Indeed:

‖p− p∗‖∞ ≤ δ (22)

if and only if

hi,j,k ≥ 0 ∀(i, j, k) ∈ I. (23)

where I is the set

I = {(i, j, k) : i = 1, . . . , N, j = 1, 2, k = 1, 2}
⋃

{(i, j, k) : i = 1, . . . , N, j = 3, k = 1} .
(24)

In fact, let us observe that the first two constraints in (20)

are recovered by the first set on the right hand side of (24),

while the third constraint is recovered by the second set on

the right hand side of (24) since hi,3,1 = δfi,3gi,3. Therefore,

sr(δ) and st(δ) can be rewritten as

sr(δ) = sup
a∈R4,‖a‖=1,t∈R3

µ(Ω(a))

s.t. (23)
(25)

and
st(δ) = sup

a∈R4,‖a‖=1,t∈R3

ν(t)

s.t. (23)
(26)

The next step consists of solving (25)–(26) via convex

optimizations. To this end, let us introduce the polynomials

br = γ − µ(Ω(a)) − ∑

(i,j,k)∈I ui,j,khi,j,k

−u(1 − ‖a‖2)
bt = γ − ν(t) −

∑

(i,j,k)∈I ui,j,khi,j,k

−u(1 − ‖a‖2)

(27)

where u, ui,j,k ∈ R are auxiliary polynomials and γ ∈ R

is an auxiliary scalar to be determined. Let vb be a vector

containing any base for the polynomials br, bt, and let vu

be a similar vector for the polynomials ui,j,k. Then, the

polynomials br, bt, ui,j,k can be expressed as






br = vT
b Brvb

bt = vT
b Btvb

ui,j,k = vT
u Ui,j,kvu

(28)

where Br, Bt, and Ui,j,k are any symmetric matrices of

suitable dimensions satisfying (28). Lastly, let L(α) be any

linear parametrization of the linear set

L =
{

L = LT : vT
b L(α)vb = 0

}

(29)
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where α is a free vector. The representation (28) is known

as square matricial representation (SMR) and has been intro-

duced in [23]. In [24], simple algorithms for the computation

of SMR matrices as Br, Bt, and Ui,j,k as well as the

function L(α) are provided. In practice, one builds the

vectors vb and vu by freely choosing any possible permuta-

tion of the admissible monomials in br, bt, ui,j,k. Then, one

introduces the free matrix variables Ui,j,k, hence defining the

polynomials ui,j,k, br, bt. One hence builds possible matrices

Br and Bt (both depending affine linearly on Ui,j,k) through

simple coefficients equalization of the equations in (28).

Lastly, one constructs the matrix L(α) by selecting any

possible parametrization of the linear set L.

Hence, we finally have that upper bounds of sr(δ) and

st(δ) can be obtained as

s+r (δ) = min
γ,α,Ui,j,k

γ

s.t.

{

Br + L(α) ≥ 0
Ui,j,k ≥ 0 ∀(i, j, k) ∈ I

(30)

and
s+t (δ) = min

γ,α,Ui,j,k

γ

s.t.

{

Bt + L(α) ≥ 0
Ui,j,k ≥ 0 ∀(i, j, k) ∈ I

(31)

In fact, the constraints in (30) and (31) ensure that the

polynomials br, bt, ui,j,k are non-negative, and hence that

γ > µ(Ω(a)) in (30) and γ > ν(t) in (31) for all values

of a, t such that hi,j,k ≥ 0 and ‖a‖ = 1.

Let us observe that (30) and (31) are minimizations with

linear costs and linear matrix inequality (LMI) constraints,

and hence are convex optimizations [25]. For more details

about the SMR the reader is referred to [26]. Other applica-

tions of the SMR in computer vision can be found in [27],

[28].

B. Lower bounds

In Section III-A we have derived upper bounds of the

worst-case errors sr(δ) and st(δ). In this section we consider

the computation of lower bounds of these errors. The idea is

to generate a sequence of camera poses (R, t) such that:

1) the condition ‖p−p∗‖∞ ≤ δ holds true for all values

of the sequence, i.e. the camera pose (R, t) yields to

an admissible image error;

2) the sequence approaches the sought worst-case error

(either sr(δ) or st(δ)).

In fact, the first condition ensures that each camera pose of

the sequence provides a lower bound of the sought worst-

case error, while the second condition forces the sequence

to provide, possibly, tight lower bounds.

To this end, let us define the functions

ψr =

{

µ(Ω(a) if w ≥ 0
0 otherwise

(32)

and

ψt =

{

ν(t) if w ≥ 0
0 otherwise

(33)

where w and w1 are given by














w = min{w1, w2}
w1 = 1 − a2

1 − a2
2 − a2

3

w2 = δ − ‖p− p∗‖∞ evaluated with

a = (a1, a2, a3,
√
w1)

T

(34)

Let us observe that w is a barrier-like function since it

becomes negative whenever any of the following conditions

holds:

1) the parameter a is not admissible as ‖a‖ > 1;

2) the parameters (a, t) are not admissible as ‖p −
p∗‖∞ > δ.

Instead, whenever w is nonnegative, an admissible parameter

a is simply given by (a1, a2, a3,
√
w1)

T ) as in (34), and

moreover all admissible parameters a are recovered by letting

a1, a2, a3 vary in the unit sphere (observe in fact that there is

no loss of generality in taking the positive square root of w1

because a and −a provide the same rotation matrix). Then,

lower bounds of of sr(δ) and st(δ) can be obtained as

s−r (δ) = max
a1,a2,a3,t

ψr (35)

and

s−t (δ) = max
a1,a2,a3,t

ψt (36)

which can be solved by using, for instance, the simplex

algorithm, which can handle the non-differentiability of the

functions ψr and ψt. The found solutions may be non-

optimal since these functions are non-convex, nevertheless

any found solution it is guaranteed to be a lower bound of the

sought worst-case error since it is obtained for an admissible

camera pose. Lastly, let us observe that an initialization

for (35)–(36) is simply given by (0, 0, 0,03)
T which is

admissible for any δ.

C. Error measures

In this section we describe some norms µ and ν which

can be used in the proposed approach to define the errors

sr(δ) and st(δ). Let us consider first the rotation. Then, a

possibility is to select

µ(R) = θ (37)

where θ ∈ [0, π] is the angle in the representation of R

via exponential coordinates. Let us observe that θ is not a

polynomial function of a and hence (37) cannot be directly

used in (27). However, this problem can be simply solved

by defining µ as

µ(Ω(a)) = a2
1 + a2

2 + a2
3 (38)

which indirectly provides (37) because

a2
1 + a2

2 + a2
3 =

(

sin
θ

2

)2

(39)

(see for instance [16] for details about this relationship).

Let us consider now the translation, for which one can

similarly select

ν(t) = ‖t‖ (40)
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which provides the standard euclidean measure of the trans-

lation. Again, this is not a polynomial function of t and

hence cannot be directly used in (27), nevertheless one can

simply use ‖t‖2 which is polynomial and indirectly provides

(40).

Another useful possibility is to select

ν(t) = ‖ti‖ (41)

for some i = 1, 2, 3, which provides a bound of the

translation along the ith axis, and which can be obtained

similarly to the technique used for (40). Several other norms

can be similarly defined.

IV. EXAMPLES

In this section we present some examples of the proposed

approach. The the upper bounds s+r (δ), s+t (δ) in (30)–(31)

and the lower bounds s−r (δ), s−t (δ) in (35)–(36) have been

computed by using Matlab. Their computational time is less

than 10 seconds on a standard PC.

A. Example 1

Let us consider the situation shown in Figure 1a where

a camera is observing four dices. The chosen object points

are the centers of the eight large dots. The screen size is

640 × 480 pixels, and the camera intrinsic parameters are

A =





500 0 320
0 500 240
0 0 1



 . (42)

Figure 1b shows the corresponding camera view. The prob-

lem is to estimate the worst-case location error introduced

by image points matching, i.e. the errors sr(δ) and st(δ) in

(9)–(10) where δ represents the total image error in (14).

To this end, let us select the norms µ(R) = θ and ν = ‖t‖
as in (37) and (40). Then, we compute the upper bounds

s+r (δ), s+t (δ) in (30)–(31) and the lower bounds s−r (δ), s−t (δ)
in (35)–(36) for some values of δ. We find the values shown

in Table I.

δ s−r (δ) s+
r (δ) s−

t
(δ) s+

t
(δ)

[pixels] [deg] [deg] [mm] [mm]

0.5 0.122 0.352 0.384 0.605
1.0 0.247 0.705 0.785 1.21
1.5 0.370 1.06 1.25 1.82
2.0 0.491 1.41 1.78 2.42

TABLE I

EXAMPLE 1. UPPER AND LOWER BOUNDS OF THE WORST-CASE

LOCATION ERRORS FOR THE OBJECT POINTS IN FIGURE 1 ACCORDING

TO THE MEASURES µ(R) = θ AND ν = ‖t‖ FOR SOME VALUES OF δ.

B. Example 2

Let us consider the real image shown in Figure 2 where

twelve object points, indicated by the “+” marks, are ob-

served. The 3D points have been estimated by acquiring a

second image from another location, and then performing a

standard object reconstruction via the camera pose estimated

−40
−30

−20
−10

0
10

20
30

0

20

40

60

80

100

120

−20

−10

0

10

20

x [mm]

y
[m

m
]

z [mm]

(a)

0 100 200 300 400 500 600
0

50

100

150

200

250

300

350

400

450

screen x-axis [pixel]

sc
re

en
y

-a
x
is

[p
ix

el
]

(b)

Fig. 1. Example 1. (a) 3D scene with the camera observing three dices.
(b) Corresponding camera view: the used object points are the centers of
the 8 large dots of the dices.

through the essential matrix with calibrated camera and with

the knowledge of the distance among two points in the 3D

space (in order to estimate the norm of the translation). The

screen size is 659 × 493 pixels.

Let us select the norms µ(R) = θ and ν = ‖t‖. We find

the values shown in Table II.

V. CONCLUSION

We have addressed the estimation of the worst-case loca-

tion error introduced by image points matching. Specifically,

we have proposed some strategies for computing upper

bounds and lower bounds of such an error according to

several possible measures for certain image noise intensity

and camera-object configuration. The computation of the

upper bounds is based on LMI, while the computation of
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Fig. 2. Example 2. Real image with twelve observed points.

δ s−r (δ) s+
r (δ) s−

t
(δ) s+

t
(δ)

[pixels] [deg] [deg] [mm] [mm]

0.5 0.060 1.46 0.148 0.295
1.0 0.119 2.91 0.301 0.591
1.5 0.180 4.36 0.505 0.892
2.0 0.240 5.82 0.658 1.20

TABLE II

EXAMPLE 2. UPPER AND LOWER BOUNDS OF THE WORST-CASE

LOCATION ERRORS FOR THE OBJECT POINTS IN FIGURE 2 ACCORDING

TO THE MEASURES µ(R) = θ AND ν = ‖t‖ FOR SOME VALUES OF δ.

the lower bounds is obtained through barrier functions. These

bounds provide an admissible region of the sought worst-case

location error.

The proposed strategies allows one to investigate an im-

portant issue of visual servoing schemes. Indeed, in such

schemes a robot end-effector is positioned by matching some

object features in the image, which are unavoidably affected

by image noise. Therefore, such a positioning is unavoidably

affected by errors, and the bounds proposed in this paper

allows one to investigate this performance limitation.

Future work will be devoted to derive procedures for

establishing tightness of the obtained bounds, and to analyze

the propagation of the location error introduced by image

points matching in closed-loop control systems.
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