
Combining Search and Action for Mobile Robots

Geoffrey Hollinger, Dave Ferguson, Siddhartha Srinivasa, and Sanjiv Singh

Abstract— We explore the interconnection between search
and action in the context of mobile robotics. The task of
searching for an object and then performing some action with
that object is important in many applications. Of particular
interest to us is the idea of a robot assistant capable of
performing worthwhile tasks around the home and office (e.g.,
fetching coffee, washing dirty dishes, etc.). We prove that some
tasks allow for search and action to be completely decoupled
and solved separately, while other tasks require the problems
to be analyzed together. We complement our theoretical results
with the design of a combined search/action approximation
algorithm that draws on prior work in search. We show the
effectiveness of our algorithm by comparing it to state-of-the-
art solvers, and we give empirical evidence showing that search
and action can be decoupled for some useful tasks. Finally,
we demonstrate our algorithm on an autonomous mobile robot
performing object search and delivery in an office environment.

I. INTRODUCTION

Think back to the last time you lost your car keys. While

looking for them, a few considerations likely crossed your

mind. There were certain places in the house where the

keys were more likely to be, and these places were certain

distances from each other. While planning your search for

your keys, you might have thought to minimize distance

traveled while ensuring that you hit all the likely places that

the keys might be. What may not have crossed your mind was

that after finding the keys, you needed to use them to start the

car. Would it be advantageous for you to search the car first

because then you could immediately drive away, or would it

be advantageous to search the car last to avoid backtracking

to the house? Consider a similar situation where you need

to find a friend at a carnival just before leaving. Might it

be advantageous to search near the entrance to allow a quick

exit if the friend is found? Does the fact that the friend might

be moving change the answer to these questions? What if

there are multiple sets of keys or friends? We examine such

questions in the context of mobile robotics.

State-of-the-art mobile robots are now capable of complex

localization, manipulation, and planning. These capabilities

are enabling robot assistants to perform useful tasks, such

as cleaning, getting coffee, and setting tables [1]. Prior work

in this area has considered the action aspect of these tasks.

In other words, the robot is assumed to have at least an

approximate estimate of the position of all objects of interest.

However, assistance robots must typically search for the

G. Hollinger and S. Singh are with The Robotics Institute,
Carnegie Mellon University, Pittsburgh, PA 15213, USA,
gholling@ri.cmu.edu, ssingh@ri.cmu.edu

D. Ferguson and S. Srinivasa are with Intel Research Pitts-
burgh, Pittsburgh, PA 15213, USA, dave.ferguson@intel.com,
siddhartha.srinivasa@intel.com

Fig. 1. Mobile manipulator: Segway RMP200 base with Barrett WAM arm
and hand. The robot uses a wrist camera to recognize objects and a SICK
laser rangefinder to localize itself in the environment

objects (or targets) of interest. A concrete example is a robot

that refreshes coffee in an office. This robot must find coffee

mugs, wash them, refill them, and return them to office

workers. It is unreasonable to assume that such a robot could

maintain an accurate estimate of the locations of all mugs

and people in the environment without needing to search.

Similarly, there is growing interest in developing urban

search and rescue robots capable of finding survivors (and

lost first responders) in disaster scenarios [2]. Work in this

area typically deals with the search aspect of the task, but

rarely is the actual rescue considered. What is ignored is

that, in some cases, the specifics of the rescue (or action)

might affect the search task. For instance, if certain areas

of the building are particularly easy extraction points, it may

be beneficial to search these areas first.1 Such considerations

have not seen a principled analysis in the literature.

In this paper, we analyze the combined search/action task

in the context of mobile robotics. We begin with a survey

of the work in probabilistic robotics, pursuit/evasion, and

graph search (Section II), which highlights the lack of a

unified treatment of search and action. We then formally

define the search/action problem (Section III) and move to

a theoretical analysis of its properties (Section IV). Based

on our theoretical analysis, we present an approximation

algorithm for search/action (Section V). We demonstrate

our algorithm both in simulation and on a mobile robotic

platform (Section VI). To the best of our knowledge, this

paper is the first to explore the interconnection between

search and action in mobile robotics.

1A broad range of additional applications of our search/action formulation
include autonomous Chemical Biological Radiological Nuclear (CBRN)
threat identification and cleanup, mine inspection and repair, aged care,
and wilderness rescue.

II. RELATED WORK

The problem of searching for an object has been heavily

studied in both 2D and 3D environments. Ye and Tsotsos

proved that the 3D search problem is NP-complete even for a

single stationary object [3]. This complexity result motivates

approximation algorithms in this domain. Sarmiento et al.

presented an approximation algorithm for the 2D search

problem [4], and Saidi et al. demonstrated a heuristic solution

in 3D with a humanoid robot [5]. Neither of these algorithms

consider the possibility of an action performed with the

object after it has been found.

Parsons was one of the first to study the connection

between search and the “pursuit/evasion” problem in which

a team of searchers seeks to locate a moving, potentially

adversarial target (or evader) [6]. The searchers’ aim is to

move in such a way that the evader cannot escape. We refer

to this as guaranteed search because the searchers move so

as to guarantee finding the target. Guibas et al. examined

the guaranteed search problem in a mobile robot workspace

(rather than abstract graphs) [7]. They propose a visibility-

based formulation that guarantees finding a target with a

single searcher if such a path exists in a given environment.

The work mentioned above makes a worst-case assump-

tion on the target’s behavior (i.e., that it moves arbitrarily fast

and actively avoids being found). An alternative formulation

is to assume that the target is non-adversarial. We refer to

this as efficient search because the searchers move in such a

way as to efficiently (in terms of time) find the target. This

formulation is particularly appropriate for robotic assistance

scenarios in which the objects and people in the environment

are not actively avoiding the robot. The efficient search

problem can be formulated as a Partially Observable Markov

Decision Process (POMDP) for both stationary and moving

targets [8]. The simpler MDP framework is insufficient

because the state of the target is partially known. POMDPs

maintain a belief estimate of the current state, and solving

the POMDP yields a policy mapping from belief state to

action that maximizes reward.

Large POMDPs are notoriously difficult to solve, but near-

optimal algorithms have been proposed capable of solv-

ing POMDPs with thousands of states. Two state-of-the-

art POMDP solvers are Heuristic Search Value Iteration

(HSVI2) [9] and Successive Approximations of the Reach-

able Space under Optimal Policies (SARSOP) [10]. Both

algorithms use point-based value iteration to progressively

improve the policy. Unfortunately, the size of search/action

POMDPs can grow well beyond the limitations of near-

optimal solvers for representations of complex environments.

This is particularly true with multiple searchers and/or mul-

tiple targets.

Research in assistive robotics typically does not consider

searching for an object before performing an action on it [1],

[11], [12]. These systems utilize computer vision to find

objects, but they are given a coarse estimate of their position

(e.g., the table on which it rests). Thus, they do not search

on the scale of an office building or home. One notable

exception is the work of Roy et al. in which robots search

for patients in a nursing home [8]. This work, along with

work in urban search rescue [2], are examples of search for

a moving target. However, this research falls in the previous

category of pure search: they do not consider performing any

action with the target after it is found.

In our prior work we proposed a bounded approximation

algorithm for solving the efficient search problem [13].

Our method uses finite-horizon planning and implicit co-

ordination between searchers to remain scalable in large

environments with many searchers. We have shown that our

approximation algorithm is competitive with near-optimal

POMDP solvers for both moving and stationary targets.

In the following sections, we extend these results to tasks

requiring both search and action.

III. PROBLEM SETUP

In this section we formulate the combined search/action

problem and show how it can be expressed as a POMDP.

We start with a single searcher and single stationary target

on a graph and then discuss extensions to multiple moving

searchers and physical environments. Assume we are given a

graph G(N, E) with |N | vertices and |E| edges. A searcher

exists at any time t at a vertex s(t) = u ∈ N , and the

searcher can move to any vertex s(t + 1) = v ∈ N if an

edge exists in E between u and v. Similarly, a target exists

at some vertex e(t) = u ∈ N . A searcher at a given vertex

can detect any target at the same vertex with some fixed

probability P (C|s(t) = e(t)), where C is a detection (or

capture) event. The searcher’s goal is to locate the target

and perform some subsequent action with the target. We refer

to the subsequent action as the action task, which is distinct

from actions performed during search. The cost of the action

task is dependent on the vertex at which the target was found.

We can now define the searcher’s objective function J(U)
as in Equation 1. Note that the objective function depends

on the term τ , which is the time to complete the combined

search/action task (as defined below).

J(U) =

T∑

t=0

γτP (C|U(t) = e(t))P (U(t) = e(t)), (1)

where U = [U(1), . . . , U(T)] are the deterministic moves

of the searcher specifying its location (i.e., s(t) = U(t)).
The search/action time τ = t + α(U(t)), where α(U(t)) is

the expected time to complete the action task if the target

is found at vertex U(t). The discount factor γ ∈ [0, 1] is

a measure of the importance of finding the target quickly.

The searcher’s goal is to choose U(1), . . . , U(T) so as

to maximize J(U(1), . . . , U(T)). The searcher must then

complete the action task after finding the target.

For the search/action POMDP, the states are defined by

the cross product of the searcher and target locations, the

actions are the searchers’ movements on the graph, and the

observation probabilities are defined by P (C|s(t) = e(t)).
The initial belief is a potentially multi-modal estimate of the

location of the target at the start of the search. To complete

the formulation, we add a set of states in which the searcher

has control of the target. These states are reached once the

searcher has captured the target, and their associated actions

represent an arbitrary task. Reward is received after the action

task is completed, and a negative reward can be added for

each searcher step. The use of negative rewards allows a

POMDP formulation with or without a discount factor.

To extend to a moving target, we can simply modify the

transition probabilities to account for the target’s motion

model.2 To extend to multiple searchers and/or targets, we

can place K searchers on vertices sk(t) and M targets

on vertices em(t). The state and action space is now the

cross product of the searchers’ states and actions. Note that

the state space increases exponentially with the number of

searchers and targets.

Applying the search/action POMDP to a physical

workspace requires representing the workspace as a discrete

graph. This can be done using a regular grid or using rooms

and hallways in indoor environments (see Figure 2) [13].

This formulation implicitly assumes that the searchers have

a sensor capable of locating a target in the same cell and that

the discretized cells (corresponding to vertices) be convex

and sufficiently small.

Fig. 2. Floorplans of environments used for search/action trials: office (top),
museum (bottom). The searcher must find a target in one of the convex cells
and then return the target to its starting cell. Starting cells are denoted with
a blue box.

IV. THEORETICAL ANALYSIS

In this section we prove that the search tasks and action

tasks can be decoupled for a single stationary target (e.g.,

a coffee mug) if an undiscounted reward metric is used.

Conversely, we show that this is not the case for multiple tar-

gets, moving targets, and/or when using discounted reward.

Moving targets of interest include patients in a nursing home

and survivors in a search and rescue scenario.

A. Single Stationary Target

For a single searcher and stationary target located in

a workspace, the searcher must find the target and then

perform some subsequent action on the target. The cost of

2Note that this requires that the target’s motion model be Markovian.

the subsequent action is dependent on the location at which

the target was found. The searcher’s goal is to find the target

in the workspace and then complete the subsequent action.

Theorem 1 shows that the searcher can achieve the optimal

strategy for the search/action task by solving the search and

action tasks separately.

Theorem 1: Adding a subsequent action cost does not

change the optimal search strategy w.r.t. expected cost for

a single stationary target.

Proof: Let |N | = 2, and label these nodes n1, n2. The

probability of the target being at each node is p1, p2. A fixed

(or expected) action cost is associated with each node, a1, a2.

A cost to reach each node from the start is denoted as d1, d2,

and a cost between them is denoted as d12. The searcher can

choose to visit n1 first or to visit n2 first. We examine the

expected cost for these two cases.

For search:

Go to n1 first: C1 = p1d1 + p2(d1 + d12)
Go to n2 first: C2 = p2d2 + p1(d2 + d12)

For search/action:

Go to n1 first: Ca1 = p1(d1 + a1) + p2(d1 + d12 + a2)
Go to n2 first: Ca2 = p2(d2 + a2) + p1(d2 + d12 + a1)

Subtracting we get:

Ca1 − C1 = p1a1 + p2a2

We also see that:

Ca2 − C2 = p2a2 + p1a1

Therefore:

Ca2 − C2 = Ca1 − C1

Generalizing to more than two possible locations, we see

that any search strategy S and corresponding search/action

strategy A visiting N locations in the sequence {1, . . . , N}
will take the following form:

CS = p1d1 + . . . + pN (d1 + d12 + . . . + dN−1 N)
CA = p1(d1 +a1)+ . . .+pN(d1 +d12 + . . .+dN−1 N +aN)

CA − CS =

N∑

i=1

piai (2)

The expected cost of completing the subsequent action is

given by Equation 2 and is independent of the search strategy.

Theorem 1 applies to the undiscounted POMDP formu-

lation by using the shortest path distances between nodes u

and v as the duv . Thus, we can solve the search POMDP and

action task (PO)MDP sequentially and still find the optimal

policy. This is a potentially large gain because it avoids a

large expansion of the state space. Additionally, this theorem

demonstrates that the subsequent action cost has no effect on

the optimal search strategy. This means that knowledge of

the subsequent action is unnecessary during search.

One important caveat, however, is that Theorem 1 is only

true if the POMDP reward is not discounted. Adding a

discount factor modifies the reward in such a way that the

expected subsequent action cost is dependent on the search

strategy. The intuition behind this is that the discount factor

allows the search strategy to modify the subsequent action

cost of a location by adjusting the time at which it is visited.

This difference will become clearer when examining the

multiple target and moving target cases.

B. Multiple Stationary Targets

Now let there be multiple stationary targets that a searcher

must find before completing the subsequent action task. An

example of this would be if a service robot needed to collect

several mugs and then take them to the dishwasher. Also

assume that the searcher can carry more than one target, so

it may continue to search after locating target. In this case

Theorem 1 does not hold. To see why, examine the expected

reward for the search/action task with two targets. Let pij be

the probability of finding target i in location j.

For search:

C1 = p11p21d1 + (p12p22 + p11p22 + p21p12)(d1 + d12)
C2 = p12p22d2 + (p11p21 + p12p21 + p22p11)(d2 + d12)

For search/action:

Ca1 = p11p21(d1 + a1) + (p12p22 + p11p22 + p21p12)(d1 +
d12 + a2)

Ca2 = p12p22(d2 + a2) + (p11p21 + p12p21 + p22p11)(d2 +
d12 + a1)
Subtracting, we see that the ratio Ca2 − C2 6= Ca1 − C1

for the multiple target case. Thus, the subsequent action cost

can modify the optimal search strategy. Intuitively, the reason

for this is that in the multiple target case, the search strategy

can affect the likelihood of finishing the search at a given

location. The search is most likely to end at the last point

visited because targets have been gathered from all other

points. If a location has a very low subsequent action cost,

leaving it for last may be a desirable search/action strategy

even if it is not a desirable search strategy.

C. Moving Targets

For the moving target case, Theorem 1 also does not hold.

The probability of a moving target being at a given location is

dependent on when that point is visited (i.e., pi is dependent

on t yielding pi(t)). The dependence of the probability of

capture on time breaks the equality so that Ca2 − C2 6=
Ca1 − C1. For example, a target may be moving towards a

location with a very low subsequent action cost. It may be

advantageous for the searcher to move to that location in the

search/action case even if the probability of the target being

there is low compared to alternative locations.

V. ALGORITHM DESIGN

We can combine our theoretical analysis with prior work

in search to design an approximation algorithm for the

search/action problem. For a single stationary target with

undiscounted reward, we have shown (Theorem 1) that

the search and subsequent action can be solved separately.

This allows for search approximation algorithms to be used

without modification in this case.

In contrast, for discounted reward cases, it may be advanta-

geous to consider the subsequent action cost as in Equation 1.

The finite-horizon path enumeration (FHPE) algorithm has

been shown to provide high-quality, scalable results for

discounted search POMDPs [13]. The algorithm examines

all possible paths to a fixed horizon and then replans with

a the receding horizon. FHPE is particularly well-suited

to problems where maximizing short-term reward does not

conflict with maximizing long-term reward. This is often

the case during search tasks because searchers will usually

search nearby locations before searching further away.

Algorithm 1 shows an application of FHPE to the dis-

counted search/action problem. Depending on the exact

instance, the reward function J(U) can be substituted as

appropriate. For both moving and stationary targets, the

reward function is the time-truncated version of Equation 1,

which includes the cost of the subsequent action.

Algorithm 1 Finite-horizon path enumeration

Input: Single-searcher search/action problem

for All paths U to horizon d do

Calculate J(U)
end for

U ← argmaxU J(U)
while Target not found do

Execute U replanning as needed

end while

Perform action task with found target

A. Multiple Searchers

The finite-horizon approximation algorithm can be ex-

tended to multiple searchers using implicit coordination. The

multi-searcher reward function is shown in Equation 3.

J(U) =
T∑

t=0

γτP (C|∃k : Uk(t) = e(t))P (∃k : Uk(t) = e(t)),

(3)

where U(t) = [U1(t), . . . , UK(t)] is now a K-dimensional

control vector specifying the location of each searcher

(i.e., sk(t) = Uk(t)). The search/action time τ = t +
α (U1(t), . . . , UK(t)), where α(U1(t), . . . , UK(t)) is the ex-

pected time to complete the action task if the target is

found on each of vertices U1(t), . . . , UK(t) weighted by the

probability that the target is at each vertex.

Algorithm 2 gives an implicit coordination algorithm

for the search/action problem. The searchers sequentially

allocate their paths through the environment, and then si-

multaneously execute these paths. The algorithms run on the

time-unfolded graph N ′, which allows searchers to revisit

locations and for more than one searcher to be in the same

location simultaneously. Sequential allocation provides linear

scalability in the number of searchers, and gives a constant

factor approximation guarantee for nondecreasing, submodu-

lar objective functions [13]. The search/action objective func-

tion J(U) is both nondecreasing and submodular (proof is

omitted but is a straightforward corollary of prior work [13]),

which leads to a bounded approximation algorithm for the

multi-searcher search/action problem.

Algorithm 2 Implicit coordination

Input: Multi-searcher search/action problem

% V ⊆ N ′ is the set of nodes visited by searchers

% A node in N ′ is a time-stamped node of N

V ← ∅
for all searchers k do

% Uk ⊂ N ′ is a feasible path for searcher k

% Finding this argmax solves the search/action for

% searcher k

Uk ← argmaxUk
J(V ∪ Uk)

V ← V ∪ Uk

end for

while target not found do

Execute Uk for all searchers k ∈ K replanning as

needed

end while

Perform action task with found target

VI. EXPERIMENTAL RESULTS

A. Simulated Environments

To test our search/action approximation algorithm, we

set up a simulated scenario requiring both a search and

subsequent action. One or more searchers move around

an indoor environment with omnidirectional line-of-sight

sensors. The searchers must locate a stationary or moving

target and then take the target back to the starting location.

The searchers use a discounted reward metric, which means

that Theorem 1 does not apply in either the stationary or

moving cases.

We ran simulations in the two environments shown in

Figure 2. The office environment has two major cycles

corresponding to the hallways, and the museum is a highly

connected graph with many cycles. The starting location of

the target is initialized randomly, and the target’s movement

(if applicable) is a random walk. Our simulator runs in C++

in Linux on a 3.0 GHz P4 with 2 GB RAM.

We compared our approximation algorithm to two state-of-

the-art POMDP solvers: HSVI2 and SARSOP. Since these

solvers are optimized with discounted reward in mind, we

limit our experiments to this case (with arbitrarily set γ =
0.95). The POMDP solvers were given two minutes of

solving time for each instance. At this point the bounds

on solution quality were not improving. Since FHPE runs

online with a receding horizon, it did not need to precompute

a solution. Table I shows that FHPE provides solutions

competitive with the POMDP solvers in these environments.

It is important to note that the number of states in these

POMDPs (approximately 5000) is at the frontier of what

general POMDP solvers can handle. FHPE, on the other

hand, is scalable to much larger environments.

Table I also compares two versions of FHPE applied to

the search/action problem. The first version decouples search

and action by excluding the subsequent action costs in the

calculation of the search strategy. The full version of FHPE

includes subsequent action costs as in Equation 1. The results

show that, in these environments, taking into account the

subsequent action cost yields only a small improvement in

the final reward. This is somewhat contrary to our theoretical

analysis in Section IV, which shows how search and action

cannot be provably decoupled with a discounted reward

metric. However, the results show that one can “get away”

with decoupling search and action in these instances. This

is likely due to the relatively small differences between the

subsequent action costs at each location in these scenarios.

We also ran trials with multiple searchers using FHPE+SA.

The searchers move through the environment until the target

is found, and the searcher that locates the target then takes

it back to the starting cell. Figure 3 shows the results from

the multi-searcher trials. The linear scalability of FHPE+SA

easily handles five searchers in these environments. Neither

of the general POMDP solvers were able to even fit the two

searcher problem (343,000 states) in memory.

1 2 3 4 5
0

10

20

30

40

50

60

70

Number of Searchers

A
v
e

ra
g

e
 R

e
w

a
rd

Office Environment

FHPE: Moving Target

FHPE: Stationary Target

SARSOP: Moving Target

SARSOP: Stationary Target

1 2 3 4 5
0

10

20

30

40

50

Number of Searchers

A
v
e

ra
g

e
 R

e
w

a
rd

Museum Environment

FHPE: Moving Target

FHPE: Stationary Target

SARSOP: Moving Target

SARSOP: Stationary Target

1 2 3 4 5
0

10

20

30

40

50

60

Number of Searchers

A
v
e

ra
g

e
 S

te
p

s
 t

o
 C

o
m

p
le

ti
o

n

Office Environment

FHPE: Moving Target

FHPE: Stationary Target

1 2 3 4 5
0

10

20

30

40

50

60

Number of Searchers

A
v
e

ra
g

e
 S

te
p

s
 t

o
 C

o
m

p
le

ti
o

n

Museum Environment

FHPE: Moving Target

FHPE: Stationary Target

Fig. 3. SEARCH/ACTION results using FHPE and implicit coordination
with multiple searchers. Averages are over 200 trials, and error bars are
one SEM. SARSOP, a general POMDP solver, was unable to fit the two
searcher instance in memory. Top graphs show average reward (higher is
better), and bottom graphs show average steps to complete the search/action
task (lower is better).

B. Implementation on Mobile Robot

We ran search/action tests on a mobile manipulator plat-

form consisting of a Barrett anthropomorphic arm and

hand mounted on a Segway mobile base. The platform

localizes itself using AMCL Monte-Carlo sampling with

a laser rangefinder and runs using the OpenRave [14]

and Player [15] software. It carries a miniature camera,

which it uses to identify coffee mugs for grasping with the

arm/hand [1]. The system is shown in Figure 1.

The robot was given three waypoints in the environment

that may contain mugs. The optimal path between the

waypoints (w.r.t. navigation cost) was computed using an

exhaustive search. Since the navigation cost is undiscounted,

Theorem 1 applies, and we only need to consider the search

costs. The robot then proceeded to search these waypoints by

moving to them and scanning them with the camera. Upon

finding a mug, the robot would pick it up with the arm/hand

and take it back to the sink. The path of the robot through

TABLE I

SEARCH/ACTION REWARD COMPARISON (HIGHER IS BETTER) OF HSVI2, SARSOP, AND FHPE (WITH AND WITHOUT INCLUDING ACTION COST)

FOR A SINGLE SEARCHER IN TWO ENVIRONMENTS. AVERAGES ARE OVER 200 TRIALS, AND ERRORS ARE ONE SEM.

Environment (target) HSVI2 [9] SARSOP [10] FHPE (w/o action cost) FHPE (with action cost)

Office (stationary) 17.3 ± 3.3 21.3 ± 3.3 21.3 ± 1.9 22.8 ± 1.8
Museum (stationary) 14.2 ± 2.5 8.2 ± 3.0 17.5 ± 1.5 18.5 ± 1.7

Office (moving) 46.2 ± 3.8 47.3 ± 2.7 47.2 ± 1.6 47.7 ± 1.5
Museum (moving) 27.5 ± 3.6 29.9 ± 3.4 21.6 ± 1.5 22.5 ± 1.5

the office in an example trial is given in Figure 4. The video

attachment to this paper shows the robot successfully finding

a coffee mug and placing it in the sink.

Fig. 4. Map of a kitchen area within the Intel labs used for implementation
of search/action on mobile manipulator. Circle shows starting robot location,
squares show possible locations of coffee mugs, and triangle shows the
location to which the robot must move the mug. An example robot path is
shown in cyan (light grey); the mug was found in the bottom left location
in this trial.

VII. CONCLUSIONS AND FUTURE WORK

Our results have opened the door to a rich study of the

connection between search and action in mobile robotics.

We have proved that the undiscounted search/action problem

with a single stationary target can be solved by considering

the search and action components separately. For discounted

reward, multiple targets, and moving targets, on the other

hand, it can be beneficial to consider the action component

before performing the search. Drawing on this theoretical

analysis, we have designed approximation algorithms for the

search/action task with both stationary and moving targets.

We have demonstrated the performance of our algorithm

with both simulated analysis and on a physical mobile

manipulator. Our simulated results show that solving search

and action separately has only a small affect on solution

quality if the action costs are not highly disparate across the

environment. This is often the case in search and retrieval

tasks. We have also shown that our approximation algorithm

is competitive with general POMDP solvers for moderately

sized problem instances. General POMDP solvers quickly

grow intractable with multiple agents and in large envi-

ronments. In contrast, our approximation algorithm uses

a receding-horizon technique to remain scalable in large

environments, and we utilize implicit coordination to achieve

linear scalability in the number of searchers.

Short-term future work includes testing of our approxima-

tion algorithm with multiple objects and a more extensive

analysis of environments and tasks in which search and

action can be decoupled. In addition, we are interested in

developing a framework for ordering and solving multiple

queries. We hope to extend the approach presented here to

cope with such scheduling and thereby enable our system to

provide continuous assistance for daily living.

VIII. ACKNOWLEDGMENTS

We gratefully acknowledge Martin Rufli from ETH

Zurich, Casey Helfrich from Intel Research Pittsburgh, and

Mike Vande Weghe from CMU for assistance with the mobile

robot platform.

REFERENCES

[1] S. Srinivasa, D. Ferguson, M. Vande Weghe, R. Diankov, D. Berenson,
C. Helfrich, and H. Strasdat, “The Robotic Busboy: Steps Towards
Developing a Mobile Robotic Home Assistant,” in Int’l Conf. on

Intelligent Autonomous Systems, 2008.
[2] V. Kumar, D. Rus, and S. Singh, “Robot and Sensor Networks for

First Responders,” Pervasive Computing, pp. 24–33, 2004.
[3] Y. Ye and J. Tsotsos, “Sensor Planning in 3D Object Search: its for-

mulation and complexity,” in 4th Int’l Symp. on Artificial Intelligence

and Mathematics, 1996.
[4] A. Sarmiento, R. Murrieta-Cid, and S. Hutchinson, “A Multi-Robot

Strategy for Rapidly Searching a Polygonal Environment,” in Proc.

9th Ibero-American Conference on Artificial Intelligence, 2004.
[5] F. Saidi, O. Stasse, and K. Yokoi, “Active Visual Search by a Hu-

manoid Robot,” Recent Progress in Robotics: Viable Robotic Service

to Human, vol. 370, pp. 171–184, 2007.
[6] T. Parsons, “Pursuit-Evasion in a Graph,” in Theory and Applications

of Graphs, Y. Alavi and D. Lick, Eds. Springer, 1976, pp. 426–441.
[7] L. Guibas, J. Latombe, S. LaValle, D. Lin, and R. Motwani, “Visibility-

Based Pursuit-Evasion in a Polygonal Environment,” Int’l Journal of

Comp. Geometry and Applications, vol. 9, no. 5, pp. 471–494, 1999.
[8] N. Roy, G. Gordon, and S. Thrun, “Planning under Uncertainty for

Reliable Health Care Robotics,” in Proc. Int’l Conf. on Field and

Service Robotics, 2003.
[9] T. Smith, “Probabilistic Planning for Robotic Exploration,” Ph.D.

dissertation, Carnegie Mellon University, 2007.
[10] H. Kurniawati, D. Hsu, and W. S. Lee, “SARSOP: Efficient Point-

Based POMDP Planning by Approximating Optimally Reachable
Belief Spaces,” in Proc. Robotics: Science and Systems Conf., 2008.

[11] H. Nguyen, C. Anderson, A. Trevor, A. Jain, Z. Xu, and C. Kempe,
“El-e: An Assitive Robot that Fetches Objects from Flat Surfaces,”
in Proc. Human Robot Interaction, The Robotics Helpers Workshop,
2008.

[12] M. Quigley, E. Berger, and A. Ng, “STAIR: Hardware and Software
Architecture,” in Proc. AAAI Robotics Workshop, 2007.

[13] G. Hollinger and S. Singh, “Proofs and Experiments in Scalable, Near-
Optimal Search with Multiple Robots,” in Proc. Robotics: Science and

Systems Conf., 2008.
[14] R. Diankov and J. Kuffner, “OpenRAVE: A Planning Architecture for

Autonomous Robotics,” Robotics Institute, Carnegie Mellon Univer-
sity, CMU-RI-TR-08-34, Tech. Rep., 2008.

[15] B. Gerkey, R. Vaughan, and A. Howard, “The Player/Stage Project:
Tools for Multi-Robot and Distributed Sensor Systems,” in Proc. Int’l

Conf. on Advanced Robotics, 2003, pp. 317–323.

