
Potential Field Guide for Humanoid Multicontacts

Acyclic Motion Planning

Karim Bouyarmane

CNRS-UM2 LIRMM, France

CNRS-AIST JRL, Japan

Adrien Escande

CEA LIST, France

CNRS-AIST JRL, Japan

Florent Lamiraux

CNRS LAAS, France

CNRS-AIST JRL, Japan

Abderrahmane Kheddar

CNRS-UM2 LIRMM, France

CNRS-AIST JRL, Japan

Abstract—We present a motion planning algorithm that com-
putes rough trajectories used by a contact-points planner as a
guide to grow its search graph. We adapt collision-free motion
planning algorithms to plan a path within the guide space,
a submanifold of the configuration space included in the free
space in which the configurations are subject to static stability
constraint. We first discuss the definition of the guide space. Then
we detail the different techniques and ideas involved: relevant
C-space sampling for humanoid robot, task-driven projection
process, static stability test based on polyhedral convex cones
theory’s double description method. We finally present results
from our implementation of the algorithm.

I. INTRODUCTION

Contact-points planning is a motion planning approach that

aims at overcoming difficulties of cyclic gaited humanoid

motion planning in unstructured and highly constrained envi-

ronments. Examples of such planners are presented in [1] [2].

In [2] Best First Planning was adapted by growing the search

tree in the space of sets of contacts. A key element of this

contacts planner is the potential field that drives the search. It

has to be carefully chosen as the planner may get trapped in

local minima, which occur for example when we choose too

simple potential fields such as the Euclidian distance to goal.

An inappropriate potential field may also lead to the planning

of complicated paths and postures. In [3], a solution is given by

building the potential field around a rough trajectory, a contact-

points guide, that gives an approximation of the intended path

in the workspace as well as an idea of the postures that the

robot has to adopt along this path. This trajectory was given

manually as an input to the planner. Our aim in this work is

to provide such a trajectory automatically, thus giving more

autonomy to the robot.

II. SOLUTION

The main idea is to adapt existing collision-free motion

planning algorithms to plan the contact-points guide.

A. General algorithm

The collision-free motion planning problem can be formal-

ized as follows (adapted from [4]):

Formulation 1 (collision-free motion planning problem).

• a world W = R
3.

• an obstacle region O ⊂ W .

• a robot R defined in W as a kinematic tree of m joints

J1,J2, . . . ,Jm to which rigid bodies B1,B2, . . . ,Bm are

attached.

• the configuration space (also called C-space) C defined

as the set of all possible transformations that may be

applied to the robot. The image of the robot R in the

configuration q is denoted R(q). From C we derive

Cfree = {q ∈ C | R(q) ∩ O = ∅} and Cobs = C \ Cfree.

• a query pair (qI , qG) ∈ C2
free of initial and goal configu-

rations.

• an algorithm must compute a continuous path τ : [0, 1]→
Cfree such that τ(0) = qI and τ(1) = qG.

Two classes of methods exist so far to address this prob-

lem [4]: combinatorial motion planning and sampling-based

motion planning. The difference between the two lies in that

the latter avoids explicit construction of Cobs. Instead it uses

a sampling of the C-space to grow a discrete graph G(V, E),
called a roadmap, of which every vertex v ∈ V represents a

configuration q ∈ Cfree and every edge e ∈ E represents a

continous path in Cfree, that progressively covers Cfree. The

search for the path is then conducted into the constructed

roadmap that supposedly represents an approximation of the

connectivity of Cfree. Different instantiations of sampling-

based motion planning as a general approach exist [5] [6].

Algorithm 1 gives the general frame of the one we take as

a starting point for our study, keeping in mind that it is

possible to choose any other instantiation modulo adequate

modifications.

Algorithm 1 sampling-based collision-free motion planning.

1: initialize G(V ← {qI , qG}, E ← ∅)
2: while no path found in G do

3: sample a random configuration qs in C
4: if qs ∈ Cfree then

5: for all qV ∈ V ∩ NEIGHBOURHOOD(qs) do

6: if the direct path τd(qs, qV ) lies in Cfree then

7: V.add(qs) and E.add(τd(qs, qV ))
8: end if

9: end for

10: end if

11: end while

Now we would like to adapt algorithm 1 in order to plan a



qI

qG

Cfree

Cobs
Cobs

Cobs

(a) Collision-free motion planning.

qI

qG

Cguide

Cfree

Cobs
Cobs

Cobs

(b) Contacts guide planning.

qI

qG

Cfree

Cobs
Cobs

Cobs

(c) Contact-points planning.

Fig. 1. Illustration of the problem.

contact-points guide. The problem is that the path yielded by

a contact-points planner lies on the boundary of Cobs: ∂Cobs.

Simply replacing Cfree with ∂Cobs in algorithm 1 would be a

failing strategy as the measure of ∂Cobs is equal to zero . This

means that the rejection rate at line 4 would be equal to 1. The

second problem with this strategy concerns the linear direct

paths in line 6, as ∂Cobs is generally a non linear submanifold,

a linear edge joining two of its elements will almost always

be completely outside the submanifold.

Our solution is to consider a submanifold of C of non-zero

measure, we label it Cguide, that can be visually represented

as a layer wrapping each connected component of ∂Cobs. The

idea, to some extent similar to [7], is to sample configurations

“near” the obstacles; however, work in [7] focuses on 6D

rigid robots, whereas our primary targets are polyarticulated

humanoid robots. We will now detail our definition of Cguide.

A contact situation between a body Bi of the robot and the

obstacle region O is normally defined as

∂Bi ∩ ∂O 6= ∅ and int(Bi) ∩ int(O) = ∅

One way of adding a dimension, and thus creating a “volume”,

to the submanifold Cguide could be to consider the body Bi as

in contact with O if d(Bi,O) < εcontact, which is a positive

fixed threshold. d denotes the Euclidian distance.

Definition 1 (body-obstacle contact situation). A rigid body

B is in contact with an obstacle region O if

0 < d(B,O) < εcontact

In this situation, we denote by AB and AO respectively the

closest points on the body and on the obstacle and by n =
−−−−→
AOAB/‖

−−−−→
AOAB‖ the normal of the contact. The robot R is in

contact in configuration q ∈ Cfree if at least one of its bodies

is in contact in configuration q.

We can now define Cguide as

Cguide = {q ∈ Cfree | R is in contact in configuration q}

and then plan a collision-free path in Cguide using algorithm 1

and replacing in it all the occurrences of Cfree by Cguide. This

would produce a path that could be tricky to follow by the

contact-points planner [3] as the latter will have to compute

statically stable configurations along this path, and may need

to stray significantly from the given path to find these stable

configurations. So we have to refine the definition of Cguide to

take static stability into account.

Considering the laws of rigid body dynamics applied to R
and assuming that there are no limits to the torques we can

apply to the robot joints (which is only an approximation), the

static stability condition is simply written
{

∑

f∈F f + mg = 0
∑

f∈F MO(f) + MO(mg) = 0

where F is the set of all contact forces applied to the robot,

and MO is the moment of a force in a point O ∈ R
3. m is

the mass of the robot and g the gravity vector. For simplicity

we have modeled any surface contact as a discrete set of

punctual contacts applied at chosen points distributed over the

contact surface (we intentionally do not make it explicit in

our formulas for readability’s sake). Each contact force f ∈ F
applied on the robot at a point A ∈ ∂R with a normal n

lies in a friction cone CA,n,θ, θ being the angle of the cone

that depends on the friction coefficient between the body and

the obstacle, A is the apex of the cone, and n defines the

revolution axis of the cone.

Definition 2 (static stability situation). The robot R placed in

a configuration q ∈ Cfree is statically stable if

∀i ∈ I(q), ∃ fi ∈ CABi
,ni,θi

,

s.t.

{

∑

i∈I(q) fi + mg = 0
∑

i∈I(q) MO(fi) + MO(mg) = 0

where

I(q) =
{

i ∈ {1, . . . , m} | 0 < d(Bi(q),O) < εcontact

}

We can now introduce our new definition of Cguide as

Cguide = {q ∈ Cfree | R is statically stable in configuration q}

and once again try to adapt algorithm 1. This is still not

enough, as the rejection rate of our sampling would still be

very high. This is the reason why we have decided to split the

sampling procedure into two distinct phases: the sampling of

a more or less uniform random configuration qs in C, followed



by a projection process of qs to try to make it fit inside Cguide.

This projection process is for now only applied on the sampled

configurations, and on some discretization points along the

linear direct path. There is no guaranty, however, that the

whole continuous direct path is inside Cguide.

Finally, we get algorithm 2, which is the adaptation of

algorithm 1 taking into account the previously discussed

points. p : Cfree −→ Cguide denotes the projection function.

Algorithm 2 contact-points guide planning

1: initialize G(V ← {qI , qG}, E ← ∅)
2: while no path found in G do

3: sample a random configuration qs in C
4: if qs ∈ Cfree then

5: apply projection qp = p(qs) ∈ Cguide

6: for all qV ∈ V ∩ NEIGHBOURHOOD(qp) do

7: if (a discretization of) τd(qp, qV ) lies in Cguide

then

8: V.add(qp) and E.add(τd(qp, qV ))
9: end if

10: end for

11: end if

12: end while

We will now get into the detail of the different steps of

execution of algorithm 2, especially the lines 3 and 5.

B. Sampling random configurations

In this section we detail line 3 of algorithm 2.

Our humanoid robot R is represented as a kinematic tree of

m joints J1, . . . ,Jm . The root joint J1 is a six-dimensional

free flyer that evolves in the C-space R
3 × SO(3), or, if

the translations are bounded, [xmin, xmax] × [ymin, ymax] ×
[zmin, zmax]×SO(3). The remaining joints are revolute joints

yielding the C-space
∏m

i=2[θi,min, θi,max]. The total C-space

is consequently

C = R
3 × SO(3)×

m
∏

i=2

[θi,min, θi,max]

that we can write in a more expressive way as

C = Cposition × Corientation × Cposture

A random C-space variable Q is as such a vector

of three independent random C-space variables Q =
(Qposition, Qorientation, Qposture).

1) Position sampling: Qposition can be either a uniform

random variable if the workspace W is bounded or a spatial

Gaussian random variable otherwise.

2) Orientation sampling: For the orientation we would

like to bias the sampling in order to favor some interesting

orientations for a humanoid robot, such as the standing-up

orientation for a walk, the laying-down orientation for a crawl,

or a slightly front-leant orientation for a climb. SO(3) being

homeomorphic to the unit quaternion sphere S
3, we need a

random variable that looks like a Gaussian distribution on the

sphere S
3 around one of its points q0 that would represent one

of the orientations above. The Von Mises - Fisher distribu-

tion [8] achieves this very purpose. Given a mean unit vector

q0 and a concentration parameter κ ∈ R
+, the probability

density function of the Von Mises-Fisher distribution on the

sphere S
p−1 ⊂ R

p is

fq0,κ(q) = Cp(κ) exp
(

κqT
0 q

)

Cp(κ) is a normalization constant

Cp(κ) =
κp/2−1

(2π)p/2Ip/2−1(κ)

where Iv denotes the modified Bessel function of the first kind

and order v. The parameter κ controls the concentration of the

distribution around q0. The bigger κ the more concentrated

the distribution. κ = 0 yields a uniform distribution over

the sphere. An algorithm for simulating a Von Mises-Fisher

random variable is given in [9].

3) Posture sampling: Now we want to sample the posture

space Cposture =
∏m

i=2[θi,min, θi,max]. We could immediately

choose for Qposture a uniform random variable. However, this

would produce postures that once again are not interesting

enough for a humanoid robot, especially when the dimension

m − 1 of this manifold is relatively high (m − 1 = 30 in

our humanoid platform). To solve this problem we choose

to reduce the dimensionality of Cposture by sampling in the

affine space generated by the standing-up posture qkey
0

and a

certain number of key postures qkey
1
, . . . , qkeyn

. These latter

postures should be relevant for a humanoid robot and could

represent for example the sitting-down posture, the four-legged

posture, etc. To remain within the joints limits, we consider

the bounded space

Cposture =

{

qkey
0
+

n
∑

i=1

λi(qkeyi
− qkey

0
) | (λi)i ∈ (Bn

k )+

}

where (Bn
k )+ is the positive quadrant of the unit ball of

dimension n for the k-norm ‖.‖k

(Bn
k )+ =

{

(λi)i ∈ [0, 1]n |
n

∑

i=1

λk
i ≤ 1

}

that we sample uniformly.

C. Projection process

We detail now line 5 of algorithm 2. What we mean by

projection here is an operation that tries to bring a given con-

figuration sample in Cfree inside Cguide. The idea of projection

was introduced in [10] and further investigated in [11]. The

solution we choose is to use a stack of tasks solver based on

generalized inverse kinematics called hppGik and presented

in [12]. A task is a function f : C −→ R that we would like

to bring to zero, i.e to solve f(q) = 0, q ∈ C. Suppose we have

sampled a random configuration qs. From this configuration we

want to compute a statically stable configuration, thus we have

to create contacts with the neighboring obstacles, given that

the more contacts we create the more stable the configuration



O

ti1ti3

ti2

ti4

Bi1

Bi2Bi3

Bi4

(a) Initial configuration. (b) First iteration. (c) Second iteration. (d) Final configuration statically sta-
ble.

Fig. 2. Illustration of the projection process.

is likely to be. On the other hand, the more contacts we

create the more we deform the original posture and reduce

the mobility for the next posture, this is why we should create

the “minimum” number of contacts to ensure the stability. To

create a contact between a body B and the obstacle region O
we need to bring it to a distance closer than εcontact. Let us

define the goal point Agoal as the point translated from AO

by a εcontact/2 distance following n, and the goal plan Pgoal

as the plan normal to n in Agoal. The task that we want to

formalise is “bring the point AB in the plan Pgoal”, i.e. bring

to 0 the corresponding task function

f(q) = (
−−−−−−−→
AgoalAB(q)|n)

where (.|.) denotes the Euclidian scalar product. To solve the

task f(q) = 0 we implent the Newton’s method for finding

zeros of a function (the same idea is suggested [1]). To do so

we linearize f around a start configuration q0 as

f(q) ≃ f(q0) +
∂f

∂q
(q0).dq

where dq = q − q0 and then we solve the linear system

f(q0) +
∂f

∂q
(q0).dq = 0

using generalized inverse kinematics to compute the pseudo-

inverse of J(q0) = ∂f
∂q (q0) that we denote J(q0)

†.The solution

q1 of the system is thus given by

q1 = q0 − J(q0)
†f(q0)

The Newton’s method consists in iterating again starting now

from q1, meaning that we construct a sequence (qn)n∈N

recursively as

qn+1 = qn − J(qn)†f(qn)

that supposedly converges to the solution. However, in our

task of bringing the body close to the obstacle, we do not

really need to converge to the exact solution, but rather to

converge towards a static stability situation, even though this

latter is far from the exact solution. This is why we have

chosen the Newton’s method, as we can stop its execution

after each single iteration to test the static stability of the

intermediate solutions, and can reach the static stability after

few iterations. Now we would like to bring not only one body

B close to the obstacle region O, but the maximum number

of bodies B1, . . . ,Bm to O, this means that we need to solve

the system of equations:

m
⋂

i=1

fi(q) = 0

or the linearized version
m
⋂

i=1

fi(q0) +
∂fi

∂q
(q0)dq = 0

The stack of tasks solver hppGik [12] allows us to solve

such a system with priorities, meaning that it solves the first

equation, then it tries to solve the second equation at best while

remaining in the solution space of the first equation, and so

on. The priority we choose is the distance to obstacle, as we

try to bring closer with the highest priority the closest body

to the obstacles. Let i1, . . . , im ∈ {1, . . . , m} be the indexes

of the bodies sorted in increasing order of distance to O, i.e:

d(Bi1 ,O) ≤ d(Bi2 ,O) ≤ . . . ≤ d(Bim
,O)

The hppGik solver solves, in the order of priority, the following

stack of tasks:
m
⋂

j=1

tj : fij
(q0) +

∂fij

∂q
(q0)dq = 0

where tj is the task of priority j.

Finally we give algorithm 3 of the projection process, in

which we introduce one new task per iteration in order to

deform as little as possible the posture. We also stop the

process after a maximum number of iterations, after which

we discard the current configuration and we start again the

process with a new qs according to algorithm 2.

Algorithm 3 projection process

1: sample a random configuration qs

2: set q0 ← qs

3: COUNTER← 1
4: while q0 is not statically stable and COUNTER <

MAX ITERATIONS do

5: sort the bodies d(Bi1 ,O) ≤ . . . ≤ d(Bim
,O)

6: q0 ← solution of the stack of tasks (t1, . . . , tCOUNTER)
7: COUNTER← COUNTER + 1
8: end while

9: return q0



We will now get into the detail of line 4 of algorithm 3, in

which we have to test the static stability of a configuration.

D. Testing the static stability

Suppose we have the robot R in configuration q and we

want to check whether or not it is statically stable in this

configuration, according to definition 2. In order to get a linear

system, we need to consider the modeling of each friction cone

CABi
,ni,θi

as discrete polyhedral cone with a finite number of

generators ui,1, . . . ,ui,ni

CABi
,ni,θi

= C (ui,1, . . . ,ui,ni
)

=
{

ni
∑

j=1

λjui,j / λ1, . . . , λni
∈ R

+
}

which is the set of all non negative linear combinations of the

generators. With this modeling, we have

fi ∈ CABi
,ni,θi

⇐⇒ ∃ (λi,j)j=1..ni
∈

(

R
+
)ni

, fi =

ni
∑

j=1

λi,jui,j

allowing us to rewrite the static stability condition as a linear

problem

∃ (λi,j) i∈I(q)
j=1..ni

∈
∏

i∈I(q)

(

R
+
)ni

,

s.t.







∑

i∈I(q)
j=1..ni

λi,jui,j + mg = 0

∑

i∈I(q)
j=1..ni

MO(λi,jui,j) + MO(mg) = 0

The system of two 3-dimensional equations can be written as

a single 6-dimensional equation, putting

ai,j =

(

ui,j

MO(ui,j)

)

and v = −

(

mg

MO(mg)

)

the static stability condition then becomes

∃ (λi,j) i∈I(q)
j=1..ni

∈
∏

i∈I(q)

(

R
+
)ni

, s.t.
∑

i∈I(q)
j=1..ni

λi,jai,j = v

which can be read as the membership of v in the cone

generated by the ai,j vectors

v ∈ C (ai,j)i,j

To solve this system, we used some results that come from

the polyhedral convex cone theory that we detail hereafter.

Polyhedral convex cone theory: Let C (a1, . . . ,am) be the

cone generated by a1, . . . ,am in R
n

C (a1, . . . ,am) =
{

m
∑

j=1

λjaj | λ1, . . . , λm ∈ R
+
}

the dual cone (also called the polar cone) C p is defined as

C
p(a1, . . . ,am) =

{

x ∈ R
n | ∀i ∈ {1, . . . , m} xTai ≤ 0

}

Minkowski [13] demonstrated that the polar cone is a cone

too, i.e. ∃ b1, . . . ,bk ∈ R
n such that

C
p(a1, . . . ,am) = C (b1, . . . ,bk)

The Farkas lemma [14] states that (C p)
p

= C i.e.

C (a1, . . . ,am) = C
p(b1, . . . ,bk)

this result allows us to test the membership of a vector x ∈ R
n

in the dual of the dual cone instead of the cone itself

x ∈ C (a1, . . . ,am)⇐⇒ x ∈ C
p(b1, . . . ,bk)

or

∃(λj)j ∈ (R+)m x =

m
∑

j=1

λjaj ⇐⇒ ∀i ∈ {1, . . . , k} xT bi ≤ 0

The second member of this latter equivalence is much easier

to check than the first one, if we could compute the vectors

b1, . . . ,bk. The Motzkin’s double description algorithm [15]

achieves this. We implemented a variation of the original al-

gorithm, proposed by Padberg [16], that allows us to compute

a minimal set of generators for the dual cone.

III. RESULTS

We implemented the ideas presented in the previous section

within the HPP framework using KineoCAM’s software Kineo

Path Planner and KineoWorks as a core collision-free motion

planning and collision detection module. The model we used

for the humanoid robot is HRP-2 [17] which has 36 degrees

of freedom (including the free-flyer). The collision-free path

planning algorithms we choose are either basic PRM [5] or

bidirectional RRT [6].

The main scenario we considered is the highly constrained

one demonstrated in [3] which consists in standing up from

a chair and going away from a table. The robot is sitting on

the chair in initial configuration and is standing by the table

at final configuration. The guide obtained is shown in figure 3

while the contacts points plan is illustrated in figure 4. Using

the distance to goal as a potential function the robot ends

up climbing the table and the contacts planning stops after

having consumed all the memory resource of the computer.

With the provided guide the contacts planner finds the solution

in approximately 3h30min on a standard Pentium IV system,

after approximately 10min of computation for the guide.

Fig. 3. Guide planning for the out-of-table-and-chair scenario.

We also tested the guide planner on other scenarios on

which we have not yet tested the contacts planner, simply to

demonstrate the ability of the guide planner of going through

different situations (Figs. 5a and 5b).



Fig. 4. Contacts planning for the out-of-table-and-chair scenario following the guide provided by the contacts guide planner.

(a) Over the sofa.

(b) Through the tunnel.

Fig. 5. Different scenarios.

Although the gain in computing time that we achieve

at the contact-points planner’s level is theoretically infinite,

computing time at the contacts-guide planner’s level remains

relatively high for scenarios such as 5a and 5b (a few hours).

The time is consumed both on distance computation and stack

of tasks solving which are solicited at each iteration of the

algorithm.

IV. CONCLUSION

Improvements of our contacts guide planner are still possi-

ble and need to be considered, especially regarding line 7 of

algorithm 2. Ensuring that the continuous direct path linking

two configurations in guide space lies in the guide space

remains an unanswered question in our work. We also still

need to work on the linking method that computes the direct

path between two guide space’s configurations, and which

is for now a linear direct path linking method. We added a

dimension and thus “volume” to Cguide in order to pass the

test line 7 with higher probability; however, a better solution

would be to apply a projection to the whole linear direct path

in order to make it fit inside Cguide. These are all questions

we plan to investigate in future work.

ACKNOWLEDGMENT

This work is partially supported by grants from the

ROBOT@CWE EU CEC project, Contract No. 34002 under

the 6th Research program WWW.ROBOT-AT-CWE.EU and by

grants from the ImmerSence EU CEC project, Contract No.

27141 WWW.IMMERSENCE.INFO (FET-Presence) under FP6.

REFERENCES

[1] K. Hauser, T. Bretl, and J.-C. Latombe, “Non-gaited humanoid loco-
motion planning,” in IEEE-RAS International Conference on Humanoid

Robots, 2005, pp. 7–12.
[2] A. Escande, A. Kheddar, and S. Miossec, “Planning support contact-

points for humanoid robots and experiments on HRP-2,” in IEEE/RSJ

International Conference on Intelligent Robots and Systems, 2006, pp.
2974–2979.

[3] A. Escande, A. Kheddar, S. Miossec, and S. Garsault, “Planning support
contact-points for acyclic motions and experiments on HRP-2,” in
International Symposium on Experimental Robotics, 2008.

[4] S. M. LaValle, Planning Algorithms. Cambridge University Press, 2006.
[5] L. E. Kavraki, P. Svetska, J. C. Latombe, and M. H. Overmars, “Prob-

abilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE Transactions on Robotics and Automation, vol. 12, no. 4,
pp. 566–580, June 1996.

[6] J. J. Kuffner and S. M. LaValle, “RRT-connect: An efficient approach
to single-query path planning,” in IEEE International Conference on
Robotics and Automation, 2000, pp. 995–1001.

[7] N. M. Amato, O. B. Bayazit, C. L. K. Dale, C. Jones, and D. Vallejo,
“OBPRM: An obstacle-based PRM for 3D workspaces,” in Workshop
on Algorithmic Foundations of Robotics, 1998, pp. 155–168.

[8] K. V. Mardia and P. E. Jupp, Directional Statistics. Wiley, 2000.
[9] A. T. A. Wood, “Simulation of the von mises fisher distribution,”

Communications in statistics. Simulation and computation, vol. 23,
no. 1, pp. 157–164, 1994.

[10] J. Cortes, T. Simeon, and J. P. Laumond, “A random loop generator for
planning the motions of closed kinematic chains using PRM methods,”
in IEEE International Conference on Robotics and Automation, 2002,
pp. 2141–2146.

[11] M. Stillman, “Task constrained motion planning in robot joint space,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems,
2007, pp. 3074–3081.

[12] E. Yoshida, O. Kanoun, C. Esteves-Jaramillo, and J. P. Laumond,
“Task-driven support polygon reshaping for humanoids,” in IEEE-RAS

International Conference on Humanoid Robots, 2006, pp. 208–213.
[13] H. Minkowski, “Theorie der konvexen korpern, insbesonder der begrun-

dung ihres oberflchenbegriffs,” Gesammelte Abhandlungen, vol. 2, pp.
131–229, 1911.

[14] J. Farkas, “Uber der einfachen ungleichungen,” Journal fuer die Reine

und Angewandte Mathematik, vol. 124, pp. 1–27, 1902.
[15] T. S. Motzkin, H. Raiffa, G. L. Thomson, and R. M. Thrall, “The double

description method,” Contributions to theory of games, vol. 2, pp. 51–73,
1953.

[16] M. W. Padberg, Linear Optimization and Extensions, 2nd ed. Springer,
1999.

[17] K. Kaneko, F. Kanehiro, S. Kajita, H. Hirukawa, T. Kawasaki, M. Hi-
rata, K. Akachi, and T. Isozumi, “Humanoid robot HRP-2,” in IEEE

International Conference on Robotics and Automation, 2004, pp. 1083–
1090.


