Adaptive Expert Systems for Indirect Coverage Control

Greg von Pless and Zack Butler
Dept. of Computer Science
Rochester Inst. of Technology

herrvp@gmail.com,

Abstract— Herds of livestock, when left to their own devices,
will forage for food in predictable patterns, and will often
overgraze preferred areas while leaving other areas untouched.
The field of grazing management looks to improve the efficiency
of land use by moving the animals through different pastures at
regular intervals, akin to coverage algorithms used in robotics
but with non-uniform coverage and additional constraints due
to the animals’ natural behaviors. The knowledge of the field
of grazing management is largely in the hands of ranchers and
other domain experts, and as such has not been the subject of
much computational study. In this work, we have created novel
learning techniques for expert systems that use both off-line and
on-line learning to generate efficient performance. The rules of
the expert systems are initially developed using an evolutionary
algorithm, and after deployment, an adaptive algorithm tracks
the state of the system and updates rule weights to improve
both coverage efficiency and animal stress levels. We present
a series of results based on increasingly complex versions of
simulated herd models that show improvements over uncon-
strained motion in each case, and suggest how the algorithm
can apply to robotic coverage problems.

I. INTRODUCTION

Rule-based expert systems are used in many domains to
aid decision making based on rules derived from human
knowledge about the domain. By using rules of the form “if
[a given state is observed], then [do something]”, the basic
decision process of a human is mimicked and as such, these
systems can be easily constructed by a domain expert. To use
a system of this type, the current state of the environment is
assessed with respect to the rules to arrive at a decision. In
systems with an ongoing interaction with the physical world,
the rules must take into account the relevant conditions, and
must be general enough to handle the full range of states
that may be encountered. To develop such systems, instead
of relying solely on domain experts, it may be possible to use
machine learning techniques to improve the rule base. This
requires some way of assessing the quality of the decisions
made by the system, so that the learning algorithm can judge
whether and how to change the rule base.

In this work, we have developed new learning techniques
for expert systems, applied to a coverage problem in the
domain of grazing management. Traditionally, a herd of
livestock is left to its own devices within a large fenced
paddock, and will graze preferred areas, a simple technique
known as continuous grazing. To improve the utilization of
available land, the technique of intensive grazing involves
moving the animals through a larger number of small pad-
docks, much like grid-based coverage algorithms used in

zjblcs.rit.edu

robotics. Intensive grazing, however, requires a large amount
of labor and fencing infrastructure compared to traditional
methods. Recent results with virtual fences [4] suggest
that computational techniques (hardware and software) can
partially replace both infrastructure and labor. Virtual fences
consist of collar devices placed on each animal that use GPS
and computation to deliver stimuli when the animal is leaving
the desired paddock area. On-board computation allows the
fences to be automatically moved over time in a way useful
for intensive grazing.

To determine when and how to move the animals through
their environment, we have created a novel expert system
framework under which rule sets are learned from experience
(currently via simulations), both off-line and on-line. In the
off-line portion, an evolutionary algorithm is used to develop
useful rules for the expert system. Once the expert system
is brought on-line, the weights of the rules are adjusted to
enforce those which lead to better results. In this way, the
system can adapt to the specific nature of a group in the
particular environment.

A. Background / Related Work

A large body of prior work exists in the fields of both evo-
lutionary expert systems and adaptive expert systems. Many
methods of evolving expert systems have been developed,
operating with various levels of complexity. We will briefly
outline the nature of the expert system we will use and
describe some relevant past research.

In a rule-based expert system, a set of rules is used, along
with the current environment state, to perform inferencing
and generate an output or a decision. Generally, each rule is
of the form: if x, then y; in a rule of this form, x is referred
to as the antecedent, and y as the consequent. Fuzzy expert
systems make use of fuzzy sets in order to express rules at
a higher level. Rules in a fuzzy expert system are generally
of the form: if x is in A, then y is in B, where A and B
are fuzzy sets with pre-defined membership functions. The
degree to which y is in B is determined, through a process
known as defuzzification, using the degree to which x is in A.
In addition to generating the set of rules, the developer must
also specify the fuzzy membership functions. The advantage
of this approach over simple expert systems is that the rules
read more like a person’s reasoning. For instance, instead of
a rule such as “If it is less than 40°F, then I should cover
90% of my body” the fuzzy system can use a rule such as
“If it is cold, then I should dress warmly.”

Several groups have looked into optimization of expert
systems in different ways, either adjustment of parameters
or development of completely new rules. For example,
Perneel et al. propose a manner for performing parameter
optimization on a tiered system [7], in which optimization is
performed over the overall weighting of the tiers (priorities)
of the rules, the weighting of the rules within the tiers,
and the parameters defining the fuzzy membership functions.
From the other direction, the goal of Drabarek et al. [5]
was to evolve new rules from scratch for an expert system
capable of performing diagnostics on a radar transmitter.
Their chromosome consists of the rule antecedent and the
rule consequent. The antecedent is a vector of integers
representing a possible state of components in the system,
and the consequent is a vector of integers representing which
component should be checked. The whole chromosome is the
concatenation of the antecedent part and the consequent part.
An important component of both of these genetic algorithms
is the calculation of fitness: how does one determine if a
given rule weighting is good? In [7], a learning database
is used that consists of a set of decision problems paired
with desired decisions. In [5], a set of heuristics is used to
determine if a given rule is acceptable. In our solution, we do
not assume any “correct” decisions are known. Instead, the
rule base is executed in simulation, and fitness is determined
by metrics related to the final outcome rather than the
decisions made by the expert system or the rules themselves.

Automated learning of general rules and fuzzy member-
ship functions together is harder due to the size of the
combined search space, but several approaches have been
investigated. Amaral et al. use a serial approach: first, rules
are evolved; then, memberships are evolved [2]. Separate
genetic operators and fitness functions are required for each
stage of the process in this case. In contrast, Akbarzadeh-T et
al. propose a co-evolutionary approach to evolving fuzzy sys-
tems, wherein the rules are evolved via genetic programming,
and the memberships are evolved by a genetic algorithm [1].
Here, search space complexity is lessened through the use of
a binding matrix, which determines which rule sets combine
with which membership function sets (not all combinations
are tried). This method was largely successful on their test
domain, and outperformed both a static expert system and an
expert system consisting of uniform membership functions
and rules evolved using genetic programming. Our solution
is similar in intent, but uses a set of genetic operators that
can modify the rule base and/or membership functions at the
same time, and without requiring genetic repair.

Finally, some work has also taken place in the area of
adaptive expert systems, in which rules are updated online to
take into account new knowledge gained during execution.
For example, adaptive-network-based fuzzy inference sys-
tems (ANFIS) [6] use artificial neural networks to learn both
rules and membership functions based on desired decisions.
As with most neural networks, it can be used offline or online
to update as more information is obtained. However it does
require “correct” decisions to use as training data, which are
not available as such in our system.

II. ALGORITHM DESIGN

The automated grazing management solution is comprised
of three parts: the coverage algorithm, which uses the expert
system to perform grazing management, the evolutionary
algorithm, which is used to learn a good expert system given
a fitness metric, and the adaptation algorithm that updates
the rules during operation. The evolutionary algorithm and
on-line expert system adaptation algorithm complement one
another by performing global and local learning and adjust-
ment, respectively. The evolutionary algorithm operates on a
metric supplied at the end of testing, representing the overall
performance of the system; the on-line adaptation algorithm
operates throughout testing, making adjustments to the rules
based on observed cause-effect relationships while it runs.

A. Coverage Overview

The technique used to move the herd throughout their
environment is inspired by the indirect coverage algorithm
described by Pirzadeh and Snyder [8]. In indirect coverage,
the environment is split into a grid. The number of visits to
each cell is stored; when deciding which cell to visit from
the current one, the neighboring cell with the fewest total
visits is chosen. Eventually, the whole environment will be
visited at least once. Our algorithm likewise splits the field
into a grid of large cells (each cell should be large enough
to allow the herd to graze for a while before they must be
forced to move), and keeps the animals within one cell using
four virtual fences deployed along the edges of the current
cell, each having infinite length. At a pre-defined interval,
an expert system is used to calculate a score for the current
cell and each cell within the current cell’s 4-neighborhood.
If the current cell’s score is highest, then nothing is done;
otherwise, the herd is moved to the cell with the highest score
by slowly moving the locations of the virtual fences. This
process is repeated indefinitely to move the herd throughout
the environment.

The expert system itself consists of three parts: the rule set,
the fuzzy membership functions, and an adaptation threshold
value 6. The rules are used to calculate a score for a cell,
as detailed below. Fuzzy membership functions are used to
determine the extent to which the cell’s raw data belong to
the variables described in Table II.

The expert system’s rules are all of the form “if expression
then y,” where y is a scalar amount to add (or subtract) from
the cell’s total score when expression evaluates to true for
that cell. The expression is a fuzzy expression composed of
operators and operands. The simplest type of expression is a
fuzzy membership query, such as “If VEGETATION is LOW”,
but these simple expressions can be combined to make more
complicated expressions. The rules are naturally represented
as trees, with operands at the leaves and operators at the root
and other nodes. Table I describes the possible operators and
Table II describes the fuzzy variables used in our system.

Three trapezoidal membership functions are stored for
each variable, defining that variable’s fuzzy membership in
the sets LOW, MED, and HI. The only limitations imposed
upon the definition of these functions are that the LOW

Operator | Syntax | Evaluation

and exprl and expr2 | min (exprl, expr2)
or exprl or expr2 max (exprl, expr2)
not not expr 1 — expr

current-cell | current-cell 1 if the cell being processed is the
current cell, 0 otherwise.

1 if the cell being processed is
directly reachable from the current

cell, O otherwise.

TABLE I
OPERATORS FOUND IN EXPERT SYSTEM RULES.

reachable reachable

Variable | Description

VEGETATION The mean vegetation value for the cell.

WATER The percentage of the cell consisting of water.

OBSTACLES The percentage of the cell that is impassable.

EVENNESS The difference in elevation between the highest and
lowest points in the cell, expressed as a percentage
of the maximum possible difference.

HAPPINESS Perceived happiness level of the cattle in the cell
based on the number of shocks recorded in the cell
for the given time period.

CELL-AGE How long this cell has been the current cell, or how
long it has been since this cell was the current cell.

LINEARITY How linear the path taken by the algorithm has been.

HERD-DIST The ratio of the distance the herd has moved within
a recent time interval to the maximum distance
possible during the interval.

TABLE 11
VARIABLES USED IN EXPERT SYSTEM RULES.

and HI sets may not overlap, and that for an input =z,
trow () + tmep () + e () = 1. This is accomplished
by using a vector of increasing x values for the corners of
the trapezoids. The membership thresholds are set during the
evolutionary process. An example is shown in Fig. 1.

B. Expert System Evolution

To create a useful set of rules for the expert system,
the overall approach is a fairly standard genetic algorithm.
In our framework, an entire rule set is the gene to be
evolved, and we use specialized crossover and mutation
operators to ensure that all resultant genes represent valid
systems. Fitness of a rule set is calculated through simulation
as described below. We start with a small set of hand-
made expert systems and run these through a number of
generations until we detect convergence of fitness; within
each generation individuals are selected, reproduced with
crossover, and potentially mutated.

Specifically, a gene contains all the components of the

’
R
;o=
i
.8

) 0.21 0.45 0.

Fig. 1. Fuzzy membership functions corresponding to the array M =
[0,0.21,0.46,0.8,0.99, 1] — these values were created as the memberships
for EVENNESS in Experiment 2.

expert system as listed above. Each rule is composed of two
parts: the antecedent and the consequent. The antecedent is
an expression containing operators and operands; since an
operand may be an expression in and of itself, the antecedent
is represented by a tree, as is generally done in genetic
programming. The consequent is a scalar value, and so is
stored as such. The genotype maintains a set of pairings of
antecedent trees and consequent values to represent the rule
set. The membership functions are a vector of floating-point
values, and the threshold 6 a single floating-point value.

Crossover is performed separately on rule sets and mem-
bership functions; when two genes undergo crossover, both
their rules and membership functions are affected. For the
rule sets, 1-point crossover is used at the set level (i.e., the
first n rules are kept, and the remainder are swapped with the
other parent, noting that different rule sets may be of different
size). Swapping of parts of rules occurs during mutation.
1-point crossover is also used for membership functions;
however, the only allowable cut-points are those occurring
between individual functions. This limitation prevents the
need for post-crossover genetic repair, because, within a
specific function definition, the function parameters must be
non-decreasing. Finally, the adaptive 6 threshold undergoes
1-point crossover at the bit level.

For mutation, we implemented several domain-specific
operations, each of which changes a single gene (rule set):

o New-Rule: create a new rule by randomly generating a

rule tree from the operators and operands available.

o Delete-Rule: delete a randomly-chosen rule.

o Replace-Rule: replace a randomly-chosen rule with a

new randomly generated rule.

o Swap-Subtrees: swap subtrees of two different rules.

o Mutate-Consequent: set the consequent of a randomly

chosen rule to a new random value between -4 and 4.
o Mutate-Theta: alter one bit in 6.
« Replace-Membership: replace a membership function
vector with a new one.
At each generation, for each member of the population, one
of these functions is executed with low probability.

To determine the fitness of a particular gene, we simulate
using the rules to control a herd of animals. The simulator
was developed for previous work [4] and uses a potential-
field-based method to determine animal behavior. Animals
are generally attracted to the rest of the herd while repulsive
forces prevent them from clustering too tightly. Contact with
a virtual fence results in sharp turns and stress, which in turn
causes higher speed motion for a short time, as evidenced by
physical experiments [3]. Additional behavioral factors such
as differing levels of vegetation, thirst and elevation (animals
prefer to travel at constant elevation rather than up and down)
are also included. Our experiments included runs with and
without these factors as described below. In all cases, we run
a simulation of 150 hours of grazing time, after which the
resultant coverage and cumulative animal stress determines
fitness of the set. Coverage was measured by comparing the
distribution of vegetation levels to a preferred distribution
centered around a medium level of growth (specifically,

we use the y? value of the actual distribution relative to
the preferred). This preferred distribution was used to favor
patterns that exhibit neither overgrazing nor undergrazing.
Examples are shown in the experimental results. Animal
stress was measured by the number of stimulus events in
a given time period u, but for fitness calculations, the value
e" was used to limit the amount of stimulus used. These
can be used independently (for example, for robots, stress
would not be an issue) or multiplied together (since for both
metrics, small values are desirable).

C. On-line adaptation

The adaptive algorithm attempts to determine which rules
are most responsible for success (and inhibitory to success)
and reinforces (or diminishes) their effects. It does this by
maintaining a directed graph associating environment states
with perceived happiness levels of the herd; thus, this graph
provides a rudimentary representation of cause and effect.
The current cell state at time ¢ is represented by the vector

St =[V,0,W, A, E]

where V, O, W, A, and E are integers denoting the
fuzzy set (LOoWw = 0, MED = 1, HI = 2) to which the
variables VEGETATION, OBSTACLES, WATER, CELL-AGE,
and EVENNESS, respectively, most belong. Likewise, S%; is
the set to which HAPPINESS most belongs. The following
multi-sets hold the cumulative state:

Se =St S =Sk
t t

The adaptive graph Gs:, 5%, is a weighted, directed graph
mapping cell states to perceived happiness with weights
indicating the number of occurrences of a specific mapping.
At a set time interval (once per five simulated minutes in
our experiments), the current state (S5, S%) is computed
and the corresponding edge of G is given increased weight
(or created, if it did not previously exist). If the weight of
the edge is greater than 6, this is a significant relationship,
and any relevant rules should be updated. (Recall that 6 is
set via the evolutionary process rather than a priori.)

The relevance of a rule to a cause-effect relationship is
measured by determining the similarity between the cause
(environment state Sg) and the state the rule attempts to
match. For each rule, each operand is compared to S% to
compute a similarity d as follows: if the operand matches
the relevant value in Stc, d is incremented, except that if the
operand appears as the argument of a not clause, then d is
increased if the state does not match the value in the operand.
This is repeated for all operands in the rule, computing a
similarity value only — that is, the presence of non-matching
clauses does not detract from the similarity score. Then,
the consequent value of the rule is either increased if the
happiness level S%; is HI or decreased if S%; is Low, with
the magnitude of the increase/decrease based on d (so that
rules that do not match the current state are unchanged). We
use an exponential function of d to modify the consequent
value, so that the change is more drastic when its current

value is significantly different from the ideal. This behavior
is intended to mimic a human modifying his solution to a
problem: in the case that the solution is “way off,” he may
make large changes; however, if the solution is close, but not
quite right, he will most likely only tweak it slightly.

III. EXPERIMENTAL RESULTS

To determine the utility of our approach, we conducted
a number of experiments exploring various aspects of the
system. Specifically, we trained and tested the expert sys-
tem using a herd simulator, starting with very simple herd
behavior in a simple environment without using on-line
rule adaptation. We then increased the complexity of the
animal behavior and finally added adaptation over a series
of tests. Due to space considerations, here we present three
experiments from the full series of tests that were run. More
details and the full set of experiments can be found in [9].

Experiment 1: Simplified Behavior Model

This experiment uses a large subset of the simulated
animal behaviors as a proof-of-concept of the evolutionary
expert system. In this set of simulations, in addition to
wandering and herding behaviors, we simulate different veg-
etation types, with varying nutritional values and regrowth
rates, and elevation is made a factor. Finally, we use attractor
locations (areas of the environment that the animals prefer to
be in) on the same side of the field, in order to make the cattle
less likely to cover the field naturally. The major factor that
was left out is the animals’ need for water on a regular basis.
Using this configuration of the simulator, uninhibited grazing
yielded an average coverage-based fitness of x2 = 5.453, and
a best fitness of x? = 3.693 over five trials (see Figure 2).
Two evolution experiments were then performed: one using
the coverage-based fitness function, and one using the stress-
based fitness function.

After 15 generations, the evolutionary algorithm with
coverage-based fitness yielded an expert system with a fitness
of x2 = 0.110. This value persisted for three more gener-
ations, so the algorithm was considered to have converged.
Figure 3 shows the final vegetation levels and histogram for
the fittest expert system. The evolved system contained five
rules with a primary focus on visiting cells with more (or
higher quality) vegetation. The other rules were regarding

004 e PP P .
ol S U N
[Nl R |-

0o

]

0 a0 100 1E00 2000 250

Fig. 2. Experiment 1 control results — best x 2 fitness without management.
Left: vegetation levels after 150 hours (higher intensity corresponds to
more vegetation); right: final vegetation distribution histogram and ideal
distribution curve.

Coverage-hased Fitness

om

0008

0.008
ooo4 b

000z ey

a 50 100 150 200 250

+%=2775,UH=0127
Y- S SR .

Stress-based Fitness

o a0 100 150 200 250

Fig. 3. Experiment 1 results. Top: best x? coverage-based fitness; bottom:
best stress-based fitness.

cattle happiness, and initially seemed to be aimed at making
the cattle miserable; however, it was determined during
this experiment that the cow happiness estimate calculation
was virtually always yielding HI happiness values. Thus,
one happiness rule was almost always in effect, causing a
blanket reduction in all scores (the happiness calculation was
corrected before switching to the stress-based fitness metric).

Using the stress-based fitness metric, the evolutionary
algorithm converged in 5 generations to a fitness of 0.127
(i.e., an average of 1 stimulus every 7-8 seconds). The
coverage metric for the final expert system was x? = 2.775
(see Figure 3). The rule set consisted of 8 rules that assign
nearly equal weight to HAPPINESS and VEGETATION in
addition to rules that favor HI values of CELL-AGE. We
note that low stress levels may be difficult for the system
to achieve since it is required to contain the animals within
a single cell at all times.

Experiment 2: Full Simulator Functionality

This experiment pitted the grazing management algorithm
against the full complexity level offered by the simulation;
specifically, water sources were added to the field along with
clumps of trees, and a new, more realistic elevation map was
developed. Figure 4 depicts the field layout and elevation.

The management task is significantly more difficult with
the addition of water sources and the related simulated cattle
behavior. A majority of the management algorithm’s cells do
not contain a water source, so the system must learn to rotate
the cattle among these cells, and then return them to a cell
containing water when the cattle become thirsty.

Beginning with this experiment, the evolutionary algo-
rithm was prevented from generating rules whose antecedents
consisted only of the current-cell operator. Allowing rules of
this form to be generated significantly reduces the likelihood
of producing complex rules. This experiment included three
separate runs of the evolutionary algorithm: as well as the
coverage-based and stress-based fitness functions, we also
performed evolution using the combined fitness metric.

s

f
I

800

800" g

Fig. 4. Left: Aerial view of the final simulation field incarnation; right: 3-D
view illustrating elevation changes throughout the field. Water is present at
the lower right (the dark blob) and vertically through the top center.

Results: Continuous grazing in this field with complete
animal behavior yielded an average fitness of x¥? = 6.887
over five trials, and a best fitness of x? = 5.849 (see Fig. 5).
Because the combined fitness is calculated as f = y2e¥, and
u = 0 when the cattle are allowed to roam free, these values
are also the mean and best combined fitness values.

Coverage-based fitness converged on a fitness of x? =
3.855 after 8 generations. Figure 6 shows the final vegetation
levels and distribution histogram for the winning expert
system. The fittest system’s rule set contained nine rules, but
interestingly, none of them used the VEGETATION variable.
Rather, through concern for cattle restlessness (measured
through HERD-DIST) and a reduction in the current cell
bonus, the expert system keeps the cattle moving between
cells, thereby avoiding overgrazing. A large negative score
modification resulting from “not reachable” prevents the
system from pushing the cattle through the river.

After 9 generations, stress-based fitness converged to a
fitness of 0.013 (an average of approximately 1 stimulus
per 77 seconds), with a very poor coverage metric of y? =
24.836 (see Figure 6). The rule set created was very similar
to the one generated via coverage-based fitness, but with two
significant differences. First, rather than a large penalty for
MED HAPPINESS, there is a large bonus; second, the blanket
reduction to the current cell bonus is so large that the current
cell suffers a large penalty. So, the system rarely remains in
the same cell; however, because of the significant bonuses
to MED WATER and MED HAPPINESS, the system will
cycle back and forth between the same few cells containing
moderate amounts of water. This is illustrated well in the
image of the final vegetation levels: vast portions of the field
are untouched, while areas around the pond and river are

3=5.049

0.as

0.04

0.0z

0.0z

oo

o H
0 30 oo 1500 200 230

Fig. 5. Experiment 2-3 control results — best y2/combined fitness without
management.

Coverage-based Fitness

1] a0 100 150 200 250

2= 24836, UH=0013
Qo8 ¢------- R ERREE e [ETTRRE .

Stress-hazed Fitness

1] a0 100 130 200 0 230

Combined Fitness

]

1] a0 100 150 200 230

Fig. 6. Experiment 2 results. Top: best x2 fitness with management;
middle: best stress-based fitness; bottom: best combined fitness.

extremely overgrazed.

Finally, the combined fitness function converged in 15
generations, yielding an expert system with a combined
fitness of 4.854. The coverage metric for this system was
x? = 4.318; the stress-based metric was 0.117, or an average
of approximately 1 stimulus every 8-9 seconds (see Figure
6). The evolved rule set is as follows:

1 (HAPPINESS is HI) — +2.0

2 (WATER is MED) — +3.0

3 (VEGETATION is HI) — —0.75

4 (CELL-AGE is LOW) — —1.0

5 (HAPPINESS is LOW) — —3.0

6 (current-cell and HERD-DIST is LOW) — —3.14
7 (not reachable) — —10.0

This rule set is essentially a combination of the previous two
rule sets, but without some superfluous rules — for each
of WATER, VEGETATION, and CELL-AGE, only one rule is
present where two or three were used in the other systems.
This system suffers two flaws: first, that it assigns a slight
penalty for HI VEGETATION; second, that it waits too long to
respond to certain behavior — LOW HAPPINESS and LOW
HERD-DIST — that can be indicative of increased stress.
Reacting to Low HERD-DIST is difficult as this may indicate
that the cattle are grazing happily, or it could indicate that
they are clustered against a fence, trying to escape. This
system takes it to mean the latter; however, at this point the
cattle should probably have already been moved.

The results of this experiment demonstrate the necessity of
the combined fitness function; stress-based fitness, especially,
is not effective on its own, yielding an atrocious y? score.
Furthermore, combined fitness is shown here to successfully
improve coverage over continuous grazing without causing

Mew Rules Saved

f=4.408, 37= 4289, UH = 0,027
DU e ere e

=] ST SR B L |

0 a0 100 150 200 250

Fig. 7. Experiment 3 results. Top: best fitness with adapted rules saved;
bottom: best fitness with adapted rules discarded.

high stress levels among the cattle.

Experiment 3: On-line Adaptation of the Expert System

This set of experiments features the introduction of the on-
line adaptation portion of the grazing management algorithm.
The animal simulation reached its full complexity previ-
ously; no new functionality was added during these tests.
Fitness was calculated using the combined fitness metric.
Two methods for handling the adapted rules with respect to
the evolutionary algorithm were explored. In the first case, at
the completion of a simulation, the adapted versions of the
rule sets were stored, so that the evolutionary algorithm then
operated on these new rules; here the intention is to pass
what is learned on to later generations. In the second case,
the new rules were not saved; rather than passing along what
is learned, the intent here is to evolve systems most capable
of adapting to the situation at hand.

Results: The previous section’s baseline continuous graz-
ing results are also used for comparison here (see Figure 5).
Recall that the baseline best combined fitness was 5.849. In
the case wherein adapted rules were saved before performing
crossover and mutation, convergence took 14 generations,
yielding a best fitness of 5.103 (see Figure 7); coverage-
based fitness was X2 = 4.640, and stress-based fitness was
0.095. The winning rule set follows.

(WATER is HI) — +0.5
(WATER is MED) — +3.0
(HAPPINESS is HI) — —0.99
(CELL-AGE is HI) — +1.31
(HAPPINESS is LOW) — —3.0
6 (HERD-DIST is HI) — +0.46

DN W=

The system’s 6 was 53, meaning that in order to respond to
an observed cause-effect relationship, that relationship would
have to be seen 54 times; with the system running once every
5 minutes, that equates to an absolute minimum of 4.5 hours
before rule updates, and likely even more rare.

Without saving adapted rules, a best fitness of 4.408 was
obtained in 7 generations. This system yielded a coverage-

based fitness of X2 = 4.289, and a stress-based fitness of
0.027. Figure 7 depicts the winning system’s final field state
and vegetation distribution. The resulting rules:

(WATER is HI) — +0.5

(WATER is MED) — +3.0

(HAPPINESS is HI) — +1.0

(HAPPINESS is MED) — —0.75

(HAPPINESS is LOoW) — —3.0

(current-cell and HERD-DIST is LOW) — +4.0
(not current-cell and HERD-DIST is HI) — —2.5
8 (not reachable) — +0.79

NN AW~

Rule 8 is very curious: without a large penalty for unreacha-
bility, the system may try to push the cattle through the river.
In the simulator, water is considered to be an obstacle, so the
cattle receive large repulsive forces if they attempt to enter
it. With a virtual fence pushing them the toward the water,
the cattle may be forced across the river, however, the entire
herd is shocked throughout the process. Visual inspection
of the final field state indicates that the cattle were indeed
forced across the river at least once, and possibly twice, but
the overall stress levels were still low, so if a penalty had
been in place for unreachability, this system may have been
extremely successful.

In stark contrast to the previous system’s 6 = 53, this
system’s 6 was 4, allowing learning to occur as often as
once every 20 minutes simulation time. The behavior of this
system, therefore, most likely changes a great deal during
simulation. Evidence of this can once again be seen in the
final field state. There are definite regions of overgrazing on
the right side of the field near the herd’s starting location.
On the left side of the river, overgrazing occurs much less
frequently, indicating that by the time the cattle had been
moved to that side, on-line adaptation had taught the system
to better avoid this undesirable behavior. An explanation
for the disparity between the 6 values is that saving the
adapted rules carries with it an inherent risk: if the adapted
rules are good, then saving them is useful, as they will
become available in the genetic pool; however, if the adapted
rules are poor, then the genetic pool becomes poisoned by
these rules. That the system evolved through saving adapted
rules had a 6 value of 53, in effect forcing minimal on-
line learning, is evidence of this suspected behavior; the
evolutionary algorithm produces systems that rarely adapt
in an attempt to prevent the poisoning of the genetic pool.

IV. DISCUSSION AND FUTURE WORK

This first foray into the field of automated grazing man-
agement using dynamic virtual fences has proven to be a
successful one. The proposed evolved and adapting expert
system was shown to consistently improve coverage over
traditional continuous grazing. Furthermore, both the proce-
dure for evolving expert systems and the on-line adaptation
algorithm that were designed and developed for this work
proved successful: the evolved expert systems yielded supe-
rior results to hand-made rule sets and the addition of the
adaptation algorithm further improved these results.

There are a number of ways in which this work could
be expanded and improved. First of all, while we have built
systems for simulated animal behaviors, it may also be ap-
plied to systems such as robotic coverage with very different
underlying fitness requirements, and it would be interesting
to see performance on such different tasks. Alternately, the
use of a more complex and accurate cow model would
greatly increase the direct applicability of the developed
management systems for deployment on real cattle. Our
current simulations, as they simulate animal behavior on a
second-by-second basis, take a long time to execute, which
in turn slows the evolutionary algorithm. Although this may
be acceptable in situations where the rule set is developed
once and used (and adapted) over time, it does slow the pace
of development. With a more efficient simulation, we may
be able to simulate a variety of environments to calculate
fitness and produce a more flexible rule set.

Finally, we believe that this type of technique may be
applicable to other coverage and related problems in robotics.
For situations such as surveillance or environmental mon-
itoring, we wish to cover the entire environment, but the
importance of visiting certain areas may be non-uniform
(e.g. some places are more exposed and therefore need more
frequent surveillance), and may further vary over time (for
example, as events of interest are noticed in different places).
The adaptive expert system as developed here can compute
effective initial coverage patterns at a high level, leaving
local path generation to a traditional planner, and continue
to update these patterns as the situation evolves.

Acknowledgements

This work was supported in part by NSF grant IIS-
0513628.

REFERENCES

[1] M.-R. Akbarzadeh-T, I. Mosavat, and S. Abbasi. Friendship modeling
for cooperative co-evolutionary fuzzy systems: A hybrid ga-gp algo-
rithm. In 227¢ Int’l. Conf. of the North American Fuzzy Information
Processing Society, 2003., pages 61-66, 2003.

[2] J. E M. Amaral, R. Tanscheit, M. A. C. Pacheco, and M. M. R.
Vellasco. Evolutionary fuzzy system design and implementation. In
Neural Information Processing, 2002. ICONIP ’02. Proceedings of the
9t International Conference on, volume 4, pages 1872—1876, 2002.

[3] D. M. Anderson, B. Nolen, E. Fredrickson, K. Havstad, C. Hale, and
P. Nayak. Representing spatially explicit directional virtual fencing
(DVE™) data. In 24 Annual ESRI Int’l User Conference, 2004.

[4] Z. Butler, P. Corke, R. Peterson, and D. Rus. Dynamic virtual fences
for controlling cows. In Int’l Symp. on Experimental Robotics, 2004.

[5] J. Drabarek, R. Wirski, and W. Madej. Genetic algorithms applied to
hybrid expert systems. In Electronics, Circuits and Systems, 2002. 9t
International Conference on, volume 3, pages 1263-1266, 2002.

[6] Jyh-Shing Roger Jang. ANFIS: Adaptive-network-based fuzzy infer-
ence system. Systems, Man and Cybernetics, IEEE Transactions on,
23(3):665-685, 1993.

[7] C. Perneel, J.-M. Themlin, J.-M. Renders, and M. Acheroy. Opti-
mization of fuzzy expert systems using genetic algorithms and neural
networks. Fuzzy Systems, IEEE Transactions on, 3(3):300-312, 1995.

[8] Amir Pirzadeh and Wesley Snyder. A unified solution to coverage and
search in explored and unexplored terrains using indirect control. In
Proceedings of IEEE ICRA, volume 3, pages 2113-2119, 1990.

[9] G. von Pless. Automated grazing management. Master’s thesis, RIT,
2008.

