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Abstract— An automated design generation algorithm for a
serial kinematic chain is presented for the reconfigurable robot
used in a novel endoluminal surgical procedure (European
Union project ARES). The algorithm produces the possible
topologies, given the design constraints, desired performance,
and available modules, such that all constraints are satisfied for
every point in the desired workspace. This is achieved through
the use of interval analysis methods and branch-and-bound
loop that searches through the end-effector pose and the design
parameter spaces. The resulting algorithm is demonstrated
through an example of a serial chain manipulator made of the
reconfigurable modules of the surgical robot for the application.
The results are presented and discussed.

I. INTRODUCTION

A
N endoluminal surgical system was proposed in the

European Union project ARES (Assembly of Reconfig-

urable Endoluminal Surgical system) [1]. The aim is to con-

struct a reconfigurable manipulator capable of observation

and interventional procedures in the Gastrointestinal (GI)

tract. The modules of the robot are to be sent into the GI

tract of the patient in the form of swallowed capsules. Upon

reaching the stomach cavity, the modules then reconfigure

themselves into a topology suitable for the desired surgical

task. The modules to be utilised consist of actuated modules

(1DOF revolute jointed module) and various passive modules

(non-actuated, but serve other purposes, such as batteries,

camera, support, etc).

The reconfiguration aspect of this robotic scheme poses the

challenge of automatic generation of a suitable manipulator

topology for the given task. For instance, a surgical procedure

is to be carried out on a specific section of the stomach wall,

requiring a given workspace reach. The actuated modules

is limited in the range of displacement it can produce.

Give the design constraints (joint displacement limit) and

task constraints (the required workspace), the algorithm is

required to produce the possible manipulator topologies such

that all the constraints are satisfied (for all points in the

required workspace).

The problem of automatic generation of a manipulator

topology to satisfy a set of given criteria is not one that has

been well studied. Most of the design strategies proposed

are optimisation based [2], [3]. Drawbacks associated with
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optimisation based approaches include the difficulties in con-

structing the suitable cost functions, especially when several

measures of different physical properties are involved and the

physical meanings of variables are lost in the construction

of the functions. Optimisation approaches also often push

the solutions to one side of the extreme without considering

whether certain thresholds of the other constraints are vio-

lated. Classical optimisation is also not appropriate to tackle

antagonistic constraints (e.g. accuracy versus workspace size)

as only Pareto optimum exists.

Under reconfigurable robotics [4], various aspects of the

problem have been studied extensively in the past, such

as module design [5], docking-and-release strategies [6],

reconfiguration strategy [7], as well as various gait and

locomotion strategies [8]. However, there are usually a set

of predefined topologies to which the reconfigurable robot

can rearrange itself to. An automated generation strategy of

suitable topology considering the task at hand requires the

high-level intelligence that is still not well-established at the

moment.

In this paper, an interval-based method is presented to

provide an automated search in the design parameter space to

determine the ranges of values in the robot design parameters

that would yield an achievable end-effector workspace where

all given constraints are satisfied for all poses inside the

desired workspace. The design parameters are the parameters

such as link lengths and offset angles that completely de-

scribe a serial chain topology and configuration, such as the

Denavit-Hartenberg parameters. In interval-based method,

these parameters, as well as the joint and task space variables,

are expressed as bounded ranges of continuous values (inter-

vals) instead of as real variables. This renders the algorithm

with the ability to accommodate a continuous range of

possible values for each parameter and evaluate the serial

chain performance for all points within these bounds, not

just on point sampling basis. This also allows the algorithm

to take into account any uncertainties, such as modelling

uncertainties, fabrication tolerances, and round off errors,

in producing the certified solutions to the constraints. In

contrast to optimisation based approaches, interval analy-

sis techniques maintain the physical meanings of various

parameters and quantitative measures. The result of the

algorithm is a set of windows in the manipulator design

parameter space, within which it is guaranteed that each

point defines a manipulator topology which satisfies all the

required constraints for all points in the desired workspace. If

desired, optimisation technique can be performed afterwards

on the solution boxes found by the interval techniques. This

would yield an optimised solution out of the set of design
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parameters that are already certified to satisfy all the given

constraints.

II. CONSTRAINTS IN A SERIAL MANIPULATOR

In this paper, the study of the automatic generation of

manipulator topology to satisfy the given task is concentrated

on serial manipulators. The desired workspace is the end-

effector range of poses (translations and orientations) that

is required for the given task. Within this workspace, all

constraints are to be satisfied, for example, it is required

that all points within the desired workspace be reachable

given the joint limits of the manipulator, that the workspace

does not contain singular configurations, that a required

amount of force at the end-effector is achievable given

the available joint torques, etc. The set of constraints is

defined as C(x,h) = {C1, C2, ...CNC}, where x is the end-

effector pose, h represents the design parameters, C i(x,h)
represents a single constraint, and NC denotes the total

number of constraints being imposed on the system. Each

constraint Ci(x,h) could be defined as an inequality or

equality constraint.

The design constraint posed by the actuated module is

that it has a displacement limit of ±30o in its revolute joint

motion [9]. The module is shown in Fig. 1. The modular ar-

chitecture was chosen to overcome the intrinsic limitations of

the current capsule endoscopy because it allows the delivery

of more components inside the human body with different or

similar functions. Based on this concept, the patient ingests

some capsular modules consisting of modules with structural

functions and modules with diagnostic and/or interventional

functions (Fig. 2(a)-(c)). The modules then reconfigure into

the required manipulator topology for the task (Fig.2(d)).

The modules disconnect into individual modules or into the

appropriate topology to exit the GI tract (Fig. 2 (e)-(g)).

Fig. 1. Design of the revolute actuation module

In this paper, interval analysis method [10] is used as a

means to express a variable as a continuous range of values.

An interval extension of variable x is denoted X = [x, x],
where x and x are the lower and upper bounds of the interval

Fig. 2. Concept of the reconfigurable modular surgical robot in the stomach
cavity

variable, respectively. Similarly, an interval extension of a

function f(x) is denoted as F (X) = [f, f ]. Introduction to

interval analysis can be found in the literature, such as [11].

In the case of our manipulator design problem, each design

constraint, Ci(x,h), can be expressed as the required range

of value, bounded within [ci , ci]. They represent the minimal

and maximal values that a quantitative property is allowed to

have. An interval box (X,H) is therefore an inner box when

the interval extension of a function Fi(X,H) evaluates to an

interval value such that:

{∀x ∈ X, ∀h ∈ H; f
i
≥ ci and f i ≤ ci} (1)

for all constraints, (i = 1, ..NC). An interval box (X,H) is

an outer box when:

{∀x ∈ X, ∀h ∈ H; f i ≤ ci or f
i
≥ ci} (2)

for any of the constraints. When (X,H) does not yield an

interval F(X,H) that is completely contained within the

limits of constraints (inner box) or completely outside these

limits (outer box), it is designated as a boundary box.

III. INTERVAL ANALYSIS ALGORITHM FOR SERIAL

KINEMATIC CHAINS

In the interval evaluation of a function, numerical values

are substituted into a function, resulting in the loss of the

relationships between various variables. Overestimation [11]

may occur as multiple occurrences of the same variables

within the function are regarded as independent variables.

This makes it difficult to obtain clear decision whether a

box forms an inner or outer box, therefore the Branch-and-

bound loops were utilised as to consider the smaller sub-

sections of the boxes at each iteration of the solution search

algorithm. Solutions are searched throughout the end-effector

workspace X and design parameter H.

A. Constraint Satisfaction in End-Effector Workspace

To construct the interval-based algorithm for serial kine-

matic chains, a function S(x,h) is defined such that it eval-

uates the interval extension of the kinematic functions cor-

responding to the design constraint of the system C(X,H),
compares it to the given constraints, and returns 1, 0, −1,
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TABLE I

SUMMARY OF BRANCH-AND-BOUND LOOP TO OBTAIN THE DESIGN

PARAMETER RANGE OF VALUES WHERE ALL CONSTRAINTS ARE

SATISFIED WITHIN THE GIVEN WORKSPACE X

Input: X and Hi

Output: 1, 0, -1, (representing inner, boundary,
and outer solutions, respectively).

1 Initialise empty lists LIN , LOUT , and LB .
2 Initialise list L containing initial design parameter

intervals H0 to be analysed.
3 While (L not empty)

(a) Extract design parameter box Hi from L
(b) Remove design parameter box Hi from L
(c) Evaluate function S∗(X, Hi),
(d) If S∗(X, Hi) == 1

add Hi to list LIN

(e) Else If S∗(X, Hi) == −1
add Hi to list LOUT

(f) Else If S∗(X, Hi) == 0
(i) If Dimension (Hi > ǫh)

Bisect Hi into Hi(1) and Hi(2)
Add Hi(1) and Hi(2) to list L.

(ii) Else If Dimension(Hi ≤ ǫh)
Add Hi to LB .

(iii) End If

(f) End If

4 End While

if interval (X,H) forms an inner, boundary, or outer box to

the constraints, respectively. In this specific task of verifying

whether a given workspace X can be achieved given a con-

straint of joint displacement [qmin, qmax], function S(x,h)
calculates the inverse kinematics of the manipulator, and

returns:

• -1 if q
i

> qmax or qi < qmin for at least one of the

joints and at least one pose in (X,H),

• 1 if q
i
≥ qmin and qi ≤ qmax for all joints and all

poses of (X,H),

• 0 if (q
i

< qmin and qi > qmin) or (q
i

< qmax and

qi > qmax) for at least one of the joints and at least

one pose in (X,H).

B. Constraint Satisfaction in Design Parameter Space

To search for solutions in the design parameter space H

such that all constraints C(X,H) are satisfied for all points

x ∈ X, two (nested) branch-and-bound loops are required to

search both the X and H spaces. The algorithm then outputs

the regions in the design parameter space (h ∈ H) that are

certified to form serial chain mechanisms where all the given

constraints C are satisfied in the desired workspace x ∈ X.

A branch-and-bound loop is carried out to obtain the

design parameters that produces inner and outer solutions.

A function S∗(X,Hi) is defined such that it returns 1,0,-

1, if Hi forms an inner, boundary, or outer boxes to the

design constraints. The branch-and-bound loop that searches

the design parameter space calls the function S ∗(X,Hi) to

evaluate the design parameter space H against the given

constraints. This is summarised in Table I.

Function S∗(X,Hi) is in turn constructed as another

branch-and-bound loop which assigns H i to an inner, outer,

or boundary box - given the required workspace X - by

calling function S(X,Hi). Within iteration i of S∗(X,Hi),
where a box Hi out of the design parameter is evaluated, a

TABLE II

SUMMARY OF ALGORITHM FOR FUNCTION S∗(X, Hi) USED IN THE

ALGORITHM IN TABLE I

Input: Xi and Hi

Output: 1, 0, -1, (classifying (X, H) as inner, boundary,
and outer boxes, respectively).

1 Initialise empty lists LB .
2 Initialise list L containing initial pose X.
3 While (L not empty)

(a) Extract interval pose Xi from L
(b) Evaluate function S(Xi,Hi),
(c) If S(Xi, Hi) == −1

Return (-1)
Exit function S∗(X, Hi)

(e) Else If S(Xi, Hi) == 0
(i) If Dimension (Xi > ǫx)

Bisect Xi into Xi(1) and Xi(2)
Add Xi(1) and Xi(2) to list L.

(ii) Else If Dimension(Xi ≤ ǫx)
Add Xi to LB .

(iii) End If
(f) End If

4 End While

5 If (LB is empty)
Return 1

6 Else

Return 0
7 End If

search in the workspace X is carried out using the previously

defined function S(X,Hi). Bisection is performed to refine

the search on a smaller region of the workspace (terminated

at a threshold value ǫh). If S(x,Hi) == −1 for any point

x, then the set of design parameters Hi is an outer box.

If no outer box is found while executing S(x,H i), but

S(x,Hi) == 0 for any point within X, then Hi is a

boundary box. If no outer and no boundary box is found

(and termination threshold is reached), then H i is an inner

box. The algorithm of function S ∗(X,Hi) is summarised in

Table II.

Any point h ∈ H contained in the resulting inner boxes

of design parameters is certified to constitute a manipulator

where all points in its workspace satisfy the given constraints.

Having interval design parameters means that any bounded

uncertainty known to affect the design parameters is also

included in the consideration when certifying the boxes. The

design solution resulting from this process is therefore robust

with respect to such uncertainties. In this paper, the joint

limits given the required end-effector workspace is given

as the design constraint. To evaluate this constraint, it is

necessary to solve the inverse kinematics of the manipulator

within the S(X,Hi) function.

IV. SOLVING INVERSE KINEMATICS OF SERIAL

MANIPULATORS IN INTERVAL ANALYSIS

The limit of displacements for the manipulator joints is

selected as the design constraints in this paper as it is one of

the most common in design problems. As joint displacement

is involved given the end-effector pose requirements, it is

necessary to be able to evaluate the inverse kinematics

relations of the manipulator within S(X,H).
Conventionally, the inverse kinematics of non-redundant

serial manipulators are solved symbolically to obtain the

closed-form solutions. However, explicit solution to the
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inverse kinematics is specific to the manipulator de-

sign/topology. When the topology of the mechanism is un-

known, as is the case in this paper (e.g. during design process

or in the case of reconfigurable robots), explicit inverse

kinematics does not exist. Hence it is necessary to construct

an inverse kinematics algorithm that is general enough to be

able to evaluate the performance of all possible topologies

within a specified window of design parameters. In our

algorithm, the forward kinematic relationship is utilised as

kinematic constraints in establishing the inverse kinematic

solutions.

The kinematic relationship between the joint and task

space displacement of a serial manipulator can always be

expressed in the forward kinematic form of:

x = fFK(q) =0 T1.
1T2....

N−1TN , (3)

where x is the task space pose of the end-effector, q is the

vector containing joint space displacement (q1, q2, ..., qN ),
i−1Ti is the transformation matrix from link i− 1 to link i,

and N denotes the total number of joints / articulated links in

the serial manipulator. Solving for q through interval analysis

yields the N element joint displacement (interval) vector Q

for the M dimensional interval box containing the range of

the end-effector pose variable X. M is the number of degrees

of freedom in task space that the manipulator possesses.

As previously mentioned, the evaluation of interval func-

tions results in the overestimation due to multiple occur-

rences of a single variable. Therefore, evaluating the forward

kinematics would result in an overestimation of the resulting

workspace. Hence, to certify that a specific workspace is

achievable by a given joint displacement range, it is nec-

essary to obtain the inverse kinematics - which yields an

overestimated joint space displacement required to achieve

the given workspace. If the overestimated joint displacement

required is within the joint limits, then it is guaranteed that

the required end-effector workspace is achievable - although

it is an underestimation of the true achievable workspace.

A major challenge is to obtain the minimum overestimation

possible for an accurate result.

A. Interval Newton Method

The inverse kinematics in this paper is solved using the

modified Interval Newton method, although this is not the

only method. Interval Newton method is a solving method

based on evaluation of a function about the center point of

the intervals [11]. It is based on a first order Taylor series

expansion, where:

F (Q) = f(qm) + Jq(Q).(Q − qm) (4)

where Q is the interval extension of variable q, (i.e. q ∈ Q),

F (Q) is the interval extension of function f(q), Jq(Q) is

the derivative of function f(q) with respect to variable q,

evaluated at interval Q, and qm is the centre of interval Q.

In solving for the inverse kinematics problem, let the given

end-effector interval pose be described as X, the interval

joint displacement vector as Q, and the forward kinematics

of the serial manipulator as fFK(q). Solving the inverse

kinematics solution becomes a problem of solving for joint

displacement interval Q, given the task space displacement

X , with the following constraints [12]:

FFK(Q) − X = 0; (5)

fFK(qm) − X + J(Q,qm). (Q− qm) = 0; (6)

The joint displacement intervals were initialised at the al-

lowable joint displacement limits, and the middle values qm

are calculated accordingly. Solving for (Q − qm) through

the linear equations:

X − fFK(qm) = J(Q,qm). (Q− qm); (7)

in iterative manner, the interval inverse kinematic solutions

of the serial manipulator is obtained.

B. Bisection on the Joint (Solution) Space

It is well known that inverse kinematics problem can

possess multiple solutions, even for well constrained prob-

lems (non-redundant serial manipulators). For example, a

planar two-link RR manipulator can have an elbow up and

elbow down joint displacement solutions for one end-effector

position. When such case exists, the consistency filtering

techniques, such as 2B and 3B, will converge only to the

outer bounds of the multiple solutions, instead of to the

individual sets of solution. A quick bisection procedure on

the interval joint variables Q is therefore necessary. The

summary of the procedure is described in Table III. In

the procedure, each set of possible solution goes through

a bisection process, which splits the interval along joint

displacement interval variable Qi, for i = 1, .., N , where

N is the number of joints (steps 6(b) in Table III). Each

time a set of possible solution is bisected, the algorithm

tries to solve for the inverse kinematics (steps 1(b)-(d)).

If the bisected branch produces a solution, then an inverse

kinematic solution within the joint limit is found. If it is

confirmed to have no solution, then the branch of possible

solution is eliminated. If the result is not sufficient to

conclude either way, then the branch is kept for bisection

on subsequent joint variable (steps 1(e)-(j)).

The essential point about the bisection process in the

solution space (Q) is to be able to isolate the individual

sets of solutions, such that the interval inverse kinematic

algorithm is able to converge. When there are two sets of

solutions, for instance, splitting the solution space in between

the solutions would tremendously increase the efficiency of

the solving or filtering techniques. However, not knowing

where the solutions are, it is possible that the bisection is

carried out at the point of solution / in the range that contains

the solution. Hence, the proposed procedure also checks

whether or not the bisection process produces two separate

solutions (step 1(f)-(i) in Table IV). If no separate solutions

are found after bisection, the set of joint displacement Q i is

returned as the Hull (i.e. the union box) of the two bisected

halves.

Variable SolFound in summary table (Table IV) denotes

the state of whether or not inverse kinematics solution exists
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TABLE III

SUMMARY OF ALGORITHM IK(Xi,H,F): INTERVAL INVERSE

KINEMATICS FOR A SERIAL MANIPULATOR WITH JOINT LIMIT

CONSTRAINTS

Input: Xi, H, and F
Output: 1, 0, -1, (representing inner, boundary,

and outer solutions, respectively).
1 Initialise empty list for solutions LS .
2 Initialise initial estimates for the joint displacements

Q0 = (Q0

1
, Q0

2
, ..Q0

N
) at the joint limits.

3 Q′ = SolveQ(Xi,H, Q,F)
4 If (solution Q′ does not exist)

(a) Return (-1)
(b) Exit function IK(Xi,H,F)

5 Else If (solution Q′ exists)
(a) Load Q′ onto LS

(b) Return (1)
(c) Exit function IK(Xi, H,F)

6 Else

(a) SolFound = 0; i = 1;
(b) While i <= N AND SolFound �= 1

SolFound = Bisect-and-Solve(LIN , LOUT , i);
LIN = LOUT ;

(c) End While

(d) Return (SolFound)
7 End If

8 Bisect-and-Solve is detailed in Table IV.

for a box Xi,H. SolFound = 1 when an inverse kinematic

solution is found (step 1(e), Table IV), SolFound = -1 when

all possible bisections of the joint space Qi are not solutions

to the inverse kinematics (step 3, Table IV), or SolFound

= 0 otherwise (step 4, Table IV). Please note also that

the input F in algorithm IK(Xi,H,F) in Table III is the

forward kinematics relationship of the manipulator, used as

a constraint in obtaining the inverse kinematics solutions.

V. IMPLEMENTATION ON AN EXAMPLE

As an example, the algorithm described above is imple-

mented to search for a set of design parameters such that a

desired end-effector workspace is reachable by the resulting

manipulator, given joint limit of ±30o for all the revolute

joints. The inverse kinematic function IK(Xi,H) is defined,

taking place of function S(x,H). It returns 1,0,-1, if X i

yields an inner, boundary, and outer box, respectively, to the

inverse kinematics, given the allowable joint displacement

limits. Solving the inverse kinematics through the Interval

Newton method can be done by enforcing the kinematic

relationship of the joint and task spaces. In the summary

of inverse kinematic algorithm in Table III, the solving

technique is labelled as SolveQ, which is the Interval Newton

method, as described earlier in Section IV.

Specific to the application addressed in this paper, namely

the modular robotic system for endoluminal surgery, there

exist simplifications to the possible topologies that can be

achieved through the combinations of the proposed robotic

modules. Due to the limitation in the paper length, an

example is given in this paper specific to the proposed

application. The example of implementation of a general

case serial manipulator design algorithm through interval

constraint satisfaction can be found in [12].

As an example, the suitable topology of a serial chain

mechanism made up of three modules of the surgical re-

TABLE IV

SUB-PROCEDURE BISECT-AND-SOLVE FOR ALGORITHM IN TABLE III.

Sub-Procedure:
SolFound = Bisect-and-Solve(LIN , LOUT , i)
Input: LIN : list of joint displacement Q which

possibly contain solutions.
i: index of joint displacement Qi to be bisection this round.

Output: SolFound (1 solution is found, -1 no solution,
and 0 when it is not clear).

LOUT list of joint displacement Q which
possibly contain solutions for next round of bisections.

1 While (LIN not empty AND SolFound==0)
(a) Extract Q from LIN .
(b) Bisect Qi to Q′

i
(1) and Q′

i
(2) to form Q′(1) and Q′(2)

(c) Q”(1) = SolveQ(Xi,H, Q′(1),F)
(d) Q”(2) = SolveQ(Xi,H, Q′(2),F)
(e) If Q”(1) or Q”(2) are inverse kinematic solutions

Return SolFound = 1;
exit Bisect − and − Solve.

(f) Else If Q”(1) and Q”(2) do not form separate solutions
Push Hull(Q”(1), Q”(2)) onto LOUT .

(g) Else If both Q”(1) and Q”(2) do not exist
This entry does not contain solution.

(h) Else If Q”(1) exists
Load Q”(1) onto LOUT .

(i) Else If Q”(2) exists
Load Q”(2) onto LOUT .

(j) End If

2 End While

3 If no entries contain inverse kinematic solution:
Return SolFound = -1;

4 Else

Return SolFound = 0;
5 End If

configurable robot is to be determined. A homogeneous

reconfigurable robot scheme is used in this example, meaning

that all modules used in forming the robot are identical.

Each module is designed with an actuated end capable of

producing 1DOF rotation within ±30o and a no-actuated end

capable of fixed docking to another modules. The actuated

end is designed to dock with the actuated end of another

module, with docking orientation of 90o, resulting in 2DOF

rotation with common centres of rotation and perpendicular

axes of rotation. This results in a very compact 2DOF joint

design constructed out of two identical modules (See Fig. 1).

Due to the symmetry of the modules and the repetitive

nature of the kinematic chain arising from combining iden-

tical modules used to form the chain, there are only finite

number of possible topologies to be obtained. Furthermore,

kinematic parameters, such as link length and offset angles,

can not be arbitrary values. For example, link lengths can

only be multiples of the module length and offset angle

between modules can only be 0o and 90o. Out of three

homogeneous modules, it turned out that there can only be

2 possible topologies, as shown in Fig. 3, where the only

variation is the docking orientation at point A (a docking of

non-actuated ends). A surgical tool is assumed to be attached

to the end of the chain.

Out of the two possible topologies (H1 and H2), topology

H1 is evaluated to demonstrate the workspace reachable by

the robot of such topology given a joint limit of ±30 o. An-

other constraint is added to evaluate the reachable workspace

only through an “elbow down” configuration, i.e. only for

positive values of joint q3. This is done because for the
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Fig. 3. Possible kinematic chains when using three homogeneous bending
modules.

83 84 85 86 87 88 89 90 −10

0

10

−30

−20

−10

0

10

20

30

Y(mm)

X(mm)

Z
(m

m
)

Fig. 4. Reachable workspace by topology H1, given joint limit of
[−30o, 30o]

manipulator to cross from the “elbow up to “elbow down”

configuration, it would encounter singular configuration. The

subset of the workspace that is achievable by topology H1

given the joint limits of [−30o, 30o] calculated through the

proposed algorithm can be displayed on a 3D plot as shown

in Fig. 4. Note that because inverse kinematics is utilised,

then workspace associated with singular configurations has

not been certified as inner boxes.

If the desired workspace is defined as W =
([88, 90], [0, 4], [12, 15])Tmm, then executing the complete

algorithm (as detailed in Table I) to evaluate both topologies

(H1 and H2) will yield an inner box for topologies H1 and

H2. This means both topologies are capable of achieving the

given desired workspace.

VI. CONCLUSIONS

Motivated by the need to automatically generate a suitable

manipulator for a surgical procedure, a serial chain design

algorithm with certified satisfaction of design and task con-

straints is proposed and presented. In the process, an effective

interval inverse kinematics algorithm for serial chain, without

explicit inverse kinematic expressions was also proposed and

presented. The proposed algorithm is also demonstrated to be

effective in obtaining all variations of the kinematic topology

of a serial manipulator such that the given constraints are

satisfied in all points within the desired workspace. The

design constraints were derived to describe the boundary

of operation of the surgical modules. Improvement can be

made on the computational efficiency of the algorithm in

admitting or rejecting the various interval boxes, such as

by exploring an efficient interval representation of serial

kinematic transformations, hence reducing the necessity for

further bisections in the process. As this study was carried

out for endoluminal surgery through reconfigurable modular

robots, future work also includes improving and adapting the

proposed strategy to the challenging biomedical environment

and requirements to compute the most suitable topology for

the task.
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