Randomized Model Predictive Control for Robot Navigation

Jorge L. Piovesan and Herbert G. Tanner

Abstract— The paper suggests a new approach to navigation
of mobile robots, based on nonlinear model predictive control
and using a navigation function as a control Lyapunov function.
In this approach, the nonlinear optimal control problem is
treated using randomized algorithms. The advantage of the
proposed combination of navigation functions for robot motion
planning with randomized algorithms within an MPC frame-
work, is that the control design offers stability by design,
is platform independent, and allows the designer to trade-
off performance for (computation) speed, according to the
application requirements.

I. INTRODUCTION

Robot navigation is an instance of a motion planning
problem in the presence of constraints. Obtaining provable
obstacle avoidance and convergence results in this context
is a difficult problem on its own merit, which is possibly
why issues of optimality and uncertainty have received
less attention. This paper presents an approach that aims
at obtaining local optimal, combined motion planning and
control designs, within a methodology that can potentially
handle model and environment uncertainty.

Mobile robot navigation has been approached mainly from
two different perspectives: the first is to plan and generate a
reference trajectory and then track this trajectory; the second
is to use feedback based on the gradient of a navigation
function [7]. The former approach consists on a planning
phase (which specifies a path for the robot [8]-[10]), and
a tracking phase (which drives the robot through the pre-
specified path [11]-[14]). The latter approach consists of
creating a potential function that captures the topology of
the obstacle free space and the robot’s destination. Contrary
to typical potential field methods, navigation functions can
be tuned so that all critical points except for the destination
are not attractive (saddles).

Optimal feedback control design for general nonlinear
systems is prohibitively complex, both analytically and com-
putationally. One approach that is gaining momentum due to
the availability of more powerful computation platforms is
that of model predictive, or receding horizon optimization.
Model Predictive Control (MPC), uses online, finite-time,
iterative optimization to obtain a feedback controller for a
given system [1]-[3]. In general, one iteration consists of
performing a finite time optimization, with initial condition
the current state of the system, and computes the controller
that optimizes a cost functional over the finite interval

Jorge L. Piovesan is currently with K&A Wireless LLC, 2617 Juan Tabo
NE Suite A, Albuquerque NM 87112, jpiovesan@ka-wireless.com. Herbert
Tanner is with the Department of Mechanical Engineering at the University
of Delaware, Newark DE 19711, btanner@udel.edu

Authors were supported by CTA MAST # W911NF-08-2-0004.

(prediction horizon); then the obtained controller is applied
over a much shorter finite horizon (control horizon) before
the process is repeated at the new state. Challenges include
the solution of the finite time optimization, usually done
numerically, and ensuring stability for the overall closed loop
system.

The solution to the finite horizon optimization problem
has been usually obtained using model based techniques
[2]. The challenge there is that the analytical effort required
for their application increases with the complexity of the
model. On the other hand, randomized algorithms have been
used for robust control design [4], [5], with some basic
assumptions on the system model. The objective of the
randomized methods is to obtain a solution that is very close
to the optimal one, with probability arbitrarily close to one.
This is achieved by sampling the set of potential solutions
sufficiently many times, and choosing the sample that yields
the best performance. Randomized techniques have been
previously used to solve some robust control problems that
are NP-hard [4], [6]. The advantage of these probabilistic
methods is that they simplify the analysis and design tasks
at the cost of not being able to guarantee the optimality of
the solution.

This paper introduces of a randomized version of MPC
applied to a mobile robot navigation problem. The idea is
to use a navigation function as a control Lyapunov function
within an MPC framework. State constraints are encoded in
the navigation function, while input constraints are enforced
through appropriate sampling. Basing the receding horizon
control on a scheme that uses a control Lyapunov function
as a terminal cost estimate provides stability for the closed
loop trajectories [1]. Introducing control input randomization
allows the application of the method independently of the
system’s model structure —the latter is accounted for in the
control Lyapunov function.

Section II recasts a general nonlinear MPC problem as
an instance of a randomized optimization problem. Section
IIT outlines a general solution to the randomized model
predictive control problem. It is shown that if the controller
obtained from the randomized optimization stabilizes the
system for each control horizon, the resulting MPC controller
asymptotically stabilizes the closed loop system. In Section
V the gradient of the navigation function which is in the
role of the control Lyapunov function is parameterized and
sampled in a way that guarantees stability and constraint
satisfaction within the finite MPC horizon. An algorithm
is given in which the gradient directions are stochastically
optimized. A numerical example is given in Section VI and
the paper concludes with Section VII.

II. MPC DESIGN FOR NONLINEAR SYSTEMS

The model predictive control design problem is stated
similarly to [1]. Consider the nonlinear dynamical system
& = f(x,u), where © € R™ is the state of the system and
u € U C R™ is the control input, with n,m € Z, and f
satisfying the standard local Lipschitz continuity conditions.

Define a cost functional

t+T
J(t,z,u,T) = /t q(z(7),u(r))dr + M(z(t+T)) ,

where q(x,u) is a positive definite function of = and wu,
M(x) is a terminal cost, ¢ denotes time, and 7T is the
(fixed) prediction horizon. Consider the finite horizon optimal
control problem (FHOCP):

(Ta)
(1b)

J*(t,x,T)= inf J(t,z,u,T)

w[t,t+T)

st. z=f(z,u), z€XCR", weUCR™

where u[t,t +T') denotes the control input on the interval
of time between t and ¢+ 7', and X is the admissible region
of the state space. The iterative procedure is as follows:

1) Given the current state of the system x(¢), solve the
FHOCP (1) obtaining the controller w*[t,t+ T'), which
optimizes J (¢, z, u, T') over the finite interval [t,t+T).

2) Apply the u* over a finite interval [¢t,t + T.) where
T. < T is the control horizon.

3) Update the current state of the system z(t) with z(¢ +
T.) and go back to 1).

The objective is to solve (1) for each iteration in finite
time, and obtain a controller that asymptotically stabilizes
the system in the infinite horizon, and respects the state and
input constraints, z € X and u € U respectively.

Problem 1 Given a system dynamics f(x,u), a cost func-
tional J(t,z,u,T), and horizons T and T,, find a control
input w* (1) € U that solves (1) at each iteration [t,t +T),
and asymptotically stabilizes f(x,u*) to the origin.

III. RANDOMIZED MPC FOR NONLINEAR SYSTEMS
A. Randomized optimization algorithms

Among the technical challenges in implementing a non-
linear MPC algorithm are computational complexity and
the need for special numerical optimization libraries. These
problems are circumvented here by relaxing optimality in
FHOCP and applying randomized algorithms [4], [5]. In a
randomized algorithm, one generates a sufficient number of
samples from a set of potential solutions, and selects the
one that performs the best. The procedure does not ensure
the optimality but it can guarantee, however, that it is close
to the optimum with very high probability. The advantage of
randomized techniques in this setting is that the analytical
complexity of the solution is independent of the system’s
model: the optimization is performed by simulating the
dynamics using candidate controllers. In contrast, a model-
based approach has to take into account the dynamics in the
form of a constraint equation. In addition, in the proposed

randomized approach state and input constraints are enforced
automatically by a combination of sampling and terminal
cost construction.

Let 0 € ¥ be a decision vector and R : ¥ — R a cost
functional. One is interested in the decision parameter o* that
yields the best performance R* = inf,cx R(0). Take Ny
independent and identically distributed random samples o;,
1=1,..., N from X according to a probability distribution
P(c). Then R® = min; R(0;) can approximate R* [5]:

Definition 1 (Probable Near Minimum [4]) Given R(o),
§ € (0,1), a € (0,1), a number R® € R is said to be a
probable near minimum of R(c) to level o and confidence
1 —§ if there exists a set IREDY measuring]P’{i} < « such

that IP’{ infs R(o) < RO < infy, 5 R(J)} >1-4

In the above, P denotes probability. Parameter « (level)
quantifies the set of solutions that may not be represented
in the samples. For small «, the probability of finding a
solution better than R° is small. Confidence 1 — § expresses
the probability that the solution is not worse than the actual
minimum in the set that is represented in the samples. The
desired level and confidence is achieved by adjusting the
number of samples N,:

Lemma 1 (Number of samples [4], [S]) The number of
samples N, that guarantees that R° is a probable near
minimum of R(c) to level o and confidence 1 — § satisfies

In(1/6)
Ns 2 maya—ay-

B. Randomized MPC problem

Now FHOCP is recast in a randomized framework:

Problem 2 : Given a system f(x,u), a cost functional
J(t,z,u,T), horizons T ad T., and level and confidence
parameters o and 6, find a control input u°(7) € U such
that J(t,x,u°,T) is a probable near minimum to level o
and confidence 1 — 06 of J*(t,x,T) in (1) for each [t,t+T),
and f(z,u°) is asymptotically stable for all t € [0, 00).

Although Problems 1 and 2 have different optimality
conditions, both aim at an asymptotically stable closed loop
system in the infinite horizon.

IV. STABILITY UNDER RANDOMIZED CONTROL

A procedure to perform a randomized optimization of a
cost functional R(o) is given in Algorithm 1. The algorithm
is based on Lemma 1 to guarantee that the obtained solution
satisfies the conditions of Definition 1.

To solve Problem 2 using Algorithm 1, one needs to pa-
rameterize the control input and sample the parameter space
for the given prediction horizon: U 1y = {u[t,t +T) :
u(r) € U, V7 € [tt+ 1)} Letuw : ¥ xR* - U
be a parameterized control input function, where ¥ is the
(closed and bounded) parameter space. A sequence of N
iid. samples {o1,02,...,0N,}[,t+7) drawn from a p.d.f.
P(o) for the time interval [t,t + T), gives rise to Nj

Algorithm 1 Randomized optimization [4], [5]
Require: «, 0, R(o), P(o), X, T, T..
Ensure: R° and ¢°.
1: Compute N, according to Lemma 1.
2: Generate N, i.i.d. samples o1,09,...,
cording to P (o)
3: Choose R =
argming, ., R(0;)

on, from X ac-

ii.d. input function samples {u1,us2, ..., un, }¢,¢+7). Where
wi[t,t+T) =u(oys;[t,t+T)). Then (1) is reformulated as:

*(t,z,T) = inf t T 2
st. ©=f(o;x), z€XCR", weUCR™ (2b)

where J(t,z,0,T) = J(t,z,u,T) ou(o;z), and f(o;z) =
f(xz,u) o u(o;x,t). Proposition 1 that follows provides a
mechanism to ensure that the concatenation of input solutions
obtained through the randomized algorithm for each interval
[t,t+T) asymptotically stabilizes the system f(x,c) on the
infinite horizon.

Proposition 1 If Algorithm 1 is applied to FHOCP (2) with
samples {01,02,...,0N,}[t,¢,+7) J € Ny, drawn such
that f(x,05[t;,t;+T)) admits a common Lyapunov function
Vit, 1, 4+1) (%) on each finite interval [t;,t; + T') then the
solution to Problem 2 is given by:

UO[ST] = uo[tl, tQ)‘UO [tg, t3)|u0 [tg, t4) ey (3)

where u®t;, tjr1) = u(w, 0 t;, tj41)) and o®[t;, tjv1) is
the output of Algorithm 1 applied to FHOCP (2), where
tj+1 = tj —+ Tc~

Proof: The randomized optimization part of this result
follows from Lemma 1. The stability part of this proof is
based on [15, Theorem 4.1]. Without loss of generality,
consider x = 0 as the equilibrium point. For all £ > 0,
x(t) is absolutely continuous, V' (x) is continuous on z, and
therefore V (z(t)) is continuous for all ¢ > 0.

Function V(z(¢)) is monotonically decreasing since
\7[tj7tj+l)(x) < 0 for all # 0, and for all ¢ € (t;,t;41)
and j € N, . If one sets t; = t and tj = tj+1, then
one writes V (z(tit1) = V(x(t) for all j € N,. This
implies that the sequence {V (z(t;)} satisfies V ((tx)) >
V((tk+1)) > V((tk_;,_g)) > ..., where t > tg41 >
ty+o > ... is a sequence tp — oo as k — oo. Function
V(m(t)) is bounded below from zero since it is assumed to
be positive definite.

To prove stability consider an ¢ > 0 and choose r €
(0,¢] such that B, = {x € R"|||z| < r}. Define a =
minHmH:T V(CE) > 0. Take § € (O,a) and let Qﬁ = {l‘ S
B,|V(x) < 8}. Then Qg is in the interior of B,.. The set Qg
is positively invariant since V(x(t)) is decreasing implying
that V' (z(t)) < V(z(0)) for all ¢ > 0.

With Qs being compact, © = f(x,0[T's]) has a unique
solution for all ¢ > 0 whenever z(0) € Qg. As V(x) is

continuous and V'(0) = 0, there is a 6 > 0 such that ||z|| <
0 = V(x) < 8. Then B; C Qg C B,, and z(0) € By =
z(0) € Qg = z(t) € Qp = x(t) € B,

Similarly one shows that for every a > 0 there is a b >
0 such that Q, C B,. Therefore it suffices to show that
V(z(t)) — 0 as t — oc. Since V (z(t)) is monotonically
decreasing and bounded below from zero, V(x(t)) —c>0
as t — oco. Suppose ¢ > 0; then by continuity of V' (x(t))
there exists a d > 0 such that B; C .. Then the limit
V(z(t)) — ¢ > 0 as t — oo implies that x(t) lies outside
By for all t > 0.

In the set ﬁc\inth (which denotes the closure of 2. less
the interior of By), there will be a maximum for V for each
o € ¥, which always exists because €2, \ int By is compact.
Let this minimum be v < 0. Then V (x(t)) <= V(x(0))—~t,
and it follows that there will be a finite time for which V" will
become negative if x(¢) remains outside the set By, causing
a contradiction. Thus ¢ = 0, and the proof is completed. W

V. ROBOT NAVIGATION WITH RMPC

Consider the problem of taking a mobile robot from its
initial position to a goal position, avoiding obstacles located
in its motion environment, which we assume is perfectly
known. In the context of Problem 2, stability is understood as
uniform convergence to the goal configuration along collision
free trajectories. The robot’s workspace and the associated
motion planning constraints, are encoded in a navigation
function [7]. The implementation details of the navigation
function construction are not important for this discussion;
any navigation function can be considered. Assume therefore
that such a navigation function, denoted ¢(x), is constructed.
Function ¢(z) will serve as a control Lyapunov function, and
the cost functional is constructed as

t+T
J(t,x,u,T):/t (2 (7), u(r))dr + p(z(t+T)) , @)

and control input samples are drawn from the set U/, which
now becomes state dependent and is defined as U(x) = {u €
R™ | ~Vp(z)Tu > 0}. The parameterized family of inputs
u € U(z) at state z is constructed, and expressed in polar
coordinates as:

u(osx) = (= [Vap(@)ll arg(Vap(z)) +0) . (5)

where arg(-) denotes the angle of its argument. By setting
o = (—%,%) and selecting u(c;x,7) from U(z), p(x,u)
becomes a common control Lyapunov function, and Propo-
sition 1 applies, at the expense of optimality in minimiz-
ing functional J. Then Algorithm 1 returns the solution
o°[t;,tj+1), which corresponds to the input u®(c?, [t;,%;41)
that approximately minimizes functional (4).

Relaxing the requirement for optimality in this setting
does not affect the stability properties of the closed loop
system [16], as long as one can guarantee the existence of
an improving control law u(c;x); in this case, the existence
of a navigation function implies the existence of this im-
proving control law. Relaxing optimality by forcing negative

definiteness in ¢ is also dictated by the fact that ¢(x) encodes
applicable state constraints as configuration space obstacles.

The evaluation of the control law is summarized in Algo-
rithm 2. In step 3 of Algorithm 2, the control input is used
for a shorter, constant time horizon 7., which is typical in
MPC applications.

Algorithm 2 Randomized MPC for Robot Navigation
Require: f(o;2), T, T., J(t,z,0,T), o, §, P(0), %.

1: Define CP as the FHOCP (2).

2: Obtain ¢°[t,t + T) using Algorithm 1 to solve CP

3. Apply ut,t +T,) = u(o[t,t + T);x), where u(z, o)

is given by (5).
4 t<= (t+Tp), x(t) < x(t + Te).
5: Go back to 1.

VI. NUMERICAL EXAMPLE
A. Simulation Set-up

The system on which the proposed methodology is
tested is a single-legged robot, which navigates in a two-
dimensional workspace between an initial and a final posi-
tions. For this example we use the planar and continuous
averaged model of this system’s kinematics in [17]. The
robot’s movement is composed of periodic locomotion cycles
illustrated in Fig. 1. A locomotion cycle is composed by a
stance phase (between touching ground and lifting), and a
flight phase (between lifting and touching ground).

Flight Stance —»

Fig. 1. One dimensional locomotion cycle for an ARL-Monopod II. One
locomotion cycle is composed by a flight phase and a stance phase [17].

In [17], the (single-dimensional) average speed of the
ARL-Monopod II between flight and stance phases is ana-
Iytically computed. Here, this average kinematic model is
extended in two dimensions for a planar environment as
follows:

T = —QTTO sin [Ha: sin((1 — p)ﬂ')] (62)
Y= _2ro sin [0, sin((1 — p)7)] (6b)

T

where (z,y) £ x is the position of the robot in the plane, and
0., and 0, are the amplitudes of the hip oscillations along the
x and y directions respectively. The latter are considered to
be the control inputs. The remaining parameters are constants

1 7o is the length of the robot’s leg, T is the time that the
stance phase last during a locomotion cycle of the robot,
Tstep is the total time of the locomotion cycle composed of
a stance phase and a flight phase, and p = Ts/Tep,. The
parameters ro, T, and p are the same on both dimensions
for simplicity. The parameter values used in our numerical
example are the same as those in [17].

The robot moves in a environment that includes a rectan-
gular obstacle as shown in Fig 3. The circular workspace is
centered at (2., ¥w) = (—3,3) and has a radius of r,, = 3.
The robot’s initial position is (z,,y,) = (—3,7), while
the destination point is at (z4,y,) = (—4,3). The obstacle
is centered at (z,,y,) = (—2,5), and its dimensions are

5
& ())"

lo, = 2 and w, = 1. Let s, -
é\/x—xw (Y — yw)? h(z) £ exp (&) if 2 > 0
h(z) 20if z < O and define the potential function
Pg
x) = tanh 7
#(x) (1—tanh(<ﬂo+<pl)> @
where

1 h(2y = o)
h(2y - s,) + h(80)7

; _ (m—2g) + (v —y) oy =
g 20 e

o 2h(sp =1y — 27)
v = h(s; — 1y — 27) + h(s;)’

and A, v, p are constant tuning parameters that shape the

graph of the potential function (chosen here A = v =
1 and g = 10 for this example). A control horizon of
T. = 0.25 seconds, and a prediction horizon of T' = 1

second is selected. The sample space is defined as ¥ =
[—0.97/2,0.97/2]. The minimum number of samples Ny
for the randomized optimization follows from Lemma 1.

The cost functional for each prediction horizon is selected
as

t+T
J(tx,u,T) = / p(X)dr +p(@(T) . @)

in which the incremental cost penalizes time spent at high po-
tential locations (close to obstacles), but not input magnitude
—the latter is adjusted here automatically during sampling.
The simulation starts setting the initial condition of the robot
(—3,7) as the initial condition for the prediction phase.

Prediction phase: Compute the negated gradient of
©((x)), and then generate N random deviations from
the nominal negated gradient direction. For each sam-
ple o, derive a planar control direction (iq,94) = (—
[Ve(x)||,arg(Ve(x)) + o). This direction is normalized
and then used to generate the system’s input u(o;x) accord-
ing to [17, Eqn 1],

0 — arcsin(Taq/2r0) arcsin(Tsyq/2r0)
x = =) y :

sin((1— p)m) sin((1— p)m)
These control signals are then applied to (6) for the predic-
tion interval 7', and he system’s performance as quantified

by (8) for every control sample is evaluated. The sample that
performs best is selected as the input for the control phase.

Control phase: The control phase starts at the same
initial condition as the prediction phase. During this phase
the selected controller is applied to the system only during 7,
seconds, recording the performance of the system according
to (8). After this phase the system ends at a final position
(xf,yy) which is set as the new initial condition of the next
prediction phase. The performance of the control phase is
stored and the algorithm returns to the prediction phase with
the new initial condition (x¢,yy).

Final steps: The simulation ends by adding up the
performance of all control phases during the simulation
period (this is done iteratively). This final value for the
performance cost is used to quantify the performance of the
randomized MPC algorithm in the next section.

B. Simulation results

The performance of the proposed randomized MPC algo-
rithm is evaluated by testing different values for the level and
confidence parameters « and 4. For each («, §) combination
we take ten simulations runs. With this data the average and
the standard deviation of the cost for each («, §) combination
is computed. This statistics capture the relationship between
the computational complexity of the algorithm (number of
tested samples) and the performance of the obtained solution.

274.99

O Mean A
— Standard deviation
/. + Standard deviation

274.98 * Best achieved

274.97

5 274.961

Q

o

s

o

F 27405t
274.941 %/{ T
27493F * *
274.92 s s s s s s s s s s

0 001 002 003 004 005 006 0.07 008 009 0.1
o with fixed &
Fig. 2. Overall performance of randomized MPC for different values of

a with 6 = 0.05. Note that as o decreases, the controller performs better
on average and becomes more consistent. However, it is possible to obtain
very good solutions even with large values of c.

For the first set of simulations a fixed value for the
confidence parameter 6 = 0.05 is used. Four different
values for the level parameter a: 0.1, 0.05, 0.02, and 0.01
are considered. The corresponding number of samples are
29, 59, 149, and 299. The average and standard deviation
of the cost for each value of « is depicted in Fig. 2. Note
that as « decreases (number of samples increases), the cost
average and its standard deviation also decrease, making the
result better on average. Fig. 2 suggests that results may

become more consistent as « decreases, but the current
(arbitrarily) chosen number of simulations per («,d) pair
is too small for a statistically confident conclusion. It is
quite possible, however, to achieve an acceptable solution
even with a very small number of samples. There is an
obvious trade-off between accuracy and complexity, which
the designer can exploit based on available hardware and
application requirements. Similar results were obtained for a
fixed o and different values of 4.

Robot Trajectory
[Obstacle
651 A Initial Condition
O Goal
6t
55
> b5r
451
4t
3.5
3 & ‘ ‘ ‘ ‘ ‘ |
-4.5 -4 -3.5 -3 -2.5 -2 -15 -1
X
Fig. 3. Robot’s trajectory during a simulation test. The robot starts at an

initial condition (—3, 7) avoids the rectangular obstacle centered at (—2, 5)
with dimensions 2 X 1, and reaches the goal at (—4, 3).

The robot’s behavior during an algorithm test is depicted
in Figures 3, 4, and 5. All figures show the robot navigating
in the environment, reaching its goal, while avoiding the
obstacle. Figure 3 illustrates this behavior in a two dimen-
sional illustration. Figure 4 shows the robot’s trajectory on a
plane in reference to the level sets of the navigation function,
plotted in the third dimension, and Fig. 5 shows a detail of
the same trajectory on an inverted section of Fig. 4.

Figure 6 shows the control inputs 69 and 98 obtained
after calculating the gradient of the navigation function and

including the deviation o,

VII. CONCLUSION

Mobile robot navigation problems can be treated within
a model predictive control framework, using navigation
functions and combined with randomized optimization al-
gorithms. Such an approach is almost model-independent, to
the degree that a control Lyapunov function is available for
the system at hand. In addition, it offers the control designer
the ability to trade performance for computational speed,
without reliance on specialized nonlinear optimization algo-
rithms. The proposed framework combines randomized algo-
rithms with CLF/navigation function-based receding horizon
optimization to yield closed loop systems with provable

Obstacle

0.8

0.6+

0.4

Navigation function

0.2

Robot trajectory -6
18 y

Fig. 4. Robot’s trajectory during a simulation test shown with the
navigation function. The robot navigates through the environment avoiding
the obstacle and reaching goal at the global minimum of the navigation
function.

Fig. 5. Robot’s trajectory during a simulation test shown with the
navigation function. Zoomed, inverted section of Figure 4.

collision avoidance and convergence properties. Numerical
results depict the mechanism with which performance is
increased at the expense of computational load, although
further numerical testing is needed to statistically confirm
this hypothesis. Ongoing work focuses on incorporating
model and environmental uncertainty.

REFERENCES

[1] A. Jadbabaie, J. Yu, and J. Hauser, “Stabilizing receding horizon
control of nonlinear systems: A control Lyapunov function approach,”
in Proceedings of the American Control Conference, San Diego, CA,
USA, 1999, pp. 1535-1539.

[2] J. Primbs, V. Nevisti¢, and J. Doyle, “Nonlinear optimal control: A
control Lyapunov function and receding horizon perspective,” Asian
Journal of Control, vol. 1, pp. 14-24, 1999.

[3] G. DE Nicolao, L. Magni, and R. Scattolini, “Stabilizing receding-
horizon control of nonlinear time-varying systems,” I[EEE Transactions
on Automatic Control, vol. 43, no. 7, pp. 1030-1036, 1998.

[4] M. Vidyasagar, “Randomized algorithms for robust controller synthe-
sis using statistical learning theory,” Automatica, Elsevier Science Ltd.,
vol. 37, pp. 1515-1528, 2001.

0
15F x 4
0,
y
1k |
0.5 4
k<)
g of .
= "
|
-0.5F ! / il

)
0 10 20 30 40 50 60 70 80

time [sec]

Fig. 6. Optimal control signals 62 and 92 obtained from the randomized
MPC for a single simulation.

[5] R. Tempo, G. Calafiore, and F. Dabbene, Randomized Algorithms for
Analysis and Control of Uncertain Systems, ser. Communications and
Control Engineering. London, UK: Springer, 2003.

[6] V. Koltchinskii, C. Abdallah, M. Ariola, P. Dorato, and D. Panchenko,
“Improved sample complexity estimates for statistical learning control
of uncertain systems,” IEEE Transactions on Automatic Control,
vol. 45, no. 12, pp. 2383-2388, December 2000.

[71 E. Rimon and D. Koditschek, “Exact robot navigation using artificial
potential functions,” IEEE Transactions on Robotics and Automation,
vol. &, no. 5, pp. 501-518, October 1992.

[8] J.-C. Latombe, Robot Motion Planning. Boston, MA, USA: Kluwer
Academic Publishers, 1991.

[9] J. Canny, The Complexity of robot motion planning. Cambridge, MA,
USA: MIT Press, 1988.

[10] R. Murray and S. Sastry, “Nonholonomic motion planning: Steering
using sinusoids,” IEEE Transactions on Automatic Control, vol. 38,
pp. 700-716, 1993.

[11] G. Oriolo, A. D. Luca, and M. Vendittelli, “WMR control via dynamic
feedback linearization: Design, implementation, and experimental val-
idation,” IEEE Transactions on Control Systems Technology, vol. 10,
no. 6, pp. 835-851, Nov. 2002.

[12] D. Wang and G. Xu, “Full-state tracking and internal dynamics of
nonholonomic wheeled mobile robots,” IEEE/ASME Transactions on
Mechatronics, vol. 8, no. 2, pp. 203-214, June 2003.

[13] R. Fierro and FE. Lewis, “Control of a nonholonomic mobile robot:
Backstepping kinematics into dynamics,” Journal of Robotic Systems,
by John Wyley & Sons, Inc., vol. 14, no. 3, pp. 149-163, 1997.

[14] J. Yang and J. Kim, “Sliding mode control for trajectory tracking
of nonholonomic wheeled mobile robots,” IEEE Transactions on
Robotics and Automation, vol. 15, no. 3, pp. 578-587, June 1999.

[15] H. Khalil, Nonlinear Systems, 3rd ed. Prentice Hall, 2002.

[16] A. Jadbabaie, “Receding horizon control of nonlinear systems: A
control lyapunov function approach,” Ph.D. dissertation, California
Institute of Technnology, Pasadena, California, October 2000.

[17] M. Ahmadi and M. Buehler, “Controlled passive dynamic running
experiments with the ARL-Monopod I1,” IEEE Trans. on Robotics,
vol. 22, no. 5, pp. 974-986, Oct. 2006.

