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Abstract— Vision-based control of a robot formation is chal-
lenging because the on-board sensor (camera) only providesthe
view-angle to the other moving robots, but not the distance that
must be estimated. In order to guarantee a consistent estimate
of the distance by knowing the control inputs and the sensor
outputs in a given interval, the nonlinear multi-robot system
must preserve its observability. Recent theoretical studies on
leader-follower robot formation exploit the interesting influence
that the control actions have on observability. Based on these
results, in this paper we present a switching active control
strategy for formation control. Our control strategy is active
in the sense that, while asymptotically achieving the formation
control tasks, it also guarantees the system observabilityin
those cases in which all the robots tend to move along non-
observable paths. As a result, both estimation and formation
performances are improved. Extensive simulation results show
the effectiveness of the proposed design.

I. I NTRODUCTION

The proliferation of robotics devices and the growing
number of their potential applications, recently lead to an
increase of interest towards multiple-robot applicationssuch
as consensus, rendezvous, sensor coverage and simultaneous
localization and mapping [1], [2].

Among these,formation controlstimulated a great deal of
research [3] due to its wide range of applicability. In particu-
lar, leader-followerformation control consists in controlling
followers’ relative distance and orientation with respectto
an independently moving leader [4].

A challenging way to address this navigation problem
is to use exclusively on-board passive vision sensors, like
omnidirectional cameras which guarantee a 360◦ field-of-
view. Visual sensors are particularly appealing due to their
low cost compared to the rich information they provide when
compared to other traditional robotic sensors (e.g. sonars,
scanners). Other approaches have shown the vision-based
control and localization for the cases of static landmarks [6],
using motion segmentation techniques based on optical-
flow [7] or with known camera calibration parameters [8].
However, we will henceforth assume that each robot is
equipped with one uncalibrated panoramic camera which
only provides the view-angle to other moving robots: in this
case the formation control problem is challenging because
of the unknown distance between the robots.
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Fig. 1. (a) - Traditional control scheme: Sensed outputsy are used by
the observerO to produce an estimatebs of the robot formation states.
The control lawC usesbs to achieve the desired formation goals. (b) -
Our switching active schemeAn analytical study of the observability (gray
block) allows us to design a switching control lawu that guarantees both
the formation stability and the system observability.

In this respect, the formation control problem with vision
sensors can be solved only if alocalization problemhas been
first solved. Localization is basically an estimation problem
in which the first issue to be addressed is the study of
observability. A system is said to be observable when it is
possible to reconstruct the initial state by knowing, in a given
interval, both the control inputs and the measured outputs [9].
For a system to preserve the observability means that the
sensor measurements will be “rich enough”, thus implying
that the error in the localization will be bounded.

In Fig. 1(a) we can observe a classic block diagram for
the control of a systemΣ (e.g. a multi-robot formation):
an observerO uses the camera measurementsy to provide
an estimatês of the system states. In the leader-follower
scenario, the formation state consists of the relative distance,
view-angle and heading between thei-th follower and the
leader. The estimated stateŝ and the desired robot formation
shapesdes are then used by the control lawC to compute
the steering inputsu needed to maintain the formation.

In the case of robotic platforms with on-board vision
sensors, we are dealing with a nonlinear system and then only
tools from differential nonlinear systems theory must be used
to prove the possibility to reconstruct the state [10]. Based
on [11], Mariottini et al. [12] presented a newobservability
rank conditionvalid for general nonlinear systems and based
on the rank of the Extended Output Jacobian (EOJ) matrix.
This new observability condition allows to recognize in real-
time and directly from the sensor domain (image pixels)
which are the robot controls that kill or preserve the system
observability. An example of a odd situation is when the



robots reachand maintain straight formation trajectories: in
this case the localization fails because the sensor outputs
(view-angles) do not change due to the zero relative motion
between the robots. As an effect, the process and the mea-
surement noises can slowly accumulate in time and make the
robots deviate from the nominal formation.

The innovative approach we present in this work makes
use of a well-known property of nonlinear systems: differ-
ently from linear systems, the observability of a nonlinear
system depends also on the inputsu. This is particularly
appealing because suggests that the design ofu can affect
(and hopefully improve) the performances of the observer
and consequently those of the overall robot formation. Based
on this property and as an innovative contribution, we present
a control strategy that uses the determinant of the EOJ
matrix to switch between two control laws: the first one,
used when the system is observable, guarantees exponentially
convergence to zero of the formation state tracking error; the
second one, that starts when the observability rank condition
is not verified, can be considered as anactive control law
because introduces some variations in the desired formation
sdes to both guarantee the asymptotic formation tracking and
the recovery of observability. See Fig. 1(b) for its block
diagram. The proposed active control law has a closed-form
expression that allows the study of stability. In this way
our control follows a different direction from other “active-
vision” strategies based on numerical optimization methods,
whose gap is related with the impossibility to provide an
analytical study for the asymptotic stability of the closed-
loop system.

The paper is structured as follows: in Sect. II we introduce
the leader-follower sensing and communication assumptions,
together with the kinematic modelling. In Sect. III we present
the Observability Rank Condition and use it to show the non-
observable robot trajectories. The switching control strategy
and the active control law are presented in Sect. IV, together
with the stability analysis. Simulation results are presented
in Sect. V., while concluding remarks are in Sect. VI.

II. T HE LEADER-FOLLOWER SENSING, COMMUNICATION

AND KINEMATIC MODEL

Let us consider the leader-follower setup in Fig. 2. Without
losing in generality and for the sake of simplicity, hereafter
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Fig. 2. Leader-follower setup in polar coordinates.

we will consider only the case with one follower. The
extension to multiple followers is straightforward [12].

Each robot is equipped only with an omnidirectional cam-
era [13]: the one on the leader measures the view-anglesξ
andψ given respectively by the observation of the follower’s
centroid and of the colored markerP placed at a known
distanced (Fig. 2). Analogously, the camera on the follower
can measure the view-angleη to the centroid of the leader.
The angleη is then transmitted by the follower to the leader,
thus allowing the calculation of the headingβ = −ξ+η+π.
To simplify the discussion, we will henceforth referonly to
β, implicitly assuming the transmission ofη.

To summarize, themeasurement vectory on the leader is
defined as

y , [ψ β]T . (1)

The detection of the robot centroid and of the markerP
is achieved using color blob extraction or active contour
tracking [14].

The whole system can be modeled in polar coordinates
with the state vectors , [ρ ψ β]T , whereρ is the distance
from the center of the leader to the markerP . As mentioned
in the Introduction, the leader uses the camera measurements
y in (1) to provide a state estimatês. The statês is then
used to compute a control input[uF ωF ] to be sent to
each follower, in order to allow them to maintain a desired
distance and orientation to the leadersr = [ρdes ψdes]T .

The leader-follower system is described by the following
model

Proposition 1 (Leader – follower kinematic model [12]):
With reference to Fig. 2, the leader – follower kinematic
model can be written as follows

ṡ = G(s)u, (2)

whereu , [vF ωF vL ωL ]T and

G(s) =




cos γ d sin γ − cosψ 0
− sin γ
ρ

d cos γ
ρ

sinψ
ρ

−1

0 −1 0 1


 (3)

whereγ , β + ψ.
The kinematic model in the case ofq followers can be

obtained by simply extending (2).
Finally note that simple geometric considerations from

Fig. 2, together with the knowledge ofd, ψ andξ, could have
been used to analytically compute the distanceρ. However,
since this is possible only whenψ 6= ξ (i.e. non distant
robots), we then adopted an EKF to avoid this problem, as
detailed in Sect. V.

III. O BSERVABILITY OF NONLINEAR SYSTEMS

In this section we present the results onobservabilityfor
generic nonlinear systems and apply them to the leader-
follower system in (2).

A generic systemΣ is of the form

Σ :

{
ṡ(t) = f(s(t),u(t)) , s(0) ≡ s0

y(t) = h(s(t)) = [h1 h2 ... hm]T
(4)



wheres(t) ∈ IRn is the state,y(t) ∈ IRm are the sensors
measurements andu ∈ IRp is the input. As mentioned in the
Introduction, and differently from linear systems, globalor
complete observability can not be usually expected for (4)
and the notion oflocal weak observabilityat a points0 has
been introduced in [11].

A sufficient observability rank condition recently proposed
in [12], states that (4) is locally weak observable ats0 if
there exist an open set ofs0 for which the Extended Output
Jacobian matrix with rows

J = {dh
(j−1)
i (s) | i = 1, ...,m ; j = 1, ..., n} (5)

is full rank. The superscriptj refers to the order of time
differentiation of the functionshi(s).

A. Vision-based observability of leader-follower

The above observability rank condition can be applied
to the leader-follower setup of Prop. 1 with visual mea-
surements as in (1) so to obtain the following observability
condition

det(J) =
1

ρ

[
ψ̇ + ωL

]
6= 0. (6)

The above equation has an intuitive geometrical interpreta-
tion, as shown in Fig. 3: a leader〈L〉 and two followers〈F1〉,
〈F2〉 are here considered at two different time instants,t = 0
and t = 1. All the robots move with the same translational
velocity and zero angular velocity (ωL = 0). After one step
we note thatψ2(1) 6= ψ2(0) (and thusψ̇2 6= 0) due to
an initial heading different between〈L〉 and 〈F2〉. Then,
from (6), it turns out that the states2 is observable. This
is intuitively correct, since the visual information varies in
time and it is then expected to improve the localizability.
Analogously,curvilinear trajectoriesare expected to have
a favourable effect on observability, since a change of the
output signal (1) occurs there.

Remark 1 (Unobservable trajectories):In order to study
unobservable trajectories, we would like to use the observ-
ability rank test as a necessary condition, while (6) is only
sufficient. However, as pointed out in [11]-(Th. 3.11), the
observability condition is necessary when the observability
matrix is full rank everywhere except possibly within a subset
of the domain ofs. Hence, ifJ is not of rank3 for all values
of s, then the system isnot locally weakly observable. From
Fig.. 3 we can observe that the system made of〈L〉 and
〈F1〉 is not observable, sincėψ1 = 0. More in general,

〈F2〉 〈F1〉
〈L〉

t = 0

t=1

ψ1(0)=ψ2(0)

ψ2(1)
ψ1(1)

Fig. 3. Geometrical interpretation of the EOJ singularity.
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Fig. 4. Unobservable trajectories. (a) On rectilinear trajectories the
visual information is not changing sensibly so as to improvethe robot
localization. This results in a drift of the robot trajectories with respect to the
nominal (desired) ones. (b) The highlighted region indicates the time instants
t = [6, 9] sec. in which det(J) drops down to zero that also corresponds to
the trajectory drift.

along rectilinear tractṡy = ÿ = 0, thus implying that
the system is not observable since rank(J) < 3. In this
situation, every kind of process noise (e.g. wheels slippage
or unmodeled dynamics) is never corrected by the sensor
data which is not informative along straight paths. To remark
this phenomena, in Fig. 4(a) we show a snapshot from the
simulation results, showing a leader and two followers along
rectilinear trajectories (EKF is used here as the observer):
while they are expected to move along straight nominal
paths, their actual trajectories exhibit large drifts withrespect
to the desired trajectory. Also, exactly in correspondenceof
these drifts (t = [6, 9] sec.) the value of det(J) drops down
to zero in Fig. 4(b), thus revealing itself as an index of non-
observability.

Remark 2: It is paramount to note that the observability
condition (6) can be used to detect the observability in real-
time. The leader needs only to computeψ̇ and to knowωL.

IV. V ISION-BASED ACTIVE FORMATION CONTROL

In what follows we first review astandard input-state
feedback formation control law used in [4], [12]. This control
exponentially stabilizes to zero the formation tracking error
(distance and angle)along all the trajectory. However, as
shown in Fig.4(a), along rectilinear tracts the formation
observability will not be preserved. In Prop. 2 we then
introduce the main contribution of this paper, i.e. anac-
tive control strategywhich guarantees both the asymptotic
(but not exponential) convergence to zero of the formation
tracking error along rectilinear tracts, as well as the system



observability. We finally present the switching strategy to
switch from the standard to the active control in the case in
which the observability condition (6) is not satisfied.

A. Standard leader-follower formation control

The leader-follower kinematics in (2) can be written as
{

ṡr = H(s)uF + G(s)uL
β̇ = ωL − ωF

(7)

wheresr , [ρ ψ]T and

H(s) =

[
cos γ d sinγ
− sin γ
ρ

d cos γ
ρ

]
, G(s) =

[
− cosψ 0

sinψ
ρ

−1

]
.

(8)
The following control law stabilizes the formation towardsa
certain desired statesdesr = [ρdes ψdes]T [15]:

uF = H(ŝ)−1(p − G(ŝ)uL), (9)

with p,−K
(
ŝr−sdes

r

)
+ ṡdes

r and whereK = diag{k1, k2}
with k1, k2 > 0. Equation (9) acts in (7) as a feedback
linearizing control, so that the closed loop formation error
dynamics

ṡr = sdesr − K(sr − sdesr ), β̇ = ωL − ωF (10)

become exponentially convergent to zero [4].

B. The Active Formation Control Strategy

Proposition 2 (Active control law):Let ŝ be an estimate
of s = [ρ ψ β]T as provided by the observerO and let also
ŝr = [ρ̂ ψ̂]T . Then the control law

ũF = H(ŝ)−1(p̃ − G(ŝ)uL), (11)

with
p̃ , −K(ŝr − s̃desr ) + ˙̃s

des

r , (12)

where
s̃desr , [ρdes, ψdes+εψ]T , (13)

guaranteesboth the vision-based observabilityand the
asymptotic stability of the formation tracking error
e , s − sdes for any boundedc(t) 6= 0 ∀t and for a choice
of the functionεψ satisfying at the following differential
constraint:

ε̇ψ + k2εψ +
(
ωL−k2(ψ−ψ

des)+ψ̇des−c(t)
)

= 0, (14)

that is true for this choice ofεψ

εψ=−e−k2t
∫ t

0

(
ωL−k2(ψ−ψ

des
c )+ψ̇des−c(τ)

)
ek2τdτ.

(15)
Proof: Using (11)-(12) in (7), the dynamics of the

reduced state statesr can be written as

ṡr = − H(s)H−1(ŝ)[K(ŝr − s̃des
r ) − ˙̃s

des
r ]+

+ [G(s) − H(s)H−1(ŝ)G(ŝ)]uL.
(16)

Note that, using (8), (16) can be written as:

ṡr=−

[
k1 0

0 k2
bρ
ρ

]
(ŝr−s̃desr )+

[
1 0

0 bρ
ρ

]
˙̃s
des

r +

[
0(

bρ
ρ
−1

)
ωL

]

(17)

Substituting (13), the above equation becomes

ρ̇=−k1(ρ̂− ρdes) + ρ̇des (18)

ψ̇=−k2
ρ̂

ρ
(ψ−ψdes−εψ)+

ρ̂

ρ

(
ψ̇des+ε̇ψ

)
+

(
ρ̂

ρ
−1

)
ωL.(19)

For a givenc(t) 6= 0, the observability condition in (6) can
be used in (19) to obtain the following

ρ̂ = ρ
c(t)

−k2(ψ − ψdes) + ψ̇des + ωL + k2εψ + ε̇ψ︸ ︷︷ ︸
α(t)

. (20)

Using (20) into (18), a linear differential equation for the
distance tracking erroreρ , ρ− ρdes is obtained

ρ̇ = −k1

(
ρ
c(t)

α(t)
− ρdes

)
+ ρ̇des.

Imposing at this point the exponential stability ofeρ, corre-
sponds in constrainingα(t) = c(t), i.e., from (20),

c(t) = −k2(ψ − ψdes) + ψ̇des + ωL + k2εψ + ε̇ψ (21)

which gives the differential equation in (14).
The stability ofeψ = ψ − ψdes can be studied using (21)

to retrieve:

ψ̇ − ψ̇des = −k2eψ + (k2εψ + ε̇ψ)︸ ︷︷ ︸
p(t)

. (22)

From (14), the perturbationp(t) = −ωL+k2eψ−ψ̇
des+c(t)

is bounded, sinceωL, c(t) and ψ̇des are bounded also. The
boundedness ofp(t) implies thatψ−ψdes is asymptotically
stable. Finally, the stability of the internal dynamicsβ can
be proved analogously as in [4].

C. Switching strategy

We have just presented two control strategies, the one
in (9) and the active one in (11). They only differ for the
desired value given to the angleψdes that, in the active
control strategy, is augmented byεψ. The switching strategy
block diagram is shown in Fig. 5: the standard control law (9)
is used from the beginning and when the observability

s
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sdesr

ŝ

ΣN
y

(
ψdes if det(J)6=0

ψdes+εψ else

Fig. 5. Block diagram for the switching strategy. When the system becomes
non-observable, i.e. (6) is not verified, the active strategy guarantees both
the observability and the asymptotic tracking error stability.



condition (6) drops down to zero, then the active strategy
in (11) is used.

In this way, when the robots are moving along observable
paths then the exponential formation is guaranteed. Also,
when they move along non-observable trajectories, then the
active control guarantees the asymptotic convergence of the
formation and the maintenance of the observability.

V. SIMULATION RESULTS

This section presents extensive simulation experiments
we conducted to illustrate the effectiveness of our active
switching control strategy. The following velocity input was
assigned to the leader,

vL(t) = 0.3 m
/

s

ωL(t) =

{
0 rad

/
s if t ∈

{
[0, 6], (14, 20], (28, 34]

}

π/8 rad
/

s otherwise,

thus corresponding to a piecewise rectilinear-circular
trajectory that is particularly suited for testing the
proposed control strategy. The formation considered in
the simulation experiments consists of two followers. We
set s(0) = [0.261 2.183 1.047 0.368 4.399 0.524]T

and ρdes1 = ρdes2 = 0.3 m., ψdes1 = 3π/4 and
ψdes2 = 5π/4. The gain matrix of the controller is
K = 5 I4, where I4 denotes the4 × 4 identity matrix.
The observerO we used is an EKF initialized with
ŝ(0| − 1) = [32ρ1(0) ψ1(0) β1(0) 3

2ρ2(0) ψ2(0) β2(0)]T

corresponding to a 50% perturbation of the unknown
distances to the leader and with a covariance matrix
P(0| − 1) = 10−2 · diag{1, 1.1, 1.1, 1, 1.1, 1.1}.
The other parameters areTc = 10 ms, d = 0.1 m,
Q = diag{3 · 10−5, ̺, ̺, 3 · 10−5, ̺, ̺} and R = ̺ I4,
where ̺ = 0.9187 · 10−4 rad2. White gaussian noise is
added to the measurements.

Fig. 6 shows the robots trajectories in the cases of applying
both thestandardbasic control approach of Sect. IV-A (red
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dotted trajectory) and theswitching active controlof Sect. IV-
B-IV-C (blue dashed trajectory). As previously shown, the
standard control can not improve the observability along
rectilinear tracts, and then the followers are drifting from the
nominal trajectory (e.g.[6, 9] s.). In fact, visual data are not
changing sensibly so as to improve the localization process
against the accumulation of process noises over time.

On the other hand the active strategy, automatically ac-
tivated when the non-observability in detected, successfully
preserves both the formation and the system stability (con-
tinuous bold green trajectory in Fig. 6). In Fig. 7 we can see
the improvement on the localization errorρi − ρ̂i for each
follower: while the error with the standard control leaves
the 2σ-bounds exactly along the rectilinear trajectories, in
the case of switching control (dark blue line) the distance
estimation erroralwaysremains inside the bounds and stays
close to zero.

As expected, since the localization performs better during
the whole robot trajectory, also the tracking error|ρ− ρdes|
is lower as shown in Fig. 8 especially along rectilinear tracts
(e.g. t = [6, 9] s.).

The effects of the active switching control strategy on
the det(J) can be observed in Fig. 9 in which the active
control (differently from the standard one) introduces some
oscillations so that the observability condition obscillates
around zero, but never stabilizes on it, thus avoiding the non
observability.
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Fig. 10. Snapshots from the video of the simulation experiments.

Fig. 10(a)-(d) shows some snapshots taken from the video
of the simulation experiments1.

In Fig. 11 we show a comparison made over 30 iterations
between the tracking errors of active and standard controls, in
the case of inter-robot communication delay. As can be seen,
the active control (dashed line) outperforms the standard
control (continuous line).

VI. CONCLUSIONS

Existing strategies for vision-based formation control sep-
arate the study of observability from the control design.
Observability study is crucial in this context since on-board
single camera only provides the view-angle to the other
moving robot, but not the distance that must be estimated.
The study of observability helps to understand which are the
robot motions that influence the system localization perfor-
mances. In this paper we presented a switchingactivecontrol
strategy for formation control. Our control strategy is active,
in the sense that integrates both control and recent theoretical
results on observability for nonlinear systems in order to
guarantee asymptotic achievement of the formation control
tasks while also guaranteeing the system observability when
all the robots are moving along non-observable paths. In
doing this we presented extensive simulation results to show

1www.dii.unisi.it/∼gmariottini/ActiveControl-ICRA2009.avi
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that our strategy improves sensibly the multi-robot system
performances (the localization and formation tracking error
decreases).
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