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Finding the Optimal Strategies for Robotic Patrolling with Adversaries
in Topologically-Represented Environments
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Abstract— Using autonomous mobile robots to patrol en-
vironments for detecting intruders is a topic of increasing
relevance for its possible applications. A large part of strategies
for mobile patrolling robots proposed so far adopt some kind
of random movements. Although these strategies are unpre-
dictable for an intruder, they are not always efficient in getting
the patroller a large expected utility. In this paper we propose
an approach that considers a model of the adversary in a
game theoretic framework to find optimally-efficient patrolling
strategies. We show that our approach extends those proposed
in literature and we experimentally analyze some of its features.

I. INTRODUCTION

Protecting sites against intrusions is a topic of increasing
importance, and robotic systems for autonomous patrolling
have been developed in the last years [1], [2]. These systems
usually adopt some kind of randomized patrolling strategies
in order to make their routes unpredictable for an observing
intruder [3]. However, unpredictable strategies are not always
efficient in getting the patroller a large expected utility.
Recently, models of the adversary have been considered
in the attempt to improve the efficiency of the patrolling
strategies [3], [4].

In this paper we propose an approach that, exploiting
a model of the adversary in a game theoretic framework,
finds optimal strategies that maximize the expected utility of
the robotic patroller. Specifically, our approach is based on
modeling a given patrolling situation as an extensive-form
game [5]. We recall that a game is formally defined as a
pair: the mechanism, which sets the rules of the game, and
the strategies, which specify the players’ behavior. When
the mechanism forces players to act sequentially in turns, the
game is an extensive-form game. The solution of a game is a
set of equilibrium strategies that rational players should em-
ploy [5]. In this paper, we define a game in which two players
(the patroller and the intruder) take sequential actions (like in
chess); its solution gives the optimal patrolling strategy for
the modeled situation. We formulate the problem of finding
this solution as a mathematical programming problem that
can be solved by optimization software tools [6]. The model
we propose generalizes those proposed in previous works,
because it considers environments with a topological struc-
ture (extending [4]) that can be of any form (extending [3]).
Experimental results show that our approach is viable and
can be applied in many situations.
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The main original contribution of this paper is the game
theoretical extensive-form model for robotic patrolling that
extends previously proposed models. In this way, we are able
to find the optimal patrolling strategy in a large number
of situations. We consider topological representations of
environments, leaving the inclusion of metric issues in our
model to future works.

This paper is organized as follows. The next section sur-
veys the related works on robotic patrolling with adversaries.
Section III introduces the proposed approach, including the
game theoretical model and the algorithm for finding an
optimal patrolling strategy. In Section IV we prove that
our approach generalizes that in [3]. In Section V some
experimental results are reported.

II. ROBOTIC PATROLLING WITH ADVERSARIES

A patrolling situation can be considered as characterized
by one or more patrollers and by some targets to be patrolled.
These targets can be access points along a perimeter [1],
[3] or areas with some value [7]. Patrolling can be con-
veniently performed using mobile robots [1], [2], [3]. The
study of robotic patrolling is particularly interesting when,
due to some characteristics of the setting (e.g., speed of
the patrollers and time needed by a possible intruder to
attack a target), the patrollers cannot employ a deterministic
strategy for their movement. As a result, they should adopt
an unpredictable patrolling strategy, randomizing over the
targets trying to reduce the intrusion probability of a possible
adversarial [3]. Some patrolling strategies of this type have
been developed, but they usually do not consider any explicit
model of the adversary [1], [8]. Only very recently, adver-
saries have been taken into account in developing patrolling
strategies. As shown in [9], patrolling strategies that consider
models of adversaries can give the robot a larger expected
utility than strategies that do not. The two main methods
proposed in literature for robotic patrolling with adversaries
differ in that one does not explicitly model the preferences
of the adversaries [3], whereas the other one does [4], [7].
Before briefly reviewing these methods, we note that similar
strategic problems have been addressed in the pursuit-evasion
field (e.g., [10], [11]). However, some assumptions, including
the fact that the evader’s goal is only to avoid capture and
not to enter an area of interest and the fact that the evader
sometime knows the current position of the pursuer but not
its strategy, make the pursuit-evasion strategies not directly
applicable to our patrolling scenario.

The work in [3] does not employ any explicit model of the
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of patrolling a perimeter divided in cells, each one allowing
the access to an area of interest, by employing a team of
synchronized mobile robots acting in turns. The perimeter is
considered as a ring whose cells require the same penetration
time, say d turns, to the intruder for entering. The robots keep
an evenly separated formation by moving in a coordinated
fashion. The patrolling strategy does not depend on the
specific cells in which the robots are. The authors present
different movement models for the robots. In the simplest
one, all the robots move clockwise with probability p or
move counterclockwise with probability 1 — p. In the most
realistic movement model, all the patrollers move to the
cells they are headed to with probability p and reverse their
heading, staying in their current cells for a turn, with prob-
ability 1 — p. Since the patrollers do not know the intruder’s
preferences, they assume that the intruder will try to enter
through its most convenient access. The patrolling strategy
thus amounts to choose p that maximizes the minimum
expected utility for the patrollers or, equivalently, that max-
minimizes the detection probability. This work presents two
main limitations: first, it is applicable only to very special
ring-like environments where all the cells have the same
penetration time and the patrollers have no preferences over
the cells, second, as we show in Section IV, the strategy
it produces is optimal only when also the intruder has no
preferences over the cells.

The work in [4] explicitly models the preferences of the
adversary. The authors consider the problem of patrolling n
areas by using a single patroller such that the number of turns
it would spend to patrol all the areas is strictly larger than
the penetration time d of the intruder, d < n. They model
such a problem as a two-player (i.e., the patroller and the
intruder) strategic-form game (like rock-paper-scissors game)
with incomplete information (i.e., the intruder’s preferences
over the areas can be uncertain to the patroller) [5]. The
actions available to the patroller are all the possible routes of
d areas, while the intruder can choose a single area to enter.
The intruder is assumed to be in the position to repeatedly
observe the actions of the patroller (staying hidden), derive
a correct belief on the patroller’s strategy, and find its
best response given the patroller’s strategy. The appropriate
equilibrium concept, in which the patroller maximizes its
expected utility, is the leader-follower equilibrium [12]. (A
slight variation of this approach has been applied to the
problem of patrolling n areas with m < n static checkpoints
at the Los Angels International Airport [13].) As discussed
in [14], the approach in [4] presents two drawbacks. First,
since it does not consider time spent by the robot to move
between two areas, the model is applicable only when this
time is negligible with respect to the time needed to patrol an
area. This amounts to say that the model does not consider
the topology of the environments, because the patroller can
move between any two areas in a fixed time. Second, to
avoid game theoretical inconsistencies, the decisions of the
patroller must be over the next area to patrol, and not over
the next route to follow.

III. THE PROPOSED MODEL
A. The Basic Model

The model we propose captures adversarial robotic pa-
trolling settings based on the following assumptions:

o time is discretized in turns;

« there is a single patrolling robot;

o the environment to be patrolled can be represented
with a 2D grid map, whose cells can be either free or
obstacles; in this paper we only consider the topology
of the environment (i.e., the adjacency of the cells) and
not its metric features (e.g., the size of the cells);

« the intruder can observe the patroller’s strategy before
acting (this amounts to say that the intruder knows the
patrolling strategy, as in [4]);

« the intruder cannot do anything else for some turns once
it has attempted to enter a cell (this amounts to say that
penetration takes some time, as in [3], [4]).

The patroller’s goal is to detect the intruder. If this happens,
we say that the intruder has been “captured” by the patroller.
In what follows we detail the models of the environment, of
the patrolling robot’s movement and sensing capabilities, and
the game mechanism.

The environment is composed of a set C' of n free cells to
be patrolled, whose topology is modeled by a directed graph
G. We represent G by a matrix T'(n x n), where ¢, ; = 1 if
cells 7 and j are adjacent and ¢; ; = 0 otherwise. A cell may
represent an access point to an area with some value (e.g.,
a door, as in [3]) or can be an area with some value (e.g.,
an house, as in [4]). Agents can have different preferences
over the cells, as defined later. Finally, each cell 7 requires
the intruder d; > O turns to enter (d; is called the penetration
time for cell 7).

Our approach accommodates for different movement mod-
els for the patrolling robot. Here, we illustrate the simplest
one: in one turn the patroller moves between two linked
(adjacent) cells in G and patrols the destination cell. (The
model can be easily augmented, for example for capturing
the time spent by the robot in turning around, as in [3].) As
other approaches in literature, we do not adopt any movement
model for the intruder: it can directly enter any cell. The
patrolling robot is equipped with a sensor able to detect
the intruder within a range r. For now, we assume that the
patroller can sense only the cell in which it currently is,
namely » = 1. We will extend r in Section III-D.

We model the above scenario as a two-player dynamic
repeated game [5]. A strategic-form game is repeated at
each turn, in which the patroller and the intruder play
simultaneously. The patroller chooses the next cell to patrol
among those adjacent to its current cell; formally, its actions
are move(i,j) where 4 is its current cell and j is the
destination cell, such that ¢; ; = 1. The intruder, if it has not
previously attempted to enter any cell, chooses whether or
not to enter a cell and, in the former case, what cell to enter
(formally, wair and enter(i)). If, instead, the intruder has
previously decided to enter a cell ¢, it cannot take any action
for d; turns after decision. The repeated game is dynamic
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since it changes at each repetition (turn): the positions of
the patroller (i.e., its current cell) and of the intruder (i.e.,
trying to get inside a cell or waiting) change. We assume the
patroller’s policy to be Markovian. The probability according
to which the patroller chooses the next cell to visit depends
only on the cell in which it currently is. We denote by
o ; the probability for the patroller to move from cell ¢
to cell j. The set {a; ;} of all these probabilities thus
constitutes the patrolling strategy of the robot. Under the
hypotheses of patroller’s Markovian strategy and intruder’s
observability of the patroller’s actions, the intruder’s strategy
during the game can be conveniently represented by using
the following macro-actions: {enter-when(i,j) : 1 < i,j <
n} U {stay-out} where i is the cell to enter and j is the
cell where the patroller was at the last observation. Action
enter-when(i, j) corresponds to make wait while the patroller
is not in cell j and then make enter(i); stay-out corresponds
to make wait forever. The possible outcomes of the game
are: intruder-capture, when the intruder attempts to enter a
cell ¢ at ¢ and the patroller visits cell ¢ in the time interval
{t,t +1,...,t + d; — 1}; penetration-i, when the intruder
enters a cell ¢ at ¢ and the patroller does not visit cell 7 in
the time interval {¢,¢ + 1,...,t + d; — 1}; no-attack, when
the intruder never enters any cell.

Agents’ payoffs are defined as follows. We denote by
X; and Y; (with ¢ € {1,2,...,n}) the payoffs to the
patroller and to the intruder, respectively, when the outcome
is penetration-i. We denote by X, and Y the payoffs to
the patroller and to the intruder, respectively, when the
outcome is intruder-capture. For the sake of simplicity, we
assume that, when the outcome is no-attack, the payoff to
the patroller is Xy and the payoff to the intruder is 0.
(The rationale is that, when the intruder never enters, it gets
nothing and the patroller preserves values of all the cells.)
Consistency constraints over these values are: X; < X and
Yo <0<Y; forallie{l,2,...,n}.

An example of environment captured by our model is
depicted in Fig. 1. The bold numbers identify the free cells;
black cells are obstacles; the values reported in cell 7 are
(X;,Y;). The values (Xo,Yp) are (1,—1). Note that the
payoffs to the patroller are given in such a way that it
prefers the intruder entering cell 04 rather than cell 06 (this is
equivalent to say that cell 04 contains “less value” than cell
06). Note also that cells 04, 06, and 12 have some interest for
the intruder (for them, Y; > 0). They may represent houses
with goods to rob or access points to a warehouse. In this
sense, our model is very general and can represent several
situations. In a real setting, values Xy, X;s, Yy, and Vs
can be estimated according to the value of the real places
corresponding to cells, while penetration times d;s can be
estimated according to the difficulty to intrude in the places.

B. The Solution Concept

According to game theory, a solution for the game we
have defined is a strategy profile o* = (0;, oy ), where o,
is the strategy of the patroller and o is the strategy of the

intruder, that is in equilibrium. (We recall that a player’s

01 02 03 04 05
(1,0) (1,0) (1,0) (.8,.4) (1,0)
doyn=1|doe=1]|doz=1|dos=6 |dos=1
06 o7 08
(.7,.5) (1,0) (1,0)
dog =4 dyr =1 dog =1
09 10 11 12 13
(1,0) (1,0) (1,0) (.8,.4) (1,0)
dy=1|dw=1]dn=1]dip=5|diz=1
Fig. 1. Example of environment

strategy is a randomization over its actions.) Usually, solution
concepts refer to Nash equilibrium, a stable strategy profile
from which no player has incentive to deviate [5]. When, as
in our case, the intruder can observe the patroller before
acting, the appropriate equilibrium concept is the leader-
follower equilibrium [12]. Indeed, it has been proved [12]
that this equilibrium gives the leader, in our case the patroller,
the maximum expected utility, knowing that the follower,
in our case the intruder, will observe its strategy and will
act as a best responder. This means that the leader-follower
equilibrium strategy for the robot is its optimally efficient
patrolling strategy. The leader-follower equilibrium exhibits
several interesting properties [12], including that it always
exists and that the follower employs pure strategies, i.e., it
plays one of its actions without randomizing.

The literature provides algorithms for finding leader-
follower equilibria only in strategic-form games by solving a
multi-linear programming problem [15]." Essentially, since at
the equilibrium the follower will employ pure strategies, it is
possible to enumerate them and, for each pure strategy o; =
i, to calculate the maximum expected utility EU, (BR; = 1)
of the patroller such that ¢ is a best response for the intruder.
There are as many maximization problems as the actions of
the intruder and each single problem is linear. The patroller
will induce the intruder to follow the strategy 7 such that
EUp(BR; = 1) is maximum. Unfortunately, no algorithm is
available for dynamically repeated games, such as the one we
are dealing with. However, by considering the macro-actions
introduced in the previous section, the dependence from the
turns is removed and the dynamic repeated game is reduced
to a strategic-form game with constraints on the patroller’s
strategies (basically, they are constrained to be Markovian).
This game can be solved by an algorithm, introduced in the
next section, that extends the basic algorithm just described.

C. Finding a Solution Via Mathematical Programming

In this section we formulate the problem of finding the
leader-follower strategy of the patroller as a mathematical
programming problem. This formulation follows from a
typical approach in algorithmic game theory [16]. We denote
by 'yi}f ’jw the probability that the patroller reaches cell j in h
steps, starting from cell i and not passing through cell w. For
the sake of presentation, we assume all d;s to be equal to d.

! An alternative formulation based on mixed integer linear programming is provided
in [7]. We do not consider it in our work, since it makes the corresponding mathematical
programming problem too hard to solve.
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The general case is an easy extension. Our solving algorithm
develops into two stages.

In the first stage we check if there exists at least one
patroller’s strategy such that stay-out is a best response for
the intruder. If such a strategy exists, then the patroller
will follow it, being its payoff maximum when the intruder
abstains from the intrusion (recall that Xy > X; for all 7).
This stage is formulated as the following bilinear feasibility
problem in which «; ;s are the unknown variables (C'\ 7 is
the set obtained by removing the element ¢ from C'):

Qg >0 Vi,j € C [€))]
Sai;=1 vieC )
e

g j < ti,j Vi,j € C A3)

v =iy Ywij€C i Ew @)

h,w h—1,w
= 3 (st t) ST )
weow Vw,i,j € C,j #w

Vz,w e C (6)
i€eC\w

Yo (1 - wf;é“) +Ye Y Al <0
i€eC\w

Constraints (1)-(2) express that probabilities «; ;s are well
defined; constraints (3) express that the patroller can only
move between two adjacent free cells; constraints (4)-
(5) express the Markovian hypothesis over the patroller’s
decision policy; constraints (6) express that no action
enter-when(w, z) gives to the intruder an expected utility
larger than that of stay-out. Notice that the non-linearity is
due to the constraints (5). If the above problem admits a
solution, the resulting ¢; ;s are the optimal patrolling strategy
for the robot. When the above problem is unfeasible, we pass
to the second stage of the algorithm.

In the second stage we find the best response 7 of the
intruder such that the patroller’s expected utility is maximum.
This is formulated as a multi bilinear programming problem,
where the single bilinear problem in which enter-when(q, s)
is the best response for the intruder is defined as follows:

Xq >0 Adi+ Xo (1 > v?,’f’)

i€C\q i€C\r

max

s.t.

constraints (1)-(5)

Yo (1 - > 75,’?) +Y, > i
ieC ieC
ieC\q 1€C\g Vz,weC (@)

> Yo (1 - wf;é“) +Yu > ol
i€C\w ieC\w

The objective function is the maximization of the pa-
troller’s expected utility. Constraints (7) express that no
action enter-when(w, z) gives a larger value to the intruder
than action enter-when(q,s). We can formulate n? above
problems, for all the possible enter-when(q, s) actions (¢, s €
{1,2,...,n}). If a problem is feasible, its solution is a set
of o js, namely a possible patrolling strategy for the robot.
From all the solutions of feasible problems, we pick out the
one that gives the patroller the maximum expected utility.

We report in Fig. 2 the optimal patroller’s strategy for the
setting of Fig. 1, as calculated with the algorithm described
here. The expected utility for the patroller is 0.805 and
the corresponding induced best response for the intruder is
enter-when(04,01), namely to enter cell 04 when the patroller
is in 01. Cells 05, 08, and 13 are excluded from the route
of the patroller. Indeed, visiting these cells would allow the
intruder to perform an always successful action, for example
enter-when(06,08) (see Fig. 1).

0.41 0.23 1 0
(D) 00 a0 ) 00 G

Fig. 2. Patroller’s optimal strategies in the setting of Fig. 1

D. Augmenting Patroller’s Sensing Capabilities

In this section we extend the sensing model of the pa-
trolling robot by considering that it can sense the presence
of the intruder beyond its current cell. We introduce a matrix
V(n x n) where v; ; = 1 if cell j can be sensed by the
patroller from cell ¢ and v;; = 0 otherwise. Matrix V
embeds a model of the detecting sensor of the robot. A
general sensing model of the patroller can be considered in
our approach by substituting constraints (4)-(5) above with:

Vi =ai; (1—v0) Ywij€CjEw (8

h,w xz_ _h—1,w ) )
W= =) 3 (afalst) - ) ©)
=y Vi€ Cj#w

In this case 'yi}f ’jw is the probability that the patroller reaches
cell j in h steps, starting from cell 7 and not having sensed
cell w. For example, let us consider that the patroller is able
to sense its current cell and the free cells that are one cell
away from it (r = 2). For instance, in Fig. 1, from cell 05, it
can sense cells 04 and 08; from cell 06, it can sense cells 01
and 09; from cell 11, it can sense cells 07, 10, and 12; and
so on. With this sensor model, the optimal patrolling strategy
for the robot is reported in Fig. 3. Comparing with Fig. 2,
cells 04 and 12 have been excluded from the patrol route.
This makes sense, since the patroller, due to the augmented
sensing capabilities, is able to patrol them from adjacent cells
that are more “central” (03 and 11, respectively).

IV. A SYNCHRONIZED MULTIROBOT SETTING

In this section we show (a) that our model can easily
capture settings with multiple synchronized robots and ()
that the patroller’s strategy produced by our approach, when
the patroller and the intruder have no preferences over the
cells, and by the approach presented in [3] are the same.
Hence, since our approach is able to capture more general
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Fig. 3. Patroller’s optimal strategy in the setting of Fig. 1 with r = 2

settings (like that in Fig. 1 with = 2), our results generalize
and extend those presented in [3].

We recall that the algorithm in [3] is applicable to ring-like
environments where all the cells have the same penetration
time and the team of synchronized patrolling robots have
no preferences over the cells. Our model can capture this
multirobot setting by exploiting sensing augmentation of
previous section. Basically, we can imagine to have a single
virtual robot that is able to sense all the cells wherein the real
robots are. This can be easily accounted for by appropriately
setting matrix V. Consider the example reported in Fig. 4
with four robots (depicted as black circles). With » = 1
the virtual robot is able to sense cells 01, 04, 09, and 12.
If the robots are synchronized (as in [3]), we can select a
real robot r, say that in cell 01, and express the patrolling
strategy of the virtual robot in terms of the patrolling strategy
of r. The actions available to the intruder are of the form
enter-when(i, j) where ¢ is the cell to enter and j is the
cell wherein r is. Applying the algorithm of Section III-C
to this model returns the optimal strategy for the patrolling
multirobot system. Fig. 5 shows this strategy for the setting
of Fig. 4.

ol@| o2 03 o1@| 05
(1,0) (1,0) (1,0) (8.4) | (1,0)
dyp=1|doa=1|doz=1|dos =2 |dps=1
06 o7
(.7.5) (1,0)
do = 2 dog =1

08 9@ 10 11 12@
(1,0) (1,0) (1,0) (8.4) | (1,0)
dyg=1]dip=1|dn=1|dip=5|diz=1

Fig. 4. A synchronized multirobot scenario

We now show that the optimal strategy in our model (i.e.,
the leader-follower strategy) and the one in [3] (i.e., the
maxmin strategy) are the same when the patroller (intended
as a single virtual robot) and the intruder have no preferences
over the cells. We state the following theorem.

Theorem 4.1: When both the patroller and the intruder
have no preferences over the cells, the patroller’s leader-
follower strategy in the game of Section III-A is a maxmin
strategy.

Proof. The situation when agents have no preferences
over the cells can be easily modeled by setting X; and

CevCemoe 3;@

041 Joar 039(
0.3 0.3
O 29 0.4
0.28
0 33 0 29 0.29
Fig. 5. Patrollers’ optimal strategy in the setting of Fig. 4

Y; to be the same over all the cells. In this situation, the
game described in Section III-A can be easily translated
into an equivalent zero-sum game. By the von Neumann
and Morgenstern theorem [5], in a two-player zero-sum
game agents’ maxmin strategies and minmax strategies are
equivalent and they are the optimal agents’ strategies. That
is, they constitute a Nash equilibrium. Moreover, by the
von Stengel and Zamir theorem [12], in a two-player zero-
sum game the leader-follower strategies of the leader are
equivalent to those in the Nash equilibrium. Hence, under the
hypotheses of the theorem, the patroller’s optimal strategies
are maxmin strategies. 0

V. EXPERIMENTAL RESULTS

In this section we discuss some experimental issues related
to the proposed approach. The computation of the optimal
patrolling strategy, namely the solution of the mathematical
programming problems of Section III-C, has been obtained
by defining our model with AMPL [17] and using the
SNOPT 7.2 [6] solver on a Pentium R 3 GHz 1 GB RAM
Linux computer. The average time for solving each bilinear
programming problem of Figs. 2 and 3 is 7s and 4.9s,
respectively. The dimension of each bilinear programming
problem, and consequently the time needed to solve it, grows
with n and d and decreases with 7. For example, considering
different settings with r = 1, average computational times for
each bilinear programming problem range from 0.05s when
n = 5, to 4.33s when n = 10, and to 80s when n = 20.
Moreover, considering the problem in Fig. 1 with r = 1
and changing d from 1 to 10, the average computational
time grows linearly from 0.5s to 1 minute for each bilinear
programming problem. Qualitatively speaking, our compu-
tational times are of the same order of magnitude of those
reported in [7] for similar scenarios. Still from a qualitative
point of view, the number of cells (n = 20) our approach
can currently manage in reasonable time compares well to
the “manageable” number of houses to patrol in [7] (m =7,
but with more adversarial types) and to the “manageable”
distance between two consecutive robots in [3] (6 = 16,
where this distance plays a role similar to the number of
areas to patrol).

Given a patrolling scenario modeled according to our
approach, the patrolling strategy we derive is optimal for the
scenario, since it gives the patroller the maximum expected
utility. Hence, there is little point in comparing our approach
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with other simpler patrolling strategies, for example with ran-
dom movements. We have already shown that our approach
generalizes the approach in [3]. Moreover, the comparison of
the patrolling strategy produced with our approach with that
produced with the approach in [4] is unfair since the latter
model does not consider the topology of the environment.
Hence, we present an experimental analysis of the parameters
d and r, that play an important role in our approach.

Let us consider the environment depicted in Fig. 1 and
assume that the penetration times are all equal, d; = d Vi €
C. Given a single patroller able to sense only its current cell
(r = 1), we can observe that if d is larger than an upper
bound d > d. = 12 the intruder will always be captured
with a deterministic strategy. The same holds, when r = 2,
for d > di = &. Furthermore, when » = 1 and d is smaller
than a lower bound d < d! = 4 there is at least one cell 3
that can be successfully penetrated by the intruder regardless
of the patrolling strategy. For example, assuming d = 2,
the action enter-when(06,03) is always successful for the
intruder since it is impossible for the patroller to reach cell
06 starting from cell 03 in h < 2 steps, namely before the
intrusion is successfully ended. Also when » = 1 and d = 4,
the optimal patroller strategy cannot prevent the intrusion
and focuses only on cells 06 and 12, obtaining the patroller
an expected utility of 0.8, corresponding to the fact that the
intruder enters cell 04. Similarly, when r = 2, for d < d% =3
the intrusion is unavoidable. Finally, when » = 1, we found
that for d = 11 the optimal patrolling strategy forced the
intruder to never attempt to enter (according to Section III-
C, the first stage of our algorithm found a patrolling strategy
for which stay-out is the intruder’s best response). (Note that
the above considerations relative to bounds d;, and dj can
be generalized to other patrolling scenarios.) The trend of
the patroller’s expected utility with respect to d is shown in
Fig. 6, for different sensing models (1 < r < 4). When the
value of d increases (modeling a weaker intruder) the pa-
troller’s expected utility increases. Furthermore, augmenting
the sensing capabilities of the patroller (fromr = 1 tor = 4)
leads to an improvement of its expected utility.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper we have presented an approach to de-
velop optimal strategies for patrolling mobile robots. These
strategies have been derived by considering a model of the
adversary within a game theoretic framework. Our approach
extends [3], by considering more general environments,
and [4], by considering the topology of the environment.
Experimental results show the viability of our approach.

The work presented here can be improved in many
ways. For example, in order to address environments of
a more realistic size, more efficient algorithms for solving
the multi bilinear programming problems of Section III-C
are required [18]. Moreover, the environment model and the
movement and sensing models of the patrolling robot could
be refined by introducing metric aspects. In general, the
applicability of the proposed model to real scenarios will be
the goal of future work. Finally, the extension of the proposed
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Fig. 6. Patroller’s expected utility vs. d and r

model to a general multirobot setting in which the robots are
not synchronized requires further investigation.
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