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Abstract— We consider the task of planning smooth trajecto-
ries for robot motion. In this paper we make two contributions.

First we present a method for cubic spline optimization; this (a)
technique lets us simultaneously plan optimal task-space tra-
jectories and fit cubic splines to the trajectories, while obeying

: : : . Start Goal
many of the same constraints imposed by a typical motion )
planning algorithm. The method uses convex optimization Double pendulum planning task

techniques, and is therefore very fast and suitable for real-time
re-planning and control. Second, we apply this approach to the
tasks of planning foot and body trajectory for a quadruped

robot, the “LittleDog,” and show that the proposed approach (b)
improves over previous work on this robot. f f

I. INTRODUCTION

In this paper we consider the task of planning smooth Initial plan Cubic spline
trajectories for robot motion. This is one of the fundamknta
tasks of robotics, and has received a great deal of attention
over the past several decades. One strategy that has proven (©)
particularly effective for this task is the use of smooth,
parametrized splines to describe trajectories, eitheoiimt-j A

space or task-space. Cubic splines in particular are ubiggii

in robotic applications [1], as they provide a simple means, _ _ _
. . . . . Fig. 1. Simple planning task used to demonstrate the poteadisdntage

of generating smooth (twice differentiable) trajectorfes " nic spline optimization. See text for details.

robot motion.

Cubic splines for robot trajectories are typically emplye involve a slow search process, and still typically do noetak
as follows. First, one uses a high-level planning algoritom into account the final cubic spline form of the trajectory.
generate a series of kinematically feasiblgypoints that the The basic insight of the method we present in this paper
robot should pass through on its way to the goal. Next, orig that if we initially parametrize the trajectory as a cubic
fits the parameters of a cubic spline that passes through afiline, then in many cases we can accomplish both the
these points; the smoothness of the resulting cubic splir@anning and trajectory fitting simultaneously. That is,caa
leads to a smoother motion of the robot than would bdirectly optimize the location of the cubic spline waypsint
obtained, for example, by a linear spline that just intesited ~ while obeying many of the same constraints (or approxi-
between the waypoints. We refer to this as the “two-phasehations thereof) required by a typical planning algorithm.
approach, since the planning and spline fitting are done Bpecifically, in this paper we show how to plan smooth
separate phases. task-space trajectories — that is, trajectories where we ca

However, despite their advantages, cubic splines also sydfrimarily about the position of the robot's end effector —
fer from a number of drawbacks. The chief problem is thawhile maintaining kinematic feasibility, avoiding coliis,
in the typical two-phase application of cubic splines, thend limiting velocities or accelerations, all via a convex
high-level waypoint planning is done separate from the cubioptimization problem. Convex optimization problems are
spline fitting procedure, which can lead to poor trajectrie beneficial in that they allow for efficiently finding global
To convey this intuition, consider the simple planning tasloptimums [4] — this allows us to solve the planning tasks in
shown in Figure 1 (a): the objective is to move a double few milliseconds using off-the-shelf software, suitatue
pendulum, actuated at both joints, from the start to the,goakal-time re-planning and control. This approach is ifiatgd
while avoiding the obstacle. Figure 1 (b) shows a possibl@ Figure 1 (c). Because the waypoints and cubic spline
output from a typical planner (for example, a randomizednd optimized simultaneously, the resulting trajectoaes
tree planner [2]) and the corresponding cubic spline fitypically much smoother than those obtained by the two-
to these waypoints. Due to the stochastic nature of thghase approach.
planner, the waypoints do not lead to a particularly nicelfina We implement this proposed algorithm on a quadruped,
trajectory. Existing trajectory optimization techniqydkcan the “Little Dog” robot, to demonstrate its usefulness; iede
help mitigate this problem to some degree, but they usualthe task of planning foot and body trajectories for this

Jointly optimized plan and spline



robot originally motivated our approach. The cubic splinailtimately only use thé,...T — 1 parameters, as described
optimization approach that we present in this paper is above). Given thex matrix, we can find the parameters of
crucial element of our complete system on this robot, anthe cubic splines using the following set of linear equation
as we demonstrate, the method substantially improves the

quality of trajectories. a = X ©6)

The remainder of this paper is organized as follows. In Hib = Hox (1)
Section Il we review the standard means of fitting cubic c = Hix+Hb (8)
splines to a set of waypoints. Section Ill contains the chief d = H.x+Hgb )

algorithmic contribution of the paper: here we present our
method for optimizing cubic spline trajectories using aaav where theH; € R(Z+Dx(T+1) matrices depend only (non-
programming. In Section IV we discuss the application ofinearly) on the times, ...,tr. We present the complete
this algorithm to a quadruped robot, and present empiricdefinition of these matrices, as well as a derivation of the
evaluations. Finally, in Section V we discuss related workgquations, in Appendix A. However, the important point to
and conclude the paper in Section VI. gleam from this presentation is that the the parameterseof th
cubic splines ardinear in the desired locations.
[1. CuBIC SPLINES

Here we review the standard methods for fitting cubic
splines to a series of waypoints output by a planner. We In this section we present our primarly algorithmic con-
suppose that we have access to a high-level planner that pldfbution: a method for optimizing task-space cubic spline
a feasible path from a start location to a goal location. Thifajectories using convex programming. As before, we as-
path is represented as a serie¥of 1 desired time-location Sume that we are given an initial plan, now denoted

pairs: (to, 70), (t1,31), - - -, (b7, 7). (10)

(t07x6)a(tlazi)w'w(tTaz’}) (1) . . . . .

) ) However, unlike the previous section, we will not requiratth
wherezj € R" denotes the desired location of the robot apr final cubic trajectory pass through these points. Indeed
time ¢; € R, specified in task space. _ _ most of the real planning is performed by the optimization

Given these waypoints, there is a unique piecewise-cubigqpiem tself, and the initial plan is required only for sem
trajectory that passes through the points and satisfiesigert ¢ ihe approximate constraints that we will discuss shprtly

smoothne;s criteria. Specifically, we model the trajectoryy initial “plan” could simply be a straight line from the gta
between times; andt;,,, denotedz;(t) : R — R", @ |gcation to the goal location.

a cubic function The task of optimizing the location of the waypoints while
wi(t) = a; + bt —t) + et —t)2+di(t—t)°  (2) obeying certain constraints can be written formally as

IIl. CuBIC SPLINE OPTIMIZATION

wherea;, b;, ¢;,d; € R™ are parameters of the cubic spline. min - f(x)
The final trajectoryz(t) : R — R™ is a piecewise-cubic subjectto x€C

function that is simply the concatenation of these différen ) o . .
cubic trajectories wherex is the optimization variable, representing the loca-

tion of the waypointsf : R(Z+1x" _ R s the optimization

zo(1) if to <t <ty objective, andC represent the set of constraints on the
z(t) = : (3) waypoints. In the subsequent sections, we discuss several
-'73T () ftpoy <t <tp possible constraints and objectives that we use in order to

_ _ _ ensure that the resulting trajectories are both feasibte an
where we can assume that the trajectory is undefined fgmooth. The following is not meant to be an exhaustive list,

t<to andt > tr. _ _ _ but conveys a general idea of what can be accomplished in
Given the desired waypoints, there exists a unique set gfis framework. We will present more concrete examples of
coefficients{a;, b;, ci,di }i=o,... 7—1 such that the resulting such optimization problems when we discuss the quadruped

trajectory passes through the waypoints and has contingshot in Section 1V.
ous velocity and acceleration profiles at each waypbint. o . ]
To compute these coefficients, we first define the matricds Additional Variables and Constraints

x,a,b,c,d ¢ RT+1xn Spline derivatives at the waypoints.Often times we
T want objective and constraint terms that contain not ondy th

x = [af a1 - 2% ] (4) position of the waypoints, but also the velocity, accelerat

a — [ apy ay -+ ar ]T (5) and/or jerk (derivative of acceleration) of the resultingpic

_ _ o ) spline. Using (6) — (9), these terms aki@ear functions
with b, ¢, andd defined similarly (we defind’ + 1 sets of  of the desired positions, and can therefore be included in
parameters in order to simplify the equations, though we Withe optimization problem while maintaining convexity. For

1Technically, in order to ensure uniqueness of the spline la® meed to Instance, Smcepi(ti) = b;, we can addx variables that

impose a constraint on the velocity or acceleration of thepeimds, but we correspond_to the Ve|OCIty at eaCh_ waypoint by |nt.roducmg
ignore this for the time being. the constraintk = b — or rather, since to actually include
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Initial “Plan” Collision Resulting
) constraints trajectory
Kinematic feasibility region Convex subset (a) (b) ©
(a) (b) Fig. 3. lllustration of collision constraints. (a) Initiéihfeasible) plan. (b)

Height constraints imposed to avoid collision with obsta¢ty Resulting
Fig. 2. lllustration of kinematic feasibility constraint&@) Kinematically — optimized cubic spline trajectory.
feasible region fog: € [—7/2,7/2], g2 € [—2.6,2.6]. (b) Convex subset

of the feasible region. restricted to the range-7/2, /2] and joint two is restricted
the b variables in the optimization problem, we can justto the rgng¢—2.6,2.6], is show in _Ilzlgfl_JrSZ(a).Althoutg)]h this h
directly include the constraint region is not convex, we can easily find a convex subset, suc
as the region shown in Figure 2 (b). This convex subset can
H;x = Hox. be expressed as the intersection of a sphere and a half-plane
and so we can efficiently constrain the spline waypoints (or
Adding variables in this manner allows us to include obspline positions at intermediate times) to lie within thét,s
jectives and constraints that depend on the velocity termghile maintaining convexity of the optimization problem.
and the same procedure can be used to create variablegollision constraints. Although general collision con-
representing the acceleration or jerk at each waypoint.  straints can be quite difficult to handle in our framework,
Spline position and derivatives at arbitrary times.Often  jn many simple cases we can approximate such constraints
times we want to constrain the position, velocity, etc, & thysing a simple method shown in Figure 3. Here Figure 3
splines not only at the waypoints, but also at the interntedia(a) shows the initial plan used by the cubic spline optimizer
times. Using the cubic Spline formulation, such variables a (reca” from above such a p|an need to be feasib|e)_ Two way-
also a linear function of the waypoint locations. For exapl points on this initial trajectory violate the collision cstraint,
suppose we wanted to add a variablg’) representing the so we simply add the constraint, at each of these times, that
position of the trajectory at timé; < ' < ¢;41. Using  the resulting waypoint must lie above the the obstacle by
equations (2) and (3), some margin; Figure 3 (b) shows this constraint, and Figure
/ / , 9 / 3 3 (c) shows the resulting trajectory. This technique is an
2(t) = ai it — ) + et = )"+ dit' — )" api)r)oximation, because 1g) it anIy coynstrains the eﬂd-teﬁec
But from (6)—(9),as, b;, ¢; andd; are all linear in the desired position and still could lead to a collision with the artiated
positions x, so the variablez(t') is also linear in these body, 2) it assumes that theposition of the waypoints after
variables. The same argument applies to adding addition@ptimization doesn’t change, when in fact it can and 3) as
variables that represent the velocity, acceleration, dr g mentioned in Footnote 2, these collision constraints atg on
any time? Space constraints prohibit providing the completémposed at a finite number of points, so we have to insure
definition of the following matrices, but it should be clearthat the “resolution” of these points is smaller than any thi
from the discussion above that if use use ¢ RV*" to obstacles. Nonetheless, as we show in the subsequeninsectio
denote the spline positions at a variety of intermediatesim this simple approximation works quite well in practice, and

we can solve for these positions via a linear system allows us to maintain convexity of the optimization problem
. . Finally, we note that for some planning problems, adding
x = Gix+ Gox enough constraints of any of the preceeding types can lead

to an infeasible optimization problem. We mention this
primarily to emphasize that this approachrist suited to

eall planning situations; if plans must traverse through-non
convex, narrow “corridors” in the robot’s configuration spa
then slower, traditional motion planning algorithms may be
the only possible approach. However, for situations where
our method can be applied, such as the LittleDog planning
tasks we describe below, our method can produce highly-
Hptimized trajectories extremely quickly.

and similarly for other derivatives.

Kinematic feasibility constraints. Since we are specif-
ically focused on planning trajectories in task-space, & k
requirement is that points on the spline must be kineméical
feasible for the robot. While the kinematic feasibility regi
of an articulated body with joint stops is not typically a
convex set, we can usually find a suitatsabset of this
kinematic region thats convex.

For example, consider the double pendulum shown i
Figure 2. The kinematically feasible region, when joint @e B Optimization Objectives

2In theory, if we wanted to ensure that the entire spline olzepssition Given the Va”a_bles a”d ConStr_a'ntS _deSC“PEd_ above'_ we
or derivative constraint, we would have to add an infinite nemaf such  lastly need to define our final optimization objective. While

variables. However, as we will show, in practice we can sbtgood e have experimented with several different possible opti-
results by introducing a very small number of additional Jalga, greatly

increasing the practicality of the approach. This same denation applies m'zat'_on objectlves, one th?-t_ appears to WOi‘lf quite welbis t
to the kinematic feasibility and collision constraints. penalize the squared velocities at the waypoints and at a few
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Fig. 6. Foot planning task, and initial trajectory.

architecture for the quadruped, submitted to DARPA for the
A Learning Locomotion project. Due to space constraints we
only give a brief description of the quadruped task in gelnera

we refer the reader to [8] for a more complete description
of our system, excluding the cubic spline optimization.

The basic planning task that we consider in this paper
is as follows: given a current position of the robot, and
two upcoming footsteps plan trajectories for the feet and
robot center of gravity (COG) that achieve these footsteps;
Figure 5 illustrates this planning task. Successfully e¢hi
ing the footsteps requires that the trajectories obey akver
constraints, such as ensuring that the COG and foot loeation
are jointly kinematically feasible and collision free, and
ensuring that the robot is statically stable as it moves its

3 e i : feet. In the subsequent section, we show how to apply the
Fig. 5. Planning task, taking two steps over rough terrain. techniques from the previous section to plan the foot and
COG trajectories respectively.
intermediate points between each waypoint. More formally,
we use the optimization objective A. Planning Foot Trajectories

The chief aim in planning foot trajectories is to achieve
smooth motions that avoid collision with the terrain. An
where x represents the velocity at each waypoint akfd illustration of this task is shown in Figure 6, along with
represents the velocities at the midpoint between each wafe initial plan we supply to the cubic spline optimization.
point. This objective has the effect of discouraging veryrhe initial plan is a simple trapezoid, with three waypoints
large velocities at any of the spline points, which leads tallocated for the upward and downward “ramps”, and the
trajectories that travel minimal distances while keepimigy ~ remaining waypoints in a line, spaced in 2cm intervals. We
smooth. However, while this objective works well for ouruse the following optimization problem to plan the foot
settings, there are many other possible objective funstioftrajectories:
that might function better in other cases such as minimizing T
the maximum velocity, average or maximum acceleration, —min  tr x4 trx % 11)
average distance between spline points, or (using approxi- .. .~

. T
f %) =trxTx +trx’ %

mations based on the Jacobians along the initial trajectory subject to H;x = Hax 12)

average or m'c_lximum joint velocities or torq_ugs._ _ 3% — E(ng + H,%) (13)
One objective that cannot be easily minimized is the , 2 )

total time of the trajectory. Recall that while the position X' = Gix+ Gox (14)

velocity, etc terms all linearly related by equations (8)( %' = Gax + G4% (15)

these equations also involve non-linear, non-convex fanst

Xo,: = &0, X7:= &7, X0.=0, X7, =0 (16
of the times. However, there has been previous work in 07 200 T T =0, T (16)

approximately optimizing the times of cubic splines [5]}, [6 X“” =0, Xty =0, t=0,1 a7
[7], and if the total time of the trajectory is ultimately the Xpp <0, %, <0, t=T-1,T (18)
most important objective, these techniques can be applied. Rpw > Rep1a

P } t=2,...,T—3 (19)
IV. APPLICATION TO A QUADRUPED ROBOT by = S+ly

In this Section we present the primary empirical result of X2 <0, #= i’ e T'=2 ) (20)
this paper: the successful application of these methods to (Xt,o — Xt42,0) 2+ (Xt,y — Xtt2,y) (21)
a quadruped, the “LittleDog” robot, shown in Figure 4. In < (Bem)?, t=0,T-2
particular, we use cubic spline optimization to plan food an x'i.>&,(t)+2m, i=1,...,N (22)
body trajectories for statically stable locomotion ovenghb Xt < max ), t=1,...T. (23)

terrain. The system we present here is used in our software =1...N



Back Left Front Left Stability Triangle fully in [8]; as long as the COG is within this triangle, the
y

o i robot can take either of the two steps while maintaining
J—>x Travel Direction /..._... stability. Therefore, the initial plan proceeds in two péms

first moving into the supporting triangle, and then moving

\/4 \/ forward in the triangle while taking the two steps. Although
\_, not shown entirely in Figure 7 (b) for the sake of clarity,

Back Right Front Right we always use nine waypoints in the COG trajectory splines:
Initial Pose and Desired Steps Initial Body Plan three to move the COG into the supporting triangle, and three
(a) (b) for each foot movement. Since planning the COG trajectory

requires knowledge of the foot locations, we first use the
Fig. 7. (a) COG planning task. (b) Initial trajectory for t®©G plan.  method above to plan trajectories for the moving feet, which
we denotezy, (t) and zy,(t). We then use the following

While there are many different terms in this optimizationoptimization problem to plan the COG trajectory:
problem, the overall idea is straightforward. The optirtiaa

ST T
objective (11) is the squared velocity objective we disedss _ trxTx +trx/” %/
earlier; constraints (12)-(15) are the standard cubimsepli min o 4-) Zf:3 feas(x;., z s, (), f1) (24)
equations for adding additional variables representing re o +A 21715 feas(x; ., x, (ti), f2)
spectively the velocity at the waypoints, the acceleration subject to H;% = Hox (25)

at the waypoints, additional position terms, and additiona

o/ .
velocity terms? (16) insures that the spline begins and ends X = Gax 4 Gax (26)
at the start and goal, with zero velocity; (17) and (18) X0, = 20,20, X2.= T2, Xg. =g (27)
ensure that ther,y accelerations are positive (negative) X0,: = Tinit (28)
at the start (end) ramp, which in turn ensures that the X, €8, i=3,...,T (29)

trajectory will never overshoot the start and end locatibns
(19) extends the previous constraint slightly to also emsuwhere
that thex, y accelerations during the main trajectory portion feas(Zpody, Ttoot, f)
are monotonic; (20) forces the accelerations during the
main portion of the trajectory to be negative, which ensur
that the spline moves over any pbstgcles in one single arcly POiNt 2104, and whereS denotes the support triangle.
]Srzolrletﬂzu;?asrtth;[;h:nl(?St(\g?(?:smés Irr;g]rz rtirz];r? ggrrrzt g‘r:\gl? ntuitively, the optimization objective (24) is a weighted
P oy RO ¥ombination of the kinematic infeasibility of the moving
(22) and (23) ensure that theposition of _the_ spline is 2cm feet plus the velocity terms we discussed earlier — in
apove any obstacle, and that no waypoint is more than ZCHFactice we choos@ = 100 to try to make the system as
higher than th_e talle_st obstgc_le. . : close to kinematically feasible as possible, and only later
Note that this precise optimization problem is not meant t?ry to minimize the velocities; constraints (25) and (26)
be a general purpose algorithm. This particular objectivé a ’

i o are again the standard cubic spline equations for velocity
the constraints were developed specifically for the quaa_fh‘upten,nS __ here we add eight additional velocity terms, one at

foot trajectory planning task, and many of the constraintﬁ1e midpoint of each two waypoints; (27) ensures that the

e o el it jectory becins, entrs the upporing rangle,anca
P p P P e initially specified waypoints, while (28) ensures that t

opt!mf’al plans. As such, thg main purpose of desg:nbmg tr]ﬁitial velocity of the spline is equal to the COG's current
optimization problem explicitly is as a demonstration oé th velocity: finally, (29) ensures that the COG waypoints will

techniques presented in the previous section, and to IV inside the supporting triangle during the times that the
concrete example of the method. feet are moving

denotes the squared distance from),, to the kinematically
asible region of footf, given that the COG is positioned

B. Planning COG Trajectories C. Experimental Results

The aim of planning a trajectory for the COG is twofold:  \yg pegin with a qualitative look at the trajectories gen-
maintaining stability of the robot while allowing the fe@t t o oiaq by this method. Figure 8 shows a typical footstep
reach their targets. This planning task is illustrated iguiré trajectory generated by this method. As we can see, the
7 (a), and the initial trajectory supplied to the cubic splin ¢ iactory moves the foot from its initial location to the

optimizer is shown in Figure 7 (b). The triangle in Figure 7yejreq jocation in one fluid motion, stepping high enough
(b) denotes the double supporting triangle, described Mog 5\gig any obstacles. Likewise, Figure 9 shows a typically

3In greater detail, we add four additional velocity terms,Ha midpoints CO_G tra]e.Cto.ry generated b.y the. aIgothm. N.Otlce .that the
of the waypoints on the “ramp” portion of the initial trajefowe addN  trajectory inside the supporting triangle is not just aigtra
additional position terms, one at each 1cm interval alongdpeportion of  line: the algorithm adjusts the trajectory in this manner to
the initial trajectory. X R X maximize the kinematic feasibility of the moving feet.

This constraint and next assume thatthe, < Zr . andioy < Z,y. Of hil L h l in thi
In the case that these inequalities are reversed, the porrding inequalities CF)urse' W ' ?.exam'mng t_ €sp 'neS. int _'S manner can
in the constraints are also reversed. help give an intuition about kind of trajectories generated
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Typical example of a foot trajectory generated by tlywrthm.
The top figure shows the resulting trajectory in 3D space|enthie bottom

shows each component as a function of time.
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Fig. 10. Terrains used for evaluating the system. The topiters fairly
trivial to navigate, while the bottom terrain is significgntnore challenging.

trials on each of the terrains, and evaluated the systems
using 1) fraction of successful runs, 2) speed over terrain,
3) average number of “recoveri@s’and 4) average tracking
error (i.e., distance between the planned and actual toati
for the moving foot. Perhaps the most obvious benefit of
the cubic spline optimization method is that the resulting
speeds are faster; this is not particularly surprisinggeesin
the splines output by our planner will clearly be more
efficient than a simple box pattern over obstacles. However,
equally important is that the cubic spline optimizationoals
leads to moreobust behavior, especially on the challenging
terrain: the previous method only succeeds in crossing the
terrain 70% of the time, and even when it does succeed
it typically needs to execute several recoveries, whereas
the cubic spline optimization method crosses the terrain in
all cases, and executes much fewer recoveries. We surmise
that this is because the cubic spline method attempts to
maintain kinematic feasibility of the moving foot at all t&s.
This is seen in Table | from the fact that the cubic spline
optimization approach has lower tracker error, implyingeno
accurate placement of feet, and therefore greater rokasstne
is challenging environments.

Finally, we want to briefly mention issues of running
time. We solve the convex optimization problems using
MOSEK, a general purpose convex solver, available at
http: //ww. nosek. com Using this software, solving

for a foot spline takes an average of 4.4 milliseconds (with
1.1 millisecond standard deviation), while solving for the
COG path takes an average of 5.4 ms (0.4 ms standard
dewatlon) These guantities remain approximately theesam
regardless of the terrain, and are fast enough to allow for
Peal-time re- planning and control on the quadruped.

Fig. 9. Typical example of a COG trajectory generated by tigerihm.

by our algorithm, we are ultimately interested in whether
or not the method actually improves performance on the
LittleDog. To evaluate this, we tested the system on two
terrains of varying difficulty, shown in Figure 10. We com-
pare the cubic spline optimization approach to the trajgcto V. DISCUSSION ANDRELATED WORK
planning method described in [8], which uses simple box- . . . . . .
As mentioned in the introduction, cubic splines are very
shapes to step over terrain, and linear splines for moviag th . . L X
common in robotic applications [1]. This paper, as well as
COG. While, as mentioned previously, the entire system f ; : T
: . : ], [6], [7] discuss methods for approximately optimizing
planning and control of the quadruped is quite complex, a
e time of the trajectory, but do not consider optimizing
other elements of the system remain fixed in the experlmer}
here. e waypoints themselves. The work of Schlemmer et al.
Table | shows the performance of the quadrUped both 5A recovery is required whenever the COG falls outside thepsrting
with and without the cubic spline optimization. We ran 1Qriangle. Again, see [8] for details.



Easy Terrain Challenging Terrain
Metric Spline Optimization  Previous Method Spline Optimization  Previous Method
% Successful Trials 100% 100% 100% 70 %
Speed (cm/sec) 7.02+ 0.10 5.99+ 0.07 6.30+ 0.12 5,594+ 0.31
Avg. Tracking Error (cm) 1.28 £+ 0.03 1.40+ 0.06 1.27+ 0.05 1.55+ 0.09
Avg. # Recoveries 0.0 0.0 0.5+ 0.37 2.22+ 1.45
TABLE |

PERFORMANCE OF CUBIC SPLINE OPTIMIZATION ON THE TWO QUADRUPE TERRAINS. TERMS INCLUDE 95% CONFIDENCE INTERVALS

[9] perhaps bears the most resemblance to our own, as they
do consider the modification the cubic spline parametergy;
themselves. However, the resulting techniques are quite
different, since they break the trajectories into multiple
segments withconstant acceleration, not the continuous
acceleration profiles that we consider here; furthermdey t
focus on splines in joint space, whereas the most integestin(3]
constraints (namely the kinematic feasibility and catiisi
constraints) in our setting are precisely those that anse d [4]
to the task-space planning.

Free-knot splines [10], [11], typically used in the statist [5]
literature, also relate to our method, as they involve chngps
both the waypoints and times of parametric splines, inclgdi  [6]

cubic splines. However, these methods typically focus on
fitting splines to data, not creating splines that relate to
any kind of trajectory planning, so the actual optimization[7]
approaches are very different.

Our method also relates to the trajectory optimization

literature in robotics [12], [13], [14], [15], though theseeth-  [8]
ods typically focus on improving a pre-supplied (feasible)
trajectory via gradient or higher-order methods. Although [g

this paper we focus on cases where the initial “plan” supplie

to the cubic spline optimization problem is very simple and
possibly infeasible, there is nothing that prevents thehoekt [10]
from being used to optimize a feasible trajectory generatddil]
by a planner, as in the approaches above: in this setting tﬂg]
algorithm could also function as a trajectory optimization
approach, specifically using a cubic spline parametrinatio
of the trajectory, and using general convex optimizationH13
techniques rather than gradient methods alone.

Planning trajectories for the quadrupeds robot in paricul [14]
has been considered in [8], [16], [17]. Although a full com-
parison between the different approaches is beyond thescqps;
of this paper, we did compare to our previous controller, [8]
and demonstrated that cubic spline optimization improv
performance. The work by Mistry et al, [18] also consider
a quadruped and specifically looks at the trade-off between
balance and kinematic feasibility, but this work is gerlgral [17]
orthogonal to our own, as it primarily considers control
strategies for achieving given trajectory.

6]

[18]
VI. CONCLUSION
In this paper we presented a cubic spline optimizatiorlg]
method, for planning smooth trajectories for robot motion.
The algorithm uses convex optimization methods to effi-
ciently plan task-space trajectories, while obeying smver
constraints, such as kinematic feasibility and avoiding-co
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APPENDIX

tact. We apply this method to the task of planning trajeetori A Derivation of the Cubic Spline Equations
for a quadruped robot, and demonstrate significant improve- In this section we derive the standard equations for cubic

ment over past work.

splines, presented in Section Il. In particular, we show tha



given desired locations and final and initial velocities of

the spline, we can solve for the cubic spline parameters
using the linear equations (6)—(9). We reiterate that thia i

standard derivation, but we include it for completeness and H,

to solidify our notation. The derivation follows that in [[19
but generalizes it to the case of arbitrary times for thengpli

points.

Recall that the trajectory from timg to ¢;,, is given by

the cubic function

.’L’i<t) =a; + bl(t — ti) + Ci(t — ti)Q + dl(t — ti)g

(30)

In order to achieve a smoother, continuous trajectory, we

impose four conditions on the spline: 1) ftit must have
the valuez;, 2) att;,; it must have the valuey, , 3) its
derivative (velocity) must be continuous &t ;, and 4) its
second derivative (acceleration) must be continuous,at
These four conditions can be written formally as

*

zi(ti) =
zi(tiv1) = o5
Ei(tiv1) = Zipa(titr)
Zi(tiv1) = Zig1(tig1)-

H; =

92 —1 -
Aty A_téj _01 0 0

0 0 Aty 0 0

. . . _:2 _:1

0 0 0 Aty  Atp_y
L O 0 0 0 0
r 2 —2 T
Al Azfg 02 0 0

0 0 0 0

: : 2 —:2

0 0 0 Atr_y Atp_y
| 0 0 0 0 0 |
-1 .
%A v

0 0 Az 0 0

0 0 0 AtZ . AtZ
L O 0 0 0 0

(38)

(39)

(40)

Using the cubic function definition (30), these conditioas ¢ Finally, substituting (35) and (36) into (34) we obtain
be rewritten in terms of the cubic spline parameters:

ai + bi Aty + ;A2 + di At

a;

b; + 2¢;At; + 3dzAtZ2
2¢; + 6d; At;

z}
*

Tit1

biy1

2¢i41

(31)
(32)
(33)
(34)

2b; +4bi1 | 4biy1 + 2042
At; Aty
6(zi —7)  6(270 —ayy)
At? AtZ,

(41)

These equations, along with the additional constraints tha
can be expressed as the second set of linear equalities (7):

where
Aty =t — . H;b = Hsx
Now we use simple variable elimination to get find explicityhere
equations for the cubic spline parameters. Specificallyaeq - -
tion (31) i diately leads to the first li tion (6 0 0 00 0 0 0
ion (31) immediately leads to the first linear equation (6) a Bo an 0 0 0 0
a=x. 0 a1 (1 o 0 0 0
Next, we use equations (32) and (33), to solvedoandd; ¢y _ 0 0 02 B 0 0 0 (42)
in terms of thex;’s andb;’s, giving: R :
3(1‘?+1 — .T:) — (le + bz-{-l)Atz 0 0 0 O ﬂT_g aT_9 O
¢ = G (35) 0 0 0 0 - ars fro ar
2(af — aiyy) + (bi + biv1) At 0000 ! ’ 0
di = 3 : (36) 2 4 4
o “=an P AL T A
This leads immediately to the third and fourth linear equa- i ‘ i+l
tions (8) and (9) and
¢ = HyxiHpb 0 0 0 0 0 0 0
—Yo To M1 0 0 0 0
= Hsx+Hb 0 —m m 7 0 0 0
r=3 3. 0 .- 0 0 7 H, = S (43)
At2 At§ : . : : :
0 £ ﬁ 0 0 0 0 0 O nr—3 Yr—2 O
0 0 A_T% 0 0 0 0 0 0 - —yr—2 Nr—2 Y7—1
H; = 2 _ 37) Lo 0 0 0 --- 0 0 0 J
Vo s _ 6 6
PP At%ﬂ71 At%«,l ’77, — At? ) 777, Atl2+1 At?
L o .- 0 0 |




