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Abstract— We consider the task of planning smooth trajecto-
ries for robot motion. In this paper we make two contributions.
First we present a method for cubic spline optimization; this
technique lets us simultaneously plan optimal task-space tra-
jectories and fit cubic splines to the trajectories, while obeying
many of the same constraints imposed by a typical motion
planning algorithm. The method uses convex optimization
techniques, and is therefore very fast and suitable for real-time
re-planning and control. Second, we apply this approach to the
tasks of planning foot and body trajectory for a quadruped
robot, the “LittleDog,” and show that the proposed approach
improves over previous work on this robot.

I. I NTRODUCTION

In this paper we consider the task of planning smooth
trajectories for robot motion. This is one of the fundamental
tasks of robotics, and has received a great deal of attention
over the past several decades. One strategy that has proven
particularly effective for this task is the use of smooth,
parametrized splines to describe trajectories, either in joint-
space or task-space. Cubic splines in particular are ubiquitous
in robotic applications [1], as they provide a simple means
of generating smooth (twice differentiable) trajectoriesfor
robot motion.

Cubic splines for robot trajectories are typically employed
as follows. First, one uses a high-level planning algorithmto
generate a series of kinematically feasiblywaypoints that the
robot should pass through on its way to the goal. Next, one
fits the parameters of a cubic spline that passes through all
these points; the smoothness of the resulting cubic spline
leads to a smoother motion of the robot than would be
obtained, for example, by a linear spline that just interpolated
between the waypoints. We refer to this as the “two-phase”
approach, since the planning and spline fitting are done in
separate phases.

However, despite their advantages, cubic splines also suf-
fer from a number of drawbacks. The chief problem is that
in the typical two-phase application of cubic splines, the
high-level waypoint planning is done separate from the cubic
spline fitting procedure, which can lead to poor trajectories.
To convey this intuition, consider the simple planning task
shown in Figure 1 (a): the objective is to move a double
pendulum, actuated at both joints, from the start to the goal,
while avoiding the obstacle. Figure 1 (b) shows a possible
output from a typical planner (for example, a randomized
tree planner [2]) and the corresponding cubic spline fit
to these waypoints. Due to the stochastic nature of the
planner, the waypoints do not lead to a particularly nice final
trajectory. Existing trajectory optimization techniques[3] can
help mitigate this problem to some degree, but they usually
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Fig. 1. Simple planning task used to demonstrate the potentialadvantage
of cubic spline optimization. See text for details.

involve a slow search process, and still typically do not take
into account the final cubic spline form of the trajectory.

The basic insight of the method we present in this paper
is that if we initially parametrize the trajectory as a cubic
spline, then in many cases we can accomplish both the
planning and trajectory fitting simultaneously. That is, wecan
directly optimize the location of the cubic spline waypoints
while obeying many of the same constraints (or approxi-
mations thereof) required by a typical planning algorithm.
Specifically, in this paper we show how to plan smooth
task-space trajectories — that is, trajectories where we care
primarily about the position of the robot’s end effector —
while maintaining kinematic feasibility, avoiding collision,
and limiting velocities or accelerations, all via a convex
optimization problem. Convex optimization problems are
beneficial in that they allow for efficiently finding global
optimums [4] — this allows us to solve the planning tasks in
a few milliseconds using off-the-shelf software, suitablefor
real-time re-planning and control. This approach is illustrated
in Figure 1 (c). Because the waypoints and cubic spline
and optimized simultaneously, the resulting trajectoriesare
typically much smoother than those obtained by the two-
phase approach.

We implement this proposed algorithm on a quadruped,
the “Little Dog” robot, to demonstrate its usefulness; indeed,
the task of planning foot and body trajectories for this



robot originally motivated our approach. The cubic spline
optimization approach that we present in this paper is a
crucial element of our complete system on this robot, and
as we demonstrate, the method substantially improves the
quality of trajectories.

The remainder of this paper is organized as follows. In
Section II we review the standard means of fitting cubic
splines to a set of waypoints. Section III contains the chief
algorithmic contribution of the paper: here we present our
method for optimizing cubic spline trajectories using convex
programming. In Section IV we discuss the application of
this algorithm to a quadruped robot, and present empirical
evaluations. Finally, in Section V we discuss related work,
and conclude the paper in Section VI.

II. CUBIC SPLINES

Here we review the standard methods for fitting cubic
splines to a series of waypoints output by a planner. We
suppose that we have access to a high-level planner that plans
a feasible path from a start location to a goal location. This
path is represented as a series ofT +1 desired time-location
pairs:

(t0, x
⋆
0), (t1, x

⋆
1), . . . , (tT , x⋆

T ) (1)

wherex⋆
i ∈ R

n denotes the desired location of the robot at
time ti ∈ R, specified in task space.

Given these waypoints, there is a unique piecewise-cubic
trajectory that passes through the points and satisfies certain
smoothness criteria. Specifically, we model the trajectory
between timesti and ti+1, denotedxi(t) : R → R

n, as
a cubic function

xi(t) = ai + bi(t − ti) + ci(t − ti)
2 + di(t − ti)

3 (2)

whereai, bi, ci, di ∈ R
n are parameters of the cubic spline.

The final trajectoryx(t) : R → R
n is a piecewise-cubic

function that is simply the concatenation of these different
cubic trajectories

x(t) =











x0(t) if t0 ≤ t < t1
...
xT−1(t) if tT−1 ≤ t ≤ tT

(3)

where we can assume that the trajectory is undefined for
t < t0 and t > tT .

Given the desired waypoints, there exists a unique set of
coefficients{ai, bi, ci, di}i=0,...,T−1 such that the resulting
trajectory passes through the waypoints and has continu-
ous velocity and acceleration profiles at each waypoint.1

To compute these coefficients, we first define the matrices
x,a,b, c,d ∈ R

T+1×n

x =
[

x⋆
0 x⋆

1 · · · x⋆
T

]T
(4)

a =
[

a0 a1 · · · aT

]T
(5)

with b, c, andd defined similarly (we defineT + 1 sets of
parameters in order to simplify the equations, though we will

1Technically, in order to ensure uniqueness of the spline we also need to
impose a constraint on the velocity or acceleration of the endpoints, but we
ignore this for the time being.

ultimately only use the0, . . . T − 1 parameters, as described
above). Given thex matrix, we can find the parameters of
the cubic splines using the following set of linear equations

a = x (6)

H1b = H2x (7)

c = H3x + H4b (8)

d = H5x + H6b (9)

where theHi ∈ R
(T+1)×(T+1) matrices depend only (non-

linearly) on the timest0, . . . , tT . We present the complete
definition of these matrices, as well as a derivation of the
equations, in Appendix A. However, the important point to
gleam from this presentation is that the the parameters of the
cubic splines arelinear in the desired locationsx.

III. C UBIC SPLINE OPTIMIZATION

In this section we present our primarly algorithmic con-
tribution: a method for optimizing task-space cubic spline
trajectories using convex programming. As before, we as-
sume that we are given an initial plan, now denoted

(t0, x̂0), (t1, x̂1), . . . , (tT , x̂T ). (10)

However, unlike the previous section, we will not require that
our final cubic trajectory pass through these points. Indeed,
most of the real planning is performed by the optimization
problem itself, and the initial plan is required only for some
of the approximate constraints that we will discuss shortly;
an initial “plan” could simply be a straight line from the start
location to the goal location.

The task of optimizing the location of the waypoints while
obeying certain constraints can be written formally as

min
x

f(x)

subject to x ∈ C

wherex is the optimization variable, representing the loca-
tion of the waypoints,f : R

(T+1)×n → R is the optimization
objective, andC represent the set of constraints on the
waypoints. In the subsequent sections, we discuss several
possible constraints and objectives that we use in order to
ensure that the resulting trajectories are both feasible and
smooth. The following is not meant to be an exhaustive list,
but conveys a general idea of what can be accomplished in
this framework. We will present more concrete examples of
such optimization problems when we discuss the quadruped
robot in Section IV.

A. Additional Variables and Constraints

Spline derivatives at the waypoints.Often times we
want objective and constraint terms that contain not only the
position of the waypoints, but also the velocity, acceleration,
and/or jerk (derivative of acceleration) of the resulting cubic
spline. Using (6) – (9), these terms arelinear functions
of the desired positions, and can therefore be included in
the optimization problem while maintaining convexity. For
instance, sinceẋi(ti) = bi, we can addẋ variables that
correspond to the velocity at each waypoint by introducing
the constraintẋ = b — or rather, since to actually include
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Fig. 2. Illustration of kinematic feasibility constraints.(a) Kinematically
feasible region forq1 ∈ [−π/2, π/2], q2 ∈ [−2.6, 2.6]. (b) Convex subset
of the feasible region.

the b variables in the optimization problem, we can just
directly include the constraint

H1ẋ = H2x.

Adding variables in this manner allows us to include ob-
jectives and constraints that depend on the velocity terms,
and the same procedure can be used to create variables
representing the acceleration or jerk at each waypoint.

Spline position and derivatives at arbitrary times.Often
times we want to constrain the position, velocity, etc, of the
splines not only at the waypoints, but also at the intermediate
times. Using the cubic spline formulation, such variables are
also a linear function of the waypoint locations. For example,
suppose we wanted to add a variablex(t′) representing the
position of the trajectory at timeti < t′ < ti+1. Using
equations (2) and (3),

x(t′) = ai + bi(t
′ − ti) + ci(t

′ − ti)
2 + di(t

′ − ti)
3.

But from (6)–(9),ai, bi, ci anddi are all linear in the desired
positions x, so the variablex(t′) is also linear in these
variables. The same argument applies to adding additional
variables that represent the velocity, acceleration, or jerk at
any time.2 Space constraints prohibit providing the complete
definition of the following matrices, but it should be clear
from the discussion above that if use usex

′ ∈ R
N×n to

denote the spline positions at a variety of intermediate times,
we can solve for these positions via a linear system

x
′ = G1x + G2ẋ

and similarly for other derivatives.
Kinematic feasibility constraints. Since we are specif-

ically focused on planning trajectories in task-space, a key
requirement is that points on the spline must be kinematically
feasible for the robot. While the kinematic feasibility region
of an articulated body with joint stops is not typically a
convex set, we can usually find a suitablesubset of this
kinematic region thatis convex.

For example, consider the double pendulum shown in
Figure 2. The kinematically feasible region, when joint oneis

2In theory, if we wanted to ensure that the entire spline obeysa position
or derivative constraint, we would have to add an infinite number of such
variables. However, as we will show, in practice we can obtain good
results by introducing a very small number of additional variables, greatly
increasing the practicality of the approach. This same consideration applies
to the kinematic feasibility and collision constraints.

(a) (b)
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Fig. 3. Illustration of collision constraints. (a) Initial(infeasible) plan. (b)
Height constraints imposed to avoid collision with obstacle. (c) Resulting
optimized cubic spline trajectory.

restricted to the range[−π/2, π/2] and joint two is restricted
to the range[−2.6, 2.6], is show in Figure 2 (a). Although this
region is not convex, we can easily find a convex subset, such
as the region shown in Figure 2 (b). This convex subset can
be expressed as the intersection of a sphere and a half-plane,
and so we can efficiently constrain the spline waypoints (or
spline positions at intermediate times) to lie within this set,
while maintaining convexity of the optimization problem.

Collision constraints. Although general collision con-
straints can be quite difficult to handle in our framework,
in many simple cases we can approximate such constraints
using a simple method shown in Figure 3. Here Figure 3
(a) shows the initial plan used by the cubic spline optimizer
(recall from above such a plan need to be feasible). Two way-
points on this initial trajectory violate the collision constraint,
so we simply add the constraint, at each of these times, that
the resulting waypoint must lie above the the obstacle by
some margin; Figure 3 (b) shows this constraint, and Figure
3 (c) shows the resulting trajectory. This technique is an
approximation, because 1) it only constrains the end-effector
position and still could lead to a collision with the articulated
body, 2) it assumes that thex-position of the waypoints after
optimization doesn’t change, when in fact it can and 3) as
mentioned in Footnote 2, these collision constraints are only
imposed at a finite number of points, so we have to insure
that the “resolution” of these points is smaller than any thin
obstacles. Nonetheless, as we show in the subsequent section,
this simple approximation works quite well in practice, and
allows us to maintain convexity of the optimization problem.

Finally, we note that for some planning problems, adding
enough constraints of any of the preceeding types can lead
to an infeasible optimization problem. We mention this
primarily to emphasize that this approach isnot suited to
all planning situations; if plans must traverse through non-
convex, narrow “corridors” in the robot’s configuration space,
then slower, traditional motion planning algorithms may be
the only possible approach. However, for situations where
our method can be applied, such as the LittleDog planning
tasks we describe below, our method can produce highly-
optimized trajectories extremely quickly.

B. Optimization Objectives

Given the variables and constraints described above, we
lastly need to define our final optimization objective. While
we have experimented with several different possible opti-
mization objectives, one that appears to work quite well is to
penalize the squared velocities at the waypoints and at a few



Fig. 4. The LittleDog robot, designed and built by Boston Dynamics, Inc.

Fig. 5. Planning task, taking two steps over rough terrain.

intermediate points between each waypoint. More formally,
we use the optimization objective

f(ẋ, ẋ′) = tr ẋ
T
ẋ + tr ẋ′

T
ẋ
′

where ẋ represents the velocity at each waypoint andẋ
′

represents the velocities at the midpoint between each way-
point. This objective has the effect of discouraging very
large velocities at any of the spline points, which leads to
trajectories that travel minimal distances while keeping fairly
smooth. However, while this objective works well for our
settings, there are many other possible objective functions
that might function better in other cases such as minimizing
the maximum velocity, average or maximum acceleration,
average distance between spline points, or (using approxi-
mations based on the Jacobians along the initial trajectory)
average or maximum joint velocities or torques.

One objective that cannot be easily minimized is the
total time of the trajectory. Recall that while the position,
velocity, etc terms all linearly related by equations (6)–(9),
these equations also involve non-linear, non-convex functions
of the times. However, there has been previous work in
approximately optimizing the times of cubic splines [5], [6],
[7], and if the total time of the trajectory is ultimately the
most important objective, these techniques can be applied.

IV. A PPLICATION TO A QUADRUPED ROBOT

In this Section we present the primary empirical result of
this paper: the successful application of these methods to
a quadruped, the “LittleDog” robot, shown in Figure 4. In
particular, we use cubic spline optimization to plan foot and
body trajectories for statically stable locomotion over rough
terrain. The system we present here is used in our software
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�

�

Fig. 6. Foot planning task, and initial trajectory.

architecture for the quadruped, submitted to DARPA for the
Learning Locomotion project. Due to space constraints we
only give a brief description of the quadruped task in general;
we refer the reader to [8] for a more complete description
of our system, excluding the cubic spline optimization.

The basic planning task that we consider in this paper
is as follows: given a current position of the robot, and
two upcoming footsteps plan trajectories for the feet and
robot center of gravity (COG) that achieve these footsteps;
Figure 5 illustrates this planning task. Successfully achiev-
ing the footsteps requires that the trajectories obey several
constraints, such as ensuring that the COG and foot locations
are jointly kinematically feasible and collision free, and
ensuring that the robot is statically stable as it moves its
feet. In the subsequent section, we show how to apply the
techniques from the previous section to plan the foot and
COG trajectories respectively.

A. Planning Foot Trajectories

The chief aim in planning foot trajectories is to achieve
smooth motions that avoid collision with the terrain. An
illustration of this task is shown in Figure 6, along with
the initial plan we supply to the cubic spline optimization.
The initial plan is a simple trapezoid, with three waypoints
allocated for the upward and downward “ramps”, and the
remaining waypoints in a line, spaced in 2cm intervals. We
use the following optimization problem to plan the foot
trajectories:

min
x,x′,ẋ,ẋ′,ẍ

tr ẋ
T
ẋ + tr ẋ′

T
ẋ
′ (11)

subject to H1ẋ = H2x (12)

ẍ =
1

2
(H3x + H4ẋ) (13)

x
′ = G1x + G2ẋ (14)

ẋ
′ = G3x + G4ẋ (15)

x0,: = x̂0, xT,: = x̂T , ẋ0,: = 0, ẋT,: = 0 (16)

ẍt,x ≥ 0, ẍt,y ≥ 0, t = 0, 1 (17)

ẍt,x ≤ 0, ẍt,y ≤ 0, t = T − 1, T (18)

ẍt,x ≥ ẍt+1,x

ẍt,y ≥ ẍt+1,y

}

t = 2, . . . , T − 3 (19)

ẍt,z < 0, t = 2, . . . , T − 2 (20)

(xt,x − xt+2,x)2 + (xt,y − xt+2,y)2

≤ (3cm)2, t = 0, T − 2
(21)

x
′

i,z ≥ x̂z(t
′

i) + 2cm, i = 1, . . . , N (22)

xt,z ≤ max
i=1,...,N

x̂z(t
′

i), t = 1, . . . T. (23)
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Fig. 7. (a) COG planning task. (b) Initial trajectory for theCOG plan.

While there are many different terms in this optimization
problem, the overall idea is straightforward. The optimization
objective (11) is the squared velocity objective we discussed
earlier; constraints (12)–(15) are the standard cubic spline
equations for adding additional variables representing re-
spectively the velocity at the waypoints, the acceleration
at the waypoints, additional position terms, and additional
velocity terms;3 (16) insures that the spline begins and ends
at the start and goal, with zero velocity; (17) and (18)
ensure that thex, y accelerations are positive (negative)
at the start (end) ramp, which in turn ensures that the
trajectory will never overshoot the start and end locations;4

(19) extends the previous constraint slightly to also ensure
that thex, y accelerations during the main trajectory portion
are monotonic; (20) forces thez accelerations during the
main portion of the trajectory to be negative, which ensures
that the spline moves over any obstacles in one single arch;
(21) ensures that the last waypoints in the ramp don’t deviate
from the start and end positions by more than 3cm; finally,
(22) and (23) ensure that thez position of the spline is 2cm
above any obstacle, and that no waypoint is more than 2cm
higher than the tallest obstacle.

Note that this precise optimization problem is not meant to
be a general purpose algorithm. This particular objective and
the constraints were developed specifically for the quadruped
foot trajectory planning task, and many of the constraints
were developed over time in response to specific situations
that caused simpler optimization problems to produced sub-
optimal plans. As such, the main purpose of describing the
optimization problem explicitly is as a demonstration of the
techniques presented in the previous section, and to give a
concrete example of the method.

B. Planning COG Trajectories

The aim of planning a trajectory for the COG is twofold:
maintaining stability of the robot while allowing the feet to
reach their targets. This planning task is illustrated in Figure
7 (a), and the initial trajectory supplied to the cubic spline
optimizer is shown in Figure 7 (b). The triangle in Figure 7
(b) denotes the double supporting triangle, described more

3In greater detail, we add four additional velocity terms, in the midpoints
of the waypoints on the “ramp” portion of the initial trajectory. We addN
additional position terms, one at each 1cm interval along thetop portion of
the initial trajectory.

4This constraint and next assume that thex̂0,x ≤ x̂T,x andx̂0,y ≤ x̂T,y .
In the case that these inequalities are reversed, the corresponding inequalities
in the constraints are also reversed.

fully in [8]; as long as the COG is within this triangle, the
robot can take either of the two steps while maintaining
stability. Therefore, the initial plan proceeds in two phases,
first moving into the supporting triangle, and then moving
forward in the triangle while taking the two steps. Although
not shown entirely in Figure 7 (b) for the sake of clarity,
we always use nine waypoints in the COG trajectory splines:
three to move the COG into the supporting triangle, and three
for each foot movement. Since planning the COG trajectory
requires knowledge of the foot locations, we first use the
method above to plan trajectories for the moving feet, which
we denotexf1

(t) and xf2
(t). We then use the following

optimization problem to plan the COG trajectory:

min
x,ẋ,ẋ′

tr ẋ
T
ẋ + tr ẋ′

T
ẋ
′

+λ
∑5

i=3 feas(xi,:, xf1
(ti), f1)

+λ
∑7

i=5 feas(xi,:, xf2
(ti), f2)

(24)

subject to H1ẋ = H2x (25)

ẋ
′ = G3x + G4ẋ (26)

x0,: = x̂0, ẋ0, x2,: = x̂2, x8,: = x̂8 (27)

ẋ0,: = ẋinit (28)

xi,: ∈ S, i = 3, . . . , 7 (29)

where
feas(xbody, xfoot, f)

denotes the squared distance fromxfoot to the kinematically
feasible region of footf , given that the COG is positioned
at point xbody, and whereS denotes the support triangle.
Intuitively, the optimization objective (24) is a weighted
combination of the kinematic infeasibility of the moving
feet plus the velocity terms we discussed earlier — in
practice, we chooseλ = 100 to try to make the system as
close to kinematically feasible as possible, and only later
try to minimize the velocities; constraints (25) and (26)
are again the standard cubic spline equations for velocity
terms — here we add eight additional velocity terms, one at
the midpoint of each two waypoints; (27) ensures that the
trajectory begins, enters the supporting triangle, and ends at
the initially specified waypoints, while (28) ensures that the
initial velocity of the spline is equal to the COG’s current
velocity; finally, (29) ensures that the COG waypoints will
be inside the supporting triangle during the times that the
feet are moving.

C. Experimental Results

We begin with a qualitative look at the trajectories gen-
erated by this method. Figure 8 shows a typical footstep
trajectory generated by this method. As we can see, the
trajectory moves the foot from its initial location to the
desired location in one fluid motion, stepping high enough
to avoid any obstacles. Likewise, Figure 9 shows a typically
COG trajectory generated by the algorithm. Notice that the
trajectory inside the supporting triangle is not just a straight
line: the algorithm adjusts the trajectory in this manner to
maximize the kinematic feasibility of the moving feet.

Of course, while examining the splines in this manner can
help give an intuition about kind of trajectories generated
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Fig. 8. Typical example of a foot trajectory generated by the algorithm.
The top figure shows the resulting trajectory in 3D space, while the bottom
shows each component as a function of time.
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Fig. 9. Typical example of a COG trajectory generated by the algorithm.

by our algorithm, we are ultimately interested in whether
or not the method actually improves performance on the
LittleDog. To evaluate this, we tested the system on two
terrains of varying difficulty, shown in Figure 10. We com-
pare the cubic spline optimization approach to the trajectory
planning method described in [8], which uses simple box-
shapes to step over terrain, and linear splines for moving the
COG. While, as mentioned previously, the entire system for
planning and control of the quadruped is quite complex, all
other elements of the system remain fixed in the experiments
here.

Table I shows the performance of the quadruped both
with and without the cubic spline optimization. We ran 10

Fig. 10. Terrains used for evaluating the system. The top terrain is fairly
trivial to navigate, while the bottom terrain is significantly more challenging.

trials on each of the terrains, and evaluated the systems
using 1) fraction of successful runs, 2) speed over terrain,
3) average number of “recoveries”5, and 4) average tracking
error (i.e., distance between the planned and actual location)
for the moving foot. Perhaps the most obvious benefit of
the cubic spline optimization method is that the resulting
speeds are faster; this is not particularly surprising, since
the splines output by our planner will clearly be more
efficient than a simple box pattern over obstacles. However,
equally important is that the cubic spline optimization also
leads to morerobust behavior, especially on the challenging
terrain: the previous method only succeeds in crossing the
terrain 70% of the time, and even when it does succeed
it typically needs to execute several recoveries, whereas
the cubic spline optimization method crosses the terrain in
all cases, and executes much fewer recoveries. We surmise
that this is because the cubic spline method attempts to
maintain kinematic feasibility of the moving foot at all times.
This is seen in Table I from the fact that the cubic spline
optimization approach has lower tracker error, implying more
accurate placement of feet, and therefore greater robustness
is challenging environments.

Finally, we want to briefly mention issues of running
time. We solve the convex optimization problems using
MOSEK, a general purpose convex solver, available at
http://www.mosek.com. Using this software, solving
for a foot spline takes an average of 4.4 milliseconds (with
1.1 millisecond standard deviation), while solving for the
COG path takes an average of 5.4 ms (0.4 ms standard
deviation). These quantities remain approximately the same
regardless of the terrain, and are fast enough to allow for
real-time re-planning and control on the quadruped.

V. D ISCUSSION ANDRELATED WORK

As mentioned in the introduction, cubic splines are very
common in robotic applications [1]. This paper, as well as
[5], [6], [7] discuss methods for approximately optimizing
the time of the trajectory, but do not consider optimizing
the waypoints themselves. The work of Schlemmer et al.

5A recovery is required whenever the COG falls outside the supporting
triangle. Again, see [8] for details.



Easy Terrain Challenging Terrain
Metric Spline Optimization Previous Method Spline Optimization Previous Method

% Successful Trials 100% 100% 100% 70 %
Speed (cm/sec) 7.02± 0.10 5.99± 0.07 6.30± 0.12 5.59± 0.31

Avg. Tracking Error (cm) 1.28± 0.03 1.40± 0.06 1.27± 0.05 1.55± 0.09
Avg. # Recoveries 0.0 0.0 0.5 ± 0.37 2.22± 1.45

TABLE I

PERFORMANCE OF CUBIC SPLINE OPTIMIZATION ON THE TWO QUADRUPED TERRAINS. TERMS INCLUDE 95% CONFIDENCE INTERVALS.

[9] perhaps bears the most resemblance to our own, as they
do consider the modification the cubic spline parameters
themselves. However, the resulting techniques are quite
different, since they break the trajectories into multiple
segments withconstant acceleration, not the continuous
acceleration profiles that we consider here; furthermore, they
focus on splines in joint space, whereas the most interesting
constraints (namely the kinematic feasibility and collision
constraints) in our setting are precisely those that arise due
to the task-space planning.

Free-knot splines [10], [11], typically used in the statistics
literature, also relate to our method, as they involve choosing
both the waypoints and times of parametric splines, including
cubic splines. However, these methods typically focus on
fitting splines to data, not creating splines that relate to
any kind of trajectory planning, so the actual optimization
approaches are very different.

Our method also relates to the trajectory optimization
literature in robotics [12], [13], [14], [15], though thesemeth-
ods typically focus on improving a pre-supplied (feasible)
trajectory via gradient or higher-order methods. Althoughin
this paper we focus on cases where the initial “plan” supplied
to the cubic spline optimization problem is very simple and
possibly infeasible, there is nothing that prevents the method
from being used to optimize a feasible trajectory generated
by a planner, as in the approaches above: in this setting the
algorithm could also function as a trajectory optimization
approach, specifically using a cubic spline parametrization
of the trajectory, and using general convex optimization
techniques rather than gradient methods alone.

Planning trajectories for the quadrupeds robot in particular
has been considered in [8], [16], [17]. Although a full com-
parison between the different approaches is beyond the scope
of this paper, we did compare to our previous controller, [8]
and demonstrated that cubic spline optimization improves
performance. The work by Mistry et al, [18] also considers
a quadruped and specifically looks at the trade-off between
balance and kinematic feasibility, but this work is generally
orthogonal to our own, as it primarily considers control
strategies for achieving agiven trajectory.

VI. CONCLUSION

In this paper we presented a cubic spline optimization
method, for planning smooth trajectories for robot motion.
The algorithm uses convex optimization methods to effi-
ciently plan task-space trajectories, while obeying several
constraints, such as kinematic feasibility and avoiding con-
tact. We apply this method to the task of planning trajectories
for a quadruped robot, and demonstrate significant improve-
ment over past work.
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APPENDIX

A. Derivation of the Cubic Spline Equations

In this section we derive the standard equations for cubic
splines, presented in Section II. In particular, we show that



given desired locations and final and initial velocities of
the spline, we can solve for the cubic spline parameters
using the linear equations (6)–(9). We reiterate that this is a
standard derivation, but we include it for completeness and
to solidify our notation. The derivation follows that in [19],
but generalizes it to the case of arbitrary times for the spline
points.

Recall that the trajectory from timeti to ti+1 is given by
the cubic function

xi(t) = ai + bi(t − ti) + ci(t − ti)
2 + di(t − ti)

3 (30)

In order to achieve a smoother, continuous trajectory, we
impose four conditions on the spline: 1) atti it must have
the valuex⋆

i , 2) at ti+1 it must have the valuex⋆
i+1, 3) its

derivative (velocity) must be continuous atti+1, and 4) its
second derivative (acceleration) must be continuous atti+1.
These four conditions can be written formally as

xi(ti) = x⋆
i

xi(ti+1) = x⋆
i+1

ẋi(ti+1) = ẋi+1(ti+1)

ẍi(ti+1) = ẍi+1(ti+1).

Using the cubic function definition (30), these conditions can
be rewritten in terms of the cubic spline parameters:

ai = x⋆
i (31)

ai + bi∆ti + ci∆t2i + di∆t3i = x⋆
i+1 (32)

bi + 2ci∆ti + 3di∆t2i = bi+1 (33)

2ci + 6di∆ti = 2ci+1 (34)

where
∆ti ≡ ti+1 − ti.

Now we use simple variable elimination to get find explicit
equations for the cubic spline parameters. Specifically, equa-
tion (31) immediately leads to the first linear equation (6)

a = x.

Next, we use equations (32) and (33), to solve forci anddi

in terms of thexi’s andbi’s, giving:

ci =
3(x⋆

i+1 − x⋆
i ) − (2bi + bi+1)∆ti

∆t2i
(35)

di =
2(x⋆

i − x⋆
i+1) + (bi + bi+1)∆ti

∆t3i
. (36)

This leads immediately to the third and fourth linear equa-
tions (8) and (9)

c = H3x + H4b

d = H5x + H6b

where
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Finally, substituting (35) and (36) into (34) we obtain

2bi + 4bi+1

∆ti
+

4bi+1 + 2bi+2

∆ti+1
=

6(x⋆
i+1 − x⋆

i )

∆t2i
+

6(x⋆
i+2 − x⋆

i+1)

∆t2i+1

.

(41)

These equations, along with the additional constraints that
can be expressed as the second set of linear equalities (7):

H1b = H2x

where
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αi ≡
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