
MIT Open Access Articles

Automatic deployment of autonomous cars
in a robotic urban-like environment (RULE)

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Lahijanian, M. et al. “Automatic deployment of autonomous cars in a Robotic Urban-
Like Environment (RULE).” Robotics and Automation, 2009. ICRA '09. IEEE International
Conference on. 2009. 2055-2060. ©2009 Institute of Electrical and Electronics Engineers.

As Published: http://dx.doi.org/10.1109/ROBOT.2009.5152605

Publisher: Institute of Electrical and Electronics Engineers

Persistent URL: http://hdl.handle.net/1721.1/59525

Version: Final published version: final published article, as it appeared in a journal, conference
proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher's policy and may be
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/59525

Automatic Deployment of Autonomous Cars in a

Robotic Urban-Like Environment (RULE)

M. Lahijanian, M. Kloetzer, S. Itani, C. Belta, and S. B. Andersson

Abstract— We present a computational framework and ex-
perimental setup for deployment of autonomous cars in a
miniature Robotic Urban-Like Environment (RULE). The spec-
ifications are given in rich, human-like language as temporal
logic statements about roads, intersections, and parking spaces.
We use transition systems to model the motion and sensing
capabilities of the robots and the topology of the environment
and use tools resembling model checking to generate robot
control strategies and to verify the correctness of the solution.
The experimental setup is based on Khepera III robots, which
move autonomously on streets while observing traffic rules.

I. INTRODUCTION

In formal analysis, finite models of computer programs

and digital circuits are checked against rich specifications

given as temporal logic statements about the satisfaction of

properties of interest. Examples include safety, i.e., some-

thing bad never happens and liveness, i.e., something good

eventually happens. Such specifications translate naturally

to formulas of temporal logics, such as Linear Temporal

Logic (LTL) and Computation Tree Logic (CTL) [1]. Due

to their resemblance to natural language, expressivity, and

existence of off-the-shelf algorithms for model checking,

temporal logics are used to specify properties of other types

of dynamic systems [2], [3], [4], including robotic systems

[5], [6], [7]. In these works, in order to use a temporal logic

as a specification language and a model checking algorithm

for analysis, the main challenge is to construct a property-

preserving finite abstraction of an infinite model [8].

A particularly important application in mobile robotics is

deployment of autonomous cars in urban environments. In

such a scenario, an autonomous car equipped with sensing,

communication, and computation capabilities is required to

accomplish a rich temporal logic motion specification, e.g.,

“keep surveying roads R1 and R2 until an empty parking

space is found, and then park”, while at the same time

obeying traffic laws, staying in lane, and avoiding collisions

with other moving cars or static obstacles for all times. The

importance of this problem led to the 2007 DARPA Urban

Challenge [9], where autonomous cars were provided with

a rough map of a city and required to autonomously drive

from an initial to a final point while staying on the road and

obeying traffic laws.

This work was supported by NSF under grants IIS-0822845 and IIS
CAREER-0447721 at Boston University.

M. Lahijanian, M. Kloetzer, C. Belta, and S. B. Andersson
are with the College of Engineering at Boston University,
{morteza,kmarius,cbelta,sanderss}@bu.edu.

S. Itani is with the School of Engineering at Massachusetts Institute of
Technology, itani@mit.edu.

M. Lahijanian is the corresponding author.

In this paper, we present a computational framework and

an experimental setup for deployment of autonomous cars in

a miniature Robotic Urban-Like Environment (RULE) (see

Fig. 1 and the project web site http://iasi.bu.edu/rule/). In

our setup, Khepera III car-like robots can be automatically

deployed according to arbitrarily rich temporal logic speci-

fications about visiting points of interest in the environment

such as streets, intersections, and parking spaces, while at the

same time being guaranteed to stay in their lanes, obey traffic

rules, and avoid collisions with other cars and obstacles.

An example of such a specification is “Visit Road R1 and

then Road R9 infinitely often. If Road R8 is ever visited,

then Road R3 should never be reached.” In our framework,

such specifications given in human-like language translate to

formulas of LTL. A modelling framework based on transition

systems and synchronous products [10] allows for automatic

generation of motion plans and robot control laws by using

tools resembling LTL model checking [1].

This paper is closely related to [7], where a compu-

tational framework for automatic deployment of car-like

robots from temporal logic specifications was developed.

While this paper and [7] approach the same problem, the

solution presented here allows for more expressivity in the

specification. Specifically, any LTL formula is allowed as

a specification in our framework, while [7] are limited to

formulas in the GR(1) fragment of LTL [11]. On the other

hand, our framework cannot capture environmental events as

in [7]. The use of synchronous products in our work allows

for an extension to the multi-robot case, which is left for

future work. All these advantages come at the expense of an

increased amount of computation. In this paper we focus on

a purely discrete scenario, where the motion of the robot is

described from the very beginning as a finite state transition

graph. However, the implementation to simple continuous

dynamics is immediate by using our previous results on

discrete abstractions [4], [12].

II. PRELIMINARIES

Definition 1: A transition system with observations is a

tuple T = (Q, Q0,Σ,→,Π, �), where Q is a finite set

of states, Q0 ⊆ Q is the set of initial states, Σ is a

finite set of actions (inputs, events), →⊆ Q × Σ × Q

is a transition relation, Π is a set of atomic propositions

(properties, observations), and �⊆ Q × Π is a satisfaction

relation.

A transition system T is called deterministic if, for all

σ ∈ Σ available at an arbitrary state q ∈ Q, there exists a

unique q′ ∈ Q such that q
σ
→ q′. For a transition system

2009 IEEE International Conference on Robotics and Automation
Kobe International Conference Center
Kobe, Japan, May 12-17, 2009

978-1-4244-2789-5/09/$25.00 ©2009 IEEE 2055

T , we denote by R(T) the transition system obtained by

keeping only the states from T that are reachable from the

set of initial states Q0 (and the corresponding transitions).

Definition 2: Let Ti = (Qi, Q0i,Σ,→i, Πi,�i), i =
1, . . . , k be a set of transition systems with the same set

of inputs. The synchronous product of Ti, i = 1, . . . , k,

denoted by T1 ‖ . . . ‖ Tk, is the transition system T =
R((Q ,Q0 ,Σ ,→,Π ,�)) defined by:

• Q = Q1 × . . . × Qk;

• Q0 = Q01 × . . . × Q0k;

• ((q1, . . . , qk), σ, (q′1, . . . , q
′

k)) ∈→ if (qi, σ, q′i) ∈→i;

• Π = ∪i=1,...,kΠi;

• (q1, . . . , qk) � π if there exists i = 1, . . . , k such that

qi �i π.

A more general definition of a synchronous product, which

allows for different sets of inputs for the transition systems

Ti, can be found in [13].

In this paper, we consider motion specifications given in

rich, human-like language that translate immediately to Lin-

ear Temporal Logic (LTL) formulas. Informally, LTL formu-

las are recursively defined over a set of atomic propositions

Π, by using the standard Boolean and temporal operators,

which include © (“next”), U (“until”), � (“always”), ♦
(“eventually”). LTL formulas are interpreted over infinite

words in the power set 2Π of Π, as are those generated by

the transition system T from Definition 1.

Given a finite transition system T and an LTL formula

φ over Π, checking whether the words of T starting from

each state in Q satisfy φ is called LTL model checking, or

simply model checking in this paper. An off-the-shelf model

checker such as NuSMV [14] takes a transition system T and

a formula φ as input and returns the states of T at which the

formula is satisfied (i.e., the states for which the language

originating there satisfies the formula). For the non-satisfying

states, a model checker returns a non-satisfying run as a

certifying counter-example.

Alternatively, a dual control problem can be formulated for

a transition system T : given an LTL formula φ over its set of

propositions, find a set of initial states and a control strategy

such that all the words produced by T satisfy the formula. We

approached this problem in our previous work, and proposed

solutions for both deterministic and nondeterministic systems

[4], [15]. For deterministic systems, the solution is presented

in the form of a “shortest” satisfying run with a prefix-suffix

structure, which determines a unique control strategy.

III. PROBLEM FORMULATION AND APPROACH

We define an Urban Environment as a collection of Roads,

Intersections, Traffic Lights, and Parking Spaces with the fol-

lowing restrictions: (1) a road connects two (not necessarily

different) intersections; (2) the parking spaces can only be

located on the side of (each bound of) a road; (3) there

is a traffic light for each bound of a road arriving at an

intersection; (4) at each intersection, the traffic lights are

synchronized in the usual way (traffic lights corresponding

to opposing roads are in phase and in opposite phase with

traffic lights on orthogonal roads). An example is given in

Fig. 2, which is a schematic representation of the miniature

city platform shown in Fig. 1.

The “cars” in our city are Khepera III miniature robots (

Sec. VI-A). We assume that each car can (i) drive forward

on a road while staying in the right lane, (ii) “sense”

intersections and parking spaces, (iii) turn left, right, or move

straight through an intersection, (iv) detect the right lane of

a road at the end of an intersection, and (v) distinguish

the color of a traffic light (Sec. VI-A). We want to be

able to automatically generate robot control strategies from

rich specifications given as temporal logic statements about

visiting roads, intersections, and parking spots. Specifically,

we consider the following problem:

Problem 1: Given an urban environment with a set of

roads R, set of intersections I, set of parking spaces P ,

and a motion task in terms of an arbitrary LTL formula over

the set R∪I ∪P , find a robot control strategy such that the

produced motion of the robot satisfies the specification.

For example, for the environment shown schematically in

Fig. 2, a motion task can be of the form “Visit R1 and then

eventually R9 in this order, infinitely often. If R8 is ever

reached, make sure that R3 is never visited.” The translation

of this human-like language specification to an LTL formula

is given in Eqn. (1). To complete the formulation of Problem

1, we need to define a robot control strategy and the

satisfaction of an LTL specification by a motion of a robot

in the environment. Both of these definitions will be given

after introducing robot and environment models in the form

of transition systems in Sec. IV.

Our approach to Problem 1 is as follows. We first model

the motion and sensing capabilities of the robot as a robot

transition system TR. The states of TR model robot behaviors

(e.g. driving in a lane, turning right in an intersection), while

the inputs labelling transitions capture events generated by

the environment (e.g., traffic light turning green, parking spot

being detected on the side of the road) or decisions made

by the robot. The topology of the environment is captured

by an environment transition system TE . The states of TE

are features of interest in the environment, such as roads,

intersections, and parking spaces. The inputs labelling the

transitions of TE are the same as the inputs of TR. All

possible motions of a robot in the environment will be given

by the synchronous product TR ‖ TE . In this transition

system , we will find a “short” satisfying run (Sec. II), project

it to a run of TR, and then implement this run as a control

strategy for the robot.

IV. ROBOT AND ENVIRONMENT MODELS

A. Robot Transition System

The robot transition system TR = (QR, Q0R,Σ,→R

,ΠR,�R) is shown in Fig. 3. The ovals are the states QR,

the arrows and their labels are the set of transitions →R and

the set of events Σ, the observations ΠR are shown close to

the states with which they relate according to the satisfaction

relation �R. The initial states Q0R are marked by incoming

arrows with no labels.

2056

Fig. 1. Robotic Urban-Like Environment (RULE). Left: Khepera III car-like robots move autonomously on streets while staying in their lanes, observing
traffic rules, and avoiding collisions. Right: A car waiting at a traffic light.

I
2

I
4

I
3

I
1

R
2

R
3

R
1

R
6

R
4

R
5

R
7

R
8

R
9

P
1

P
3

P
2

P
4

P
6

P
5

P
9

P
8

P
7

P
10

at_int

r_light, g_light

at_park, on_road

on_road

in_park
Initial Final

(a) (b)

Fig. 2. (a) A schematic representation of the city environment from Fig 1 showing the observations and the location of some environmental events; (b)
Snapshots from a movie produced with our simulator showing a robot executing the motion R1I2R5I4R8I3R7I3R8I4R5I2R3I1R2I1R3(P2) satisfying
the specification “Visit R7, and then park at P2 and stay there; always avoid R4”, or ♦(R7 ∧ ♦�P2) ∧ �¬R4.

Each state models a behavior or a collection of related

robot behaviors where each is implemented as a low-level

feedback controller. There is a transition from a robot

state to another once an event (input) is triggered by the

environment or the robot itself. For instance, in state Drive,

the robot moves at constant speed in a lane while looking

for intersections and parking spaces (Sec. VI-A). When an

intersection or a parking space is found, the event at int or

at park is generated, and the robot transits to the next state.

The robot is initiated either in Parking Wait or Drive. If

the robot is driving on a street and reaches an intersection,

the event at int is triggered, which forces the robot to transfer

to the Intersection Wait state. Here the robot checks for the

intersection signal light color. If it is red (r light), the robot

stays in the same state and continues to check the color of

the signal light. Once the light turns green (g light), the robot

decides which way to go (go left, go right, or go straight.)

For more details on the robot’s actions such as parking, see

its transition system graph (Fig. 3).

For the case when the robot gets dangerously close to

an obstacle or to another robot, each robot state is paired

with a Wait state, which halts the robot and prevents it

from moving. The transition to this state is enabled by the

event hazard, which is triggered by close proximity to an

object. The transition back to the original state is enabled by

no hazard, which is generated when the space near the robot

is cleared. For simplicity, these extra states are not shown in

Fig. 3.

The states of TR are put in relation with observations

from the set ΠR = {DR,DI,PA,WI}, with the following

significance: DR = “Drive on a Road”, DI = “Drive through

an Intersection”, PA = “involved in PArking”, and WI =

“Wait at an Intersection”. These observations are high-level

descriptions of the robot behavior. In our current setup, they

are not used for motion specification and control. Rather,

they are used to check the correctness of the solution. For

example, over the set of all possible robot motions in the

environment, we want to make sure that the robot is not

involved into a parking maneuver (PA) while passing through

an intersection (Sec. V).

B. Environment Transition System

For any urban environment satisfying the assumptions

enumerated at the beginning of Sec. III, an environment

transition system TE = (QE , Q0E ,Σ,→E ,ΠE ,�E) can be

constructed by interconnecting the three modules shown in

2057

Go

Straight

Intersection

Wait

Intersection

Decision

Drive

Turn

Left

Park

Turn

Right

Parking

Decision

r_
li
g
h
t

a
t_
in
t

g
_
li
g
h
t

g
o
_
st
ra
ig
h
t

go
_r
ig
ht

on
_r
oa
d

go_left

on_road

on_
roa
dat_park

no_park

d
o
_
p
a
rk

o
n
_
ro
a
d

Unpark

out_parking

Parking

Wait

in_park

sta
y_
p
a
rked

PA

PA

PADR

WIDI DI

DI

WI

DR

Fig. 3. The robot transition system (TR). The states label robot behaviors
(e.g., Drive, Park). The transitions are enabled by inputs that can be
robot decisions (e.g., go left) or environmental events (e.g., at int). The
observations (e.g., DR = “Drive on a road”, DI = “Drive through an
intersection”) are high-level descriptions of the robot behavior.

Figs. 4 and 5. The connections are made along transitions

marked with · · · by matching the name of the events on the

transitions. There are three types of observations in ΠE : road

labels Rn from the set R, intersection labels Ii from the set

I, and parking space labels Pk from the set P . Note that the

motion specification in Problem 1 is given over these sets.

Any road Rn, connecting exactly two intersections Ii and

Ij, can have an arbitrary number of parking spaces. A road

Rn with no parking spaces connecting intersections Ii and

Ij generates a (part of a) transition system obtained by

connecting Module 1 at the right of Module 2, where in

Module 2 the incoming transition labelled no park in state

Int Prep is removed. For a road Rn spanning between

intersections Ii and Ij with one parking space Pk, one Module

3 is inserted between a Module 1 and a Module 2, where

the incoming transition labelled by no park in Park Prep

is removed. To insert an additional parking space, another

Module 3 is inserted at the left of the previous Module 3,

following the connection rule defined above. The last parking

space (Module 3) is then connected to Module 2 to complete

the construction of the road.

State Int End in Module 1 corresponds to a region in the

environment at the end of intersection Ii, and is therefore

labelled with observation Ii. In this state, the robot can read

the event on road, denoting that it is out of the intersection

and on road Rn (Fig. 2 (a)). State Int Prep in Module 2

corresponds to the portion of road Rn where no parking

spaces can be found any more, and the robot is looking for

the beginning of an intersection, which is signalled by the

event at int (e.g., the entrance from R5 to I2 in Fig. 2 (a)).

The rest of the states in Module 2 are self explanatory.

Note that the intersections at the end of a road can be

the same (i.e., i=j in Fig. 4). By connecting road segments

on their end transitions such that the labels match, any city

satisfying the restrictions stated at the beginning of Sec. III

can be constructed. For more details on TE states and events,

see Figs. 4 and 5.

V. GENERATION OF A ROBOT CONTROL STRATEGY

The synchronous product T = TR ‖ TE = (Q, Q0,Σ,→
, Π,�) captures all possible motions of a robot in the city.

This is achieved through synchronization on common events

and through pruning unreachable states in the product (Defn.

2). A state (qR, qE) in T gives “complete” information

about the robot behavior (qR) and about its location in the

environment (qE). As already suggested, this information is,

in general, too detailed, as some states in TE were artificially

introduced for synchronization purposes only. A coarser

description is the corresponding observation {πR, πE}. Ac-

cording to our definitions from Sec. IV-B and IV-A, πE

specifies on which road, intersection, or parking space the

robot is located, while πR indicates if the robot is driving

on a road, passing through an intersection, or maneuvering

or waiting in a parking space.

As stated in Problem 1, a task is specified as an LTL

formula φ over ΠE = R∪I∪P . This is also an LTL formula

over Π = ΠR ∪ΠE . By using the procedure described at the

end of Sec. II, we find a run in T of minimal overall length,

where the overall length is defined as the sum of the lengths

of the prefix and suffix. The projection of this run of T

along TE gives the motion of the robot in the environment.

The projection along TR (which is deterministic) gives the

robot control strategy. Therefore, as an infinite run of TR, the

robot control strategy is a sequence of robot behaviors (states

from QR), where the transitions between the behaviors are

triggered by events read from the environment while the

robot moves (e.g., on road, at park) or by robot decisions

(e.g., go left).

In the rest of this section, we discuss the issues of

completeness (i.e., whether a solution can be found when one

exists) and correctness (i.e., whether the solution corresponds

to a safe and deadlock-free motion of the robot in the

environment) of our approach to Problem 1. Intuitively,

both these issues are addressed through the construction

of TR and TE and through the use of the synchronous

product from Def. 2. Indeed, TR captures the motion and

sensing capabilities of our robot, and only allows for correct

transitions between the behaviors. TE captures the topology

of the environment, and transitions are only allowed between

adjacent regions and under events that can be generated

locally in the corresponding regions. In the synchronous

product, the robot and the environment synchronize on such

events, and the pairs of the states that are not reachable from

the initial states are eliminated.

2058

Int Start�
Traffic�

Light

at_int

r_light

g_light

go_right

go_straight

go
_l
ef
t

…

����
…

…

Int Prep
on_road

n
o
_p
a
rk

…

��

…

Module 2

Int End
go_straight

go_left

go
_r
ig
ht

on_road …

��

…

…

Module 1

…

Fig. 4. Modules 1 and 2 necessary for the construction of roads and intersections in the environment transition system TE

Even though this construction seems to lead to complete

and correct solutions, automatic verification can prove useful,

especially since the size of TE can become large for “com-

plicated” urban environments, and errors in coding and rep-

resentations of TE and T are possible. This can be achieved

through off-the-shelf LTL model checking (Sec. II), where

the formulas combine robot and environment observations.

First, in accordance with the restrictions formulated at the

beginning of Sec. III and the allowed modules shown in Figs.

4 and 5, we need to make sure that an intersection is always

followed by a road and a parking space can only occur on

a road. These requirements translate to the LTL formula

©(∨Rn), which must be true at all states with observations

Ii or Pk in TE , for all Ii ∈ I and Pk ∈ P . Second, we

want to make sure that, in the synchronous product T , robot

behaviors are correctly paired with regions in the city. Using

the robot observations from Fig. 3, this translates to the

set of purely logical formulas DR ⇒
∨

Rn, DI ⇒
∨

Ii,
and PA ⇒

∨
Pk. We performed these checks to verify our

implementation for the environment shown in Fig. 2. It is

important to note that these correctness checks are only for

the models and the software implementation described here,

and are valid under the assumptions that the robot does not

break (its motors and sensors function properly), and that the

events are “well behaved” in the sense that the robot reads

events such as on road and at park correctly, each traffic

light eventually turns green (event g light occurs infinitely

often) and the hazard event is eventually reset if it ever

occurs. Such assumptions also translate to LTL formulas (not

shown here due to space constraints), which can be used to

augment the correctness formulas enumerated above. More

thorough verification can be achieved by augmenting the set

of observations of TR and TE .

By using the framework described above, several robots

can be deployed at the same time in the same environment

(Sec. VI-B). The traffic lights solve possible conflicts in

intersections, while the Wait - hazard mechanism takes care

of situations in which two robots are too close.

VI. EXPERIMENTAL SETUP AND RESULTS

A. RULE Setup

Our Robotic Urban-Like Environment (RULE) is a 8’ ×
11’ surface with two-way streets, traffic lights, and parking

spaces (Fig. 1). The cars are Khepera III robots equipped

with KorebotLE extensions. A desktop computer is used to

Park�Start

Parking�Spot

no_park

out_parking

d
o
_p
a
rk

at_park

stay_parked

Park�End

in
_p
a
rk

on_road…

����

��

…

Park�Prep

o
n
_r
o
a
d

��

…

n
o
_p
a
rk

…

Module 3

Fig. 5. Module 3 of TE necessary for insertion of parking spaces on roads

control the traffic lights and to process the images captured

with four overhead cameras. For more information on RULE

setup, see the project web site (http://iasi.bu.edu/rule/).

The city is easily reconfigurable. The lanes of the roads

are marked with tape (yellow for road sides and red for

middle line, the posts of the traffic lights can be screwed

in several predefined positions, and the parking spots can be

easily relocated by simply moving the corresponding blue

boxes (Fig. 1). The environment events at int and at park

are implemented by using white tape of different widths on

the road. While driving on a road, the robot continuously

looks for the beginning of a white region using its bottom

infrared sensors. When such a portion is found, the robot

uses odometry to measure the width of the region (which

is accurate enough for this task), and therefore distinguish

between at int and at park. The event r light (red color at a

traffic light) is generated by an IR emitter LED, which can be

read by the robot’s IR proximity sensors when the robot is at

the traffic light. The robot uses its bottom IR sensors to stay

in a lane and to find a lane (event on road) by following and,

respectively, finding a transparent tape glued in the middle of

the lane (Fig. 1). Finally, the robot uses its proximity sensors

to detect the back wall of a parking space, when the event

in park is generated.

In RULE, robot deployment is achieved through a user-

friendly graphical interface. The image of the city obtained

from four overhead cameras is converted into a schematic

representation, such as the one from Fig. 2. Labels are

automatically generated for roads, intersections, and parking

spaces and presented to the user, who can specify a task as an

arbitrary LTL formula over these labels. The desktop com-

puter performs all the computation (generation of the Büchi

automaton, construction of the synchronous product, con-

2059

struction of the product automaton between the synchronous

product and the Büchi automaton, and the generation of

the robot control strategy), and sends the control strategy

to the robots through Wi-Fi. Then, the robots execute the

task autonomously by interacting with the environment. The

user has the option to simulate the run (Fig. 2 (b)) before

trying it on the actual platform.

B. Experimental Results

Consider the RULE setup shown schematically in Fig. 2

and the following two motion specifications:

Spec. 1: “Visit Road R1 and then Road R9 infinitely

often. If Road R8 is ever visited, then Road R3 must never

be reached.”

Spec. 2: “Visit Road R7 and then Road R5 infinitely

often.”

Specifications 1 and 2 translate immediately to the LTL

formulas φ1 and φ2 below, respectively:

φ1 : �♦(R1 ∧ ♦R9) ∧ �(R8 → ¬♦R3) (1)

φ2 : �♦(R7 ∧ ♦R5) (2)

Using the computational framework proposed in this pa-

per, we find robot control strategies for each specification.

For Spec. 1 and initial state R2 in TE , the resulting robot

motion, which is a run in the environment transition system

TE , is the following:

R2I1R3(I2R1I2R5I4R8I3R9I3R8I4R6) (3)

Spec. 2 with initial state R6 for TE leads to the following

motion:

R6I2(R3I1R4I3R7I3R8I4R5I2) (4)

In Eqns. (3) and (4), the parts of the runs between

parenthesis represent the suffixes, and are therefore repeated

infinitely. It should be noted that Spec. 1 does not require

R1 to be visited right after R9. Similarly, Spec. 2 does

not enforce visiting R5 immediately after R7. Thus, the

produced runs are acceptable even though many roads and

intersections are visited between R1 and R9 and between R7

and R5 in Eqns. (3) and (4) respectively. Movies showing

the actual runs can be downloaded from the RULE web site

(http://iasi.bu.edu/rule/).

The approach we propose here is computationally ex-

pensive. The amount of computation scales exponentially

with the length of the specification formula. However, this

theoretical upper bound is almost never achieved in practice.

For example, in the case studies shown above, the robot

and environment transition systems have 10 and 46 states

respectively, and the computation of the runs takes less than

a second on a regular desktop computer.

VII. CONCLUSIONS AND FUTURE WORK

We presented a computational framework and experimen-

tal setup for deployment of autonomous cars in a Robotic

Urban-Like Environment (RULE). We use transition systems

to model the motion and sensing capabilities of the robots

and the topology of the environment, formulas of Linear

Temporal Logic (LTL) to allow for rich specifications, and

tools resembling model checking to generate robot control

strategies and to verify the correctness of the solution. The

experimental setup is based on Khepera III robots, which

move autonomously on streets while observing traffic rules.

As future work, we plan to accommodate changing envi-

ronments and unexpected malfunctions in the environment by

reformulating the problem as a game, where nondeterminism

is treated as an adversary, as suggested in our previous

work [15]. We will also investigate automatic generation

of distributed robot control and communication strategies

from global (robot-abstract) specifications about features of

interest in the environment.

VIII. ACKNOWLEDGEMENTS

We would like to thank Ben Heng, Greg Vulkih, and

Boyan Yordanov (Boston University) for their help with the

construction of the platform and software implementation,

Kim Wheeler (Road Narrows) for assisting with Khepera-

related problems, and Thomas Lochmatter (EPFL) for his

help with coding the KorebotLE.

REFERENCES

[1] E. M. Clarke, D. Peled, and O. Grumberg, Model checking. MIT
Press, 1999.

[2] J. Davoren, V. Coulthard, N. Markey, and T. Moor, “Non-deterministic
temporal logics for general flow systems,” in HSCC: 7th International

Workshop, 2004, pp. 280–295.
[3] P. Tabuada and G. Pappas, “Model checking LTL over controllable

linear systems is decidable,” ser. Lecture Notes in Computer Science,
O. Maler and A. Pnueli, Eds. Springer, 2003, vol. 2623.

[4] M. Kloetzer and C. Belta, “A fully automated framework for control of
linear systems from temporal logic specifications,” IEEE Transactions

on Automatic Control, vol. 53, no. 1, pp. 287–297, 2008.
[5] S. G. Loizou and K. J. Kyriakopoulos, “Automatic synthesis of

multiagent motion tasks based on LTL specifications,” in 43rd IEEE

Conference on Decision and Control, 2004.
[6] G. E. Fainekos, H. Kress-Gazit, and G. J. Pappas, “Hybrid controllers

for path planning: a temporal logic approach,” in Proceedings of the

2005 IEEE Conference on Decision and Control, 2005.
[7] H. Kress-Gazit, D. Conner, H. Choset, A. Rizzi, and G. Pappas,

“Courteous cars,” IEEE Robotics and Automation Magazine, vol. 15,
pp. 30–38, March 2008.

[8] R. Alur, T. A. Henzinger, G. Lafferriere, and G. J. Pappas, “Discrete
abstractions of hybrid systems,” Proceedings of the IEEE, vol. 88, pp.
971–984, 2000.

[9] (2007) 2007 darpa urban challenge. [Online]. Available:
http://www.darpa.mil/GRANDCHALLENGE/

[10] A. Arnold, Finite transition systems: semantics of communicating

systems. Prentice Hall, 2007.
[11] N. Piterman, A. Pnueli, and Y. Saar, “Synthesis of reactive(1) designs,”

in VMCAI, Charleston, SC, 2006, pp. 364–380.
[12] C. Belta and L. Habets, “Control of a class of nonlinear systems on

rectangles,” IEEE Transactions on Automatic Control, vol. 51, no. 11,
pp. 1749 – 1759, 2006.

[13] M. Mukund, “From global specifications to distributed implementa-
tions,” in Synthesis and control of discrete event systems. Kluwer,
2002, pp. 19–34.

[14] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore,
M. Roveri, R. Sebastiani, and A. Tacchella, “NuSMV Version 2: An
OpenSource Tool for Symbolic Model Checking,” in Proc. Interna-

tional Conference on Computer-Aided Verification (CAV 2002), ser.
LNCS, vol. 2404. Copenhagen, Denmark: Springer, July 2002.

[15] M.Kloetzer and C. Belta, “Dealing with non-determinism in symbolic
control,” in Hybrid Systems: Computation and Control: 11th Interna-

tional Workshop, ser. Lecture Notes in Computer Science, M. Egerstedt
and B. Mishra, Eds. Springer Berlin / Heidelberg, 2008, pp. 287–300.

2060

