
A Modified Newton-Euler Method
for Dynamic Computations

in Robot Fault Detection and Control

Alessandro De Luca Lorenzo Ferrajoli
Dipartimento di Informatica e Sistemistica

Università di Roma “La Sapienza”
Via Ariosto 25, 00185 Roma, Italy

deluca@dis.uniroma1.it lorenzo.ferrajoli@tiscali.it

Abstract— We present a modified recursive Newton-Euler
method for computing some dynamic expressions that arise
in two problems of fault detection and control of serial robot
manipulators, and which cannot be evaluated numerically using
the standard method. The two motivating problems are: i)
the computation of the residual vector that allows accurate
detection of actuator faults or unexpected collisions using only
robot proprioceptive measurements, and ii) the evaluation of
a passivity-based trajectory tracking control law. The modified
Newton-Euler algorithm generates factorization matrices of the
Coriolis and centrifugal terms that satisfy the skew-symmetric
property. The computational advantages with respect to numer-
ical evaluation of symbolically obtained dynamic expressions is
illustrated on a 7R DLR lightweight manipulator.

I. INTRODUCTION

Computational issues are a major aspect in the imple-
mentation of model-based robot control laws. In order to
meet real-time constraints, two standard options are usually
considered for serial manipulators: customized Lagrangian
methods [1], [2] and recursive Newton-Euler methods [3].

The first approach requires the derivation of the robot
dynamics in closed symbolic form based on kinetic and
potential energy computation, followed by a conversion into
a real-time code so as to optimize the number of elementary
operations to be evaluated numerically [4], [5]. The con-
version can be performed with automatic tools and/or in-
volves customization to the specific robot manipulator under
consideration [6]. The second approach is more systematic
and uses the general (forward) recursive expressions of the
robot differential kinematics and those of the (backward)
force/torque balance equations for each link. While these two
approaches have been refined over the years, with a variety of
algorithmic implementations that share a linear complexity
O(N) in terms of the number N of joints (differing by the
leading coefficient) [3], [7], [8], Newton-Euler methods are
generally recognized to be superior when N becomes large.

In this paper, we consider a modified Newton-Euler
method that solves two motivating problems in robot control
and fault detection, which escape the use of the standard
method for computing the dynamic terms involved.

The first problem arises in the implementation of an
efficient approach to the sensorless detection of generic faults
acting on the robot, e.g., actuator faults [9], unexpected

collisions [10], [11], or unmodeled friction [12]. In these
works, a so-called residual vector signal is computed based
on the variation of the generalized momentum, and then
used to detect on line the occurring fault. In order to avoid
numerical differentiation of the inertia matrix M(q) [10]
or partial derivatives of its elements [13], the expression of
the residual requires the evaluation of a quadratic velocity
term of the form CT(q, q̇)q̇ (note the transpose), where C
is a matrix factorizing the Coriolis and centrifugal terms
and satisfying the skew-symmetric property for Ṁ − 2C.
This special velocity term cannot be evaluated numerically
through the standard Newton-Euler method.

The second problem arises in passivity-based control
design, both in nominal conditions [14] and in the adaptive
case [15]. In particular, a dynamic term C(q, q̇)q̇r appears
in these control laws, with q̇r being a modified reference
velocity. Again, this term cannot be computed numerically
through the standard Newton-Euler method.

We present here a modification of the recursive Newton-
Euler algorithm for robot inverse dynamics that takes as input
four vector quantities, typically a position q, two possibly
different velocities q̇ and q̇a (this is the novelty), and an
acceleration q̈, apart from a standard scalar parameter α
which specifies the presence or not of gravity. Using this
modified algorithm, we are able to solve numerically the
above mentioned passivity-based control problem in one al-
gorithmic sweep, with complexity O(N), and the sensorless
detection problem in N of such elementary sweeps.

It is worth to point out that some of the presented
developments may be used also for computing the inverse
dynamics of robots with elastic joints, where higher order
derivatives of the link variables appear [16].

The paper is organized as follows. In Sect. II, we introduce
and formalize the two motivating problems. In Sect. III, we
recall the standard Newton-Euler method and its use, and
set up the recursive notation. The new method is presented
in Sect. IV and its properties are analyzed. A comparative
numerical test on a 7R lightweight robot by DLR [17] is
reported in Sect. V, where the numerical method is evaluated
against a Lagrangian approach in terms of computational
times. On-going work on open issues and possible extensions
are discussed in the concluding section.

2009 IEEE International Conference on Robotics and Automation
Kobe International Conference Center
Kobe, Japan, May 12-17, 2009

978-1-4244-2789-5/09/$25.00 ©2009 IEEE 3359

II. MOTIVATING PROBLEMS

Consider a robot manipulator with an open kinematic
chain of N moving rigid bodies, and let q ∈ RN be the
vector of generalized coordinates. The dynamic model is

M(q)q̈ + c(q, q̇) + g(q) = u, (1)

where M(q) is the symmetric, positive definite robot inertia
matrix, c(q, q̇) is the Coriolis and centrifugal vector (with
quadratic dependence on q̇), g(q) is the gravity vector, and u
is the vector of external generalized forces performing work
on q. For simplicity, in the following we will neglect friction
and other dissipative terms.

The Coriolis and centrifugal term in (1) can be factorized
as

c(q, q̇) = C(q, q̇)q̇, (2)

where C(q, q̇) is any N ×N matrix such that the following
skew-symmetric property holds:

xT
(
Ṁ(q)− 2C(q, q̇)

)
x = 0, ∀x ∈ RN . (3)

Property (3) is equivalent to the existence of the following
expression for the time derivative of the inertia matrix:

Ṁ(q) = C(q, q̇) +CT(q, q̇). (4)

Typically, the factorization matrix C is built from Christoffel
symbols of the second kind [18]. Note however that the
factorization matrix in (2) obeying to (3) is not uniquely
defined.

A. Sensorless fault detection

In [10], [12], [19]. the presence of a fault acting on the
robot dynamics has been modeled by expressing the vector
of external generalized forces u in (1) as

u = uc + uf , (5)

where uc is the commanded (control) torques and uf repre-
sents unexpected and/or unmodeled (and unmeasurable) fault
actions on the robot that may be occasional or persistent.
Examples in this class include actuator faults, collisions with
the environment at any robot location along the structure, or
friction at the joints/transmissions.

In order to detect the occurrence of one of such potential
faults using only proprioceptive robot measurements (i.e., q
and q̇) and the available commands uc, the following N -
dimensional residual vector can be computed

r(t) = KI

[
p(t)−

∫ t

0

(
uc +CT(q, q̇)q̇ − g(q) + r

)
ds

]
,

(6)
where KI > 0 is a diagonal matrix and

p = M(q)q̇ (7)

is the robot generalized momentum. Assuming the robot at
rest at time t = 0, we set r(0) = 0. Using eqs. (1), (4–5),
and (7), it has been shown that the time evolution of the
residual vector r is given by

ṙ = −KIr +KIuf .

Therefore, r is ‘observing’ (a filtered and component-wise
decoupled version of) the generalized force uf resulting
from the fault. When this residual grows over a thresh-
old, detection is triggered. Vector r can be further used,
respectively, to identify the type of actuator fault [20], to
let the robot react safely to an unexpected collision [10],
or to compensate unmodeled friction in the motion control
law [12].

B. Passivity-based control

Beside the most effective feedback linearization method
for the accurate tracking of a desired differentiable trajectory
qd(t) ∈ C2, a very popular nonlinear control approach is
based on the passivity characteristics of the robot dynam-
ics [15], [21], related to the skew-symmetric property (4).
The main advantages of passivity-based control are: i) a
better use of the available actuator torques since complete
cancellation of the dynamic terms is avoided; ii) a more
robust behavior in the presence of uncertainties; and, iii)
the possibility of designing adaptive versions to cope with
unknown dynamic parameters. The classical expression of a
passivity-based trajectory tracking control law for (1) is

u = M(q)q̈r +C(q, q̇)q̇r + g(q) +KPe+KDė, (8)

where e = qd − q is the trajectory error, KP and KD are
positive definite (diagonal) gain matrices, q̇r is the modified
reference velocity

q̇r = q̇d + Λe, Λ > 0,

and the factorization matrix C in (8) should satisfy eq. (3).

Remark. Apart from other model terms that appear also in
standard computations of robot inverse dynamics, the critical
aspect of eq. (6) and eq. (8) stands in the need, respectively,
of CT(q, q̇)q̇, with the transpose of the factorization matrix
C, and of C(q, q̇)q̇r, with different inner and outer veloci-
ties. Indeed, a symbolic computation based on the Lagrange
equations and Christoffel symbols allows to evaluate the
above terms as well. On the other hand, it is apparent that
these two terms cannot be numerically computed by the
standard (recursive) Newton-Euler method, as highlighted in
the next section. This motivated our further developments
for an efficient real-time computation of eq. (6) or eq. (8),
especially for large N .

III. STANDARD NEWTON-EULER METHOD

We briefly recall here the standard recursive Newton-Euler
(N-E) method of [3], also in order to set up the notation for
the modified one. For compactness, in this and the following
section we will consider only the case of open kinematic
chains with rotational joints. Moreover, no special attention
is paid at this stage to the most efficient implementation of
the N-E algorithm.

The N-E algorithm can be described succinctly as a vector
function NEα of three ordered vector inputs ai ∈ RN , i =
1, 2, 3, parametrized by a scalar α ∈ {g0, 0} accounting for

3360

Fig. 1. Definitions related to link i

presence or absence of the acceleration g0 = 9.81 [m/s2] due
to gravity:

NEα(a1,a2,a3). (9)

For instance, the inverse dynamics computation associated
to a desired differentiable motion qd(t) in the gravity field
is expressed as

ud(t) = NEg0(qd(t), q̇d(t), q̈d(t)), (10)

providing as output the desired joint torque ud(t) at time t.
With reference to the generic link i, i = 1, . . . , N , shown

in Fig. 1, let zi−1 be the unitary vector along the axis of joint
i (as in the standard Denavit-Hartenberg convention [18]),
ri−1,i = Oi −Oi−1 and ri,Bi = Bi −Oi, where Oi and
Bi are respectively the origin of the i-th reference frame
and the center of mass of link i. Furthermore, let f i and
τ i be the forces and torques transmitted from link i − 1
to link i. Finally, let mi and Ii be the mass and baricentral
inertia tensor of link i, and gi the gravity vector acting on its
center of mass. Note that all quantities are expressed in the
reference frame attached to the current link (moving frames),
so that, e.g., Ii will be a constant.

The forward recursion on the angular velocity and accel-
eration, and on the linear acceleration of the frame origin
and center of mass of each link is given by:

ωi = ωi−1 + q̇izi−1 (AVR)

ω̇i = ω̇i−1 + q̈izi−1 + q̇iωi−1 × zi−1 (AAR)

Öi = Öi−1 + ω̇i × ri−1,i + ωi × (ωi × ri−1,i) (LAR’)

B̈i = Öi + ω̇i × ri,Bi + ωi × (ωi × ri,Bi), (LAR)

for i = 1, . . . , N , with the initialization ω0 = ω̇0 = 0 and
Ö0 = −αg0/‖g0‖ (fixed base, including gravity acceleration
when present).

The backward recursion on dynamic forces and torques is
given by:

f i = f i+1 +miB̈i (FR)

τ i = τ i+1 − f i × (ri−1,i + ri,Bi
)

+f i+1 × ri,Bi
+ Iiω̇i + ωi × (Iiωi)

(TR)

ui = τTi zi−1, (FP)

for i = N, . . . , 1, with the initialization fN+1 = τN+1 = 0
(no contact with the environment at the end-effector level).

Fig. 2. Standard recursive Newton-Euler algorithm (modified from [18])

The overall computational scheme is summarized in Fig. 2,
where the ”AR” blocks include eqs. (AVR), (AAR), (LAR’),
and (LAR).

A. Use of the NE algorithm

One sweep of the standard N-E algorithm can be also used
to compute separately the various dynamic terms in (1). For
instance, the gravity vector is obtained as

g(q) = NEg0(q,0,0) (11)

while the i-th column of the inertia matrix

M i(q) = NE0(q,0, v̂i), (12)

where v̂i =
(

0 . . . 0 1 0 . . . 0
)T

is the i-th
vector of the canonical base of RN . Moreover, the gener-
alized momentum in eq. (7) is given by

p = NE0(q,0, q̇), (13)

while the well-known feedback linearization control law is
obtained from

uFL = M(q)a+ c(q, q̇) + g(q) = NEg0(q, q̇,a), (14)

where a = q̈d +KPe+KDė. However, from

c(q, q̇) = NE0(q, q̇,0) (15)

one can neither extract the matrix C(q, q̇) to be transposed
in eq. (6) —and also not its single elements or columns—
nor compute the mixed velocity term C(q, q̇)q̇r needed in
eq. (8).

3361

IV. MODIFIED NEWTON-EULER METHOD

The modified N-E algorithm can be described succinctly
as a vector function NE∗α of four vector inputs ai ∈ RN , i =
1, 2, 3, 4, still parametrized by the same scalar α ∈ {g0, 0}:

NE∗α(a1,a2,a3,a4). (16)

The basic idea is to allow more freedom by splitting the
quadratic appearance of the velocity vector a2 = q̇ within (9)
in two distinct inputs, a2 = q̇ and an auxiliary a3 = q̇a. with
the additional trivial condition that, for q̇a = q̇, it is

NE∗α(q, q̇, q̇, q̈) = NEα(q, q̇, q̈). (17)

Moreover, for a correct computation of eqs. (6) and (8),
we need to enforce the skew-symmetric property (3). In
particular, the algorithm NE∗, when invoked with q̇a = v̂i
and α = 0, should generate

C∗i (q, q̇) = NE∗0(q, q̇, v̂i,0), (18)

namely the i-th column of a matrix

C∗(q, q̇) =
(
C∗1 C∗2 ... C∗N

)
(19)

that has to satisfy

Ṁ(q)−C∗(q, q̇)−C∗T(q, q̇) = 0, ∀q, q̇. (20)

With this in mind, we introduce an auxiliary angular
velocity ωai

of link i, which is dependent on q̇a1 , . . . , q̇ai

through the recursive relation

ωai = ωai−1 + q̇aizi−1. (AVR∗)

Moreover, the following terms in the standard N-E recursions
with quadratic dependence on velocity will be modified:

1) the third term on the right-hand side of (AAR)

q̇iωi−1 × zi−1;

2) the third term on the right-hand side of (LAR’)

ωi × (ωi × ri−1,i);

3) the third term on the right-hand side of (LAR)

ωi × (ωi × ri,Bi);

4) the fifth term on the right-hand side of (TR)

ωi × (Iiωi).

In the first one we have q̇i multiplying ωi−1, which is
function of q̇j (j = 1, ..., i − 1), whereas in the remaining
ones we have vector products. In these vector products, one
factor will be made dependent on q̇ while the other on
q̇a. Note that in all the above four cases, the result will
change depending on the order of substitutions. In fact, in
the modified eq. (AAR)

q̇iωai−1(q̇a1 , . . . , q̇ai−1) 6= q̇ai
ωi−1(q̇1, . . . , q̇i−1), (21)

while in the modified eqs. (LAR’), (LAR) and (TR) we will
have a sign inversion due to anti-symmetric property of the
vector product (v ×w = −(w × v)).

As for the angular acceleration recursion, we may sub-
stitute eq. (AAR) with one of the two following options,
indexed by 0 and 1:

ω̇i = ω̇i−1 + q̈izi−1 + q̇iωai−1 × zi−1 (AAR∗0)

or

ω̇i = ω̇i−1 + q̈izi−1 + q̇aiωi−1 × zi−1. (AAR∗1)

Similarly, one can define the following three couples of new
recursions:

Öi = Öi−1 + ω̇i × ri−1,i +ωi × (ωai
× ri−1,i) (LAR’∗0)

Öi = Öi−1 + ω̇i × ri−1,i +ωai × (ωi × ri−1,i) (LAR’∗1)

B̈i = Öi + ω̇i × ri,Bi
+ ωi × (ωai

× ri,Bi
) (LAR∗0)

B̈i = Öi + ω̇i × ri,Bi + ωai × (ωi × ri,Bi) (LAR∗1)

τ i = τ i+1 − f i × (ri−1,i + ri,Bi
) + f i+1 × ri,Bi

+

Iiω̇i + ωi × (Iiωai
)

(TR∗0)
τ i = τ i+1 − f i × (ri−1,i + ri,Bi

) + f i+1 × ri,Bi
+

Iiω̇i + ωai
× (Iiωi)

(TR∗1)
Accordingly, an indexed family of recursive algorithms

NE∗α,i1...i4 can be formulated through the following se-
quences of steps

1) AVR
2) AVR∗
3) AAR∗i1
4) LAR’∗i2
5) LAR∗i3
6) FR
7) TR∗i4
8) FP,

with ij ∈
{
0, 1
}

for j = 1, . . . , 4. Each computational
scheme will be similar to the one in Fig. 2, with the same
O(N) complexity.

As a consequence, 24 = 16 different versions of the
algorithm are possible and it needs to be checked whether
none, one, many, or all of them will lead to a factorization
matrix C∗(q, q̇), as defined by eqs. (18– 19), that obeys to
the skew-simmetric property (20). For this, one can proceed
element-wise, verifying in symbolic form if

∂Mij

∂q
q̇ − C∗ij − C∗ji = 0,

for j = 1, ..., N, i = 1, ..., N − j + 1,
(22)

where
Mij(q) = v̂Ti NE∗α,i1...i4(q,0,0, v̂j), (23)

and
C∗ij(q, q̇) = v̂Ti NE∗α,i1...i4(q, q̇, v̂j ,0). (24)

Symbolic computations have been performed in the
MATLAB R© environment, using the Symbolic Math Toolbox.
The whole family of recursive algorithms has been checked

3362

on the fully general dynamic model of open chain manipula-
tors with up to N = 7 rotational joints. It has been found that
only two cases satisfy in general the required conditions (22),
namely NE∗α,0001 and its dual NE∗α,1110. Any of these two
can be used as the final modified N-E algorithm NE∗α.

We finally note that there where specific instances of
manipulators in which the factorization matrix C∗ computed
with the new algorithm but in symbolic form was found to
be equal to the matrix C computed through the Christoffel
symbols. For other manipulators, this was not the case
(despite the satisfaction of the skew-symmetric property). It
can be concluded that the designed NE∗α algorithm does
not cover all admissible factorizations of the Coriolis and
centrifugal terms.

A. Use of the NE∗ algorithm

The modified N-E algorithm can be immediately used for
solving the two original problems that motivated this work.
In particular, the passivity-based control law in eq. (8) is
obtained by the single sweep

u = NE∗g0(q, q̇, q̇r, q̈r) +KPe+KDė, (25)

thus with O(N) computational complexity, similar to the
result obtained in [22]. On the other hand, the residual in
eq. (6) needs N + 2 sweeps of the algorithm, namely two
for computing the generalized momentum

p = NE∗0(q,0,0, q̇) (26)

and the gravity vector

g(q) = NE∗g0(q,0,0,0), (27)

and N sweeps

q̇TC∗i(q, q̇) = q̇TNE∗0(q, q̇, v̂i,0), i = 1, . . . , N, (28)

for computing component-wise the vector C∗T(q, q̇)q̇. Its
overall complexity is thus O(N2).

V. NUMERICAL TEST

As a selected test for comparing the efficiency of the
modified N-E algorithm with respect to the evaluation of
symbolically obtained dynamic terms, we have considered
one of the series of 7R lightweight robots (LWR) developed
at DLR [17]. For this robot, we have computed the matrix
C∗(q, q̇) with the NE∗ algorithm for a given argument
q, q̇, as well as evaluated the symbolic matrix C(q, q̇)
obtained using Christoffel symbols. Indeed, since both C
andC∗ satisfy the skew-symmetric property, this comparison
is consistent. The full dynamic model in closed form was
previously obtained using a Lagrangian approach, with the
kinematic and dynamic parameters taken from [23]. The
conventional Denavit-Hartenberg kinematic parameters for
this arm are reported in Table I. Uniform mass distribution
has been assumed for each link, with diagonal and constant
link inertia matrices (when expressed in the barycentric
frame associated to each link). Motor inertias, as reflected
through the square of the gear ratios, have been added on
the diagonal of matrix M(q).

i αi ai di θi

1
π

2
0 L q1

2 −
π

2
0 0 q2

3
π

2
0 2L q3

4 −
π

2
0 0 q4

5 −
π

2
0 2L q5

6
π

2
0 0 q6

7 0 a7 0 q7

TABLE I
KINEMATIC PARAMETERS FOR THE DLR LWR-III ARM

Fig. 3. Execution times for the closed-form function (top) and for the
NE∗-based function (bottom)

In particular, two MATLAB m-functions were pro-
grammed, one containing the closed form expression of
C(q, q̇), called matrice s LWR, and another, called mats NE,
that computes C∗(q, q̇) column-wise with the NE∗ algo-
rithm being invoked N = 7 times, as explained in Sect. IV-
A. The programs were run on an Intel R© Core Duo 1.83
GHz machine with 1 GB of RAM, under MAC OS X R©. For
comparing the execution times, the MATLAB profiler utility
was used, which is based on CPU time measurements.

The obtained results for this test are shown in Fig. 3,
where NE 0001 LWR is the core NE∗ algorithm function
and vprod is an internal function that computes vector
products in R3. The “total time” is the effective time needed
for (all) the calls of the profiled function, while the “self-
time” is the time necessary to execute the profiled function
itself, excluding the time needed by other functions possibly
called therein. The achieved improvement by the proposed
numerical method is about 20 times.

VI. CONCLUSIONS

Motivated by two computational problems that arise in
a recent approach to fault detection and in the classical
passivity-based tracking control law for robot manipulators,
we introduced a novel version of the recursive Newton-Euler

3363

numerical algorithm. The modified algorithm allows to com-
pute some dynamic terms in which there is a need of splitting
the quadratic dependence on the generalized velocity in two
different quantities, the robot velocity q̇ and an auxiliary
velocity vector q̇a. Moreover, the algorithm provides the
numerical version of a factorization matrix for the Coriolis
and centrifugal terms which automatically satisfies the skew-
symmetric property. The improved efficiency of the proposed
numerical method has been tested on a robot with 7 rotational
dofs, and is expected to be even superior when N increases.

On-going work is devoted to addressing the relationships
between the factorization matrices provided by the algorithm,
the one generated by Christoffel symbols, and the com-
plete set of all such matrices satisfying the skew-symmetric
property. Also, a more complete numerical comparison with
customized symbolic computations is under way. On the
other hand, the inclusion of prismatic joints in the novel
algorithm is rather straightforward.

As a possible extension of this approach, we foresee
its application to the inverse dynamics problem for robots
with elastic joints [16], [24]. In that case, the evaluation of
higher-order derivatives of dynamic model terms expressed
in symbolic form could be replaced by a suitable variation
of the proposed numerical recursive method.

ACKNOWLEDGEMENTS

This work has been funded by the European Commis-
sion’s Sixth Framework Programme as part of the project
PHRIENDS under grant no. 045359, and by the MIUR
project PRIN 2007 SICURA.

REFERENCES

[1] J. Hollerbach, “A recursive Lagrangian formulation of manipulator
dynamics and a comparative study of dynamics formulation complex-
ity”, IEEE Trans. on Systems, Man, and Cybernetics, vol. 10, pp.
730–736, 1980.

[2] J. J. Murray and C. P. Neuman, “Organizing customized robot
dynamics algorithms for efficient numerical evaluation”, IEEE Trans.
on Systems, Man, and Cybernetics, vol. 18, no. 1, pp. 115–125, 1988.

[3] J. Y. S. Luh, M. W. Walker, and R. P. C. Paul, “On-line computational
scheme for mechanical manipulators”, ASME J. of Dynamic Systems,
Measurement, and Control, vol. 102, no. 2, pp. 69–76, 1980.

[4] J. Koplik and M. C. Leu, “Computer generation of robot dynamics
equations and the related issues”, J. of Robotic Systems, vol. 3, no. 3,
pp. 301–319, 1986.

[5] P. K. Khosla and T. Kanade, “Real-time implementation and evaluation
of model-based controls on CMU DD arm”, in Proc. IEEE Int. Conf.
on Robotics and Automation, 1986, pp. 1546–1555.

[6] C. P. Neuman and J. J. Murray, “Symbolically efficient formulations
for computational robot dynamics”, J. of Robotic Systems, vol. 4, no.
6, pp. 743–769, 1987.

[7] L. Sciavicco, B. Siciliano, and L. Villani, “Lagrange and Newton-
Euler dynamic modeling of a gear-driven rigid robot manipulator with
inclusion of motor inertia effects”, Advanced Robotics, vol. 10, pp.
317–334, 1996.

[8] R. Featherstone and D. E. Orin, “Dynamics”, in Handbook of
Robotics, B. Siciliano and O. Khatib, Eds., pp. 35–65. Springer, 2008.

[9] A. De Luca and R. Mattone, “Actuator failure detection and isolation
using generalized momenta”, in Proc. IEEE Int. Conf. on Robotics
and Automation, 2003, pp. 634–639.

[10] A. De Luca, A. Albu-Schäffer, S. Haddadin, and G. Hirzinger,
“Collision detection and safe reaction with the DLR-III lightweight
robot arm”, in Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems, 2006, pp. 1623–1630.

[11] A. De Luca and L. Ferrajoli, “Exploiting robot redundancy in collision
detection and reaction”, in Proc. IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems, 2008, pp. 3299–3305.

[12] L. Le Tien, A. Albu-Schäffer, A. De Luca, and G. Hirzinger, “Friction
observer and compensation for control of robots with joint torque
measurements”, in Proc. IEEE Int. Conf. on Intelligent Robots and
Systems, 2008, pp. 3789–3795.

[13] A. De Luca and R. Mattone, “Sensorless robot collision detection and
hybrid force/motion control”, in Proc. IEEE Int. Conf. on Robotics
and Automation, 2005, pp. 1011–1016.

[14] M. Takegaki and S. Arimoto, “A new feedback method for dynamic
control of manipulators”, ASME J. of Dynamic Systems, Measurement,
and Control, vol. 102, pp. 119–125, 1981.

[15] J.-J. Slotine and W. Li, “On the adaptive control of robot manipula-
tors”, Int. J. of Robotics Research, vol. 6, no. 3, pp. 49–59, 1987.

[16] A. De Luca and W. Book, “Robots with flexible elements”, in
Handbook of Robotics, B. Siciliano and O. Khatib, Eds., pp. 287–
319. Springer, 2008.

[17] G. Hirzinger, A. Albu-Schäffer, M. Hähnle, I. Schaefer, and N. Sporer,
“On a new generation of torque controlled light-weight robots”, in
Proc. IEEE Int. Conf. on Robotics and Automation, 2001, pp. 3356–
3363.

[18] L. Sciavicco and B. Siciliano, Modeling and Control of Robot
Manipulators, Springer, London, 2nd edition, 2000.

[19] A. De Luca and R. Mattone, “An adapt-and-detect actuator FDI
scheme for robot manipulators”, in Proc. IEEE Int. Conf. on Robotics
and Automation, 2004, pp. 4975–4980.

[20] A. De Luca and R. Mattone, “An identification scheme for robot
actuator faults”, in Proc. IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems, 2005, pp. 1127–1131.

[21] W. K. Chung, L.-C. Fu, and S.-H. Hsu, “Motion control”, in Handbook
of Robotics, B. Siciliano and O. Khatib, Eds., pp. 133–159. Springer,
2008.

[22] J. Yuan and B. Yuan, “Recursive computation of the Slotine-Li
regressor”, in Proc. American Control Conf., 1995, pp. 2327–2331.

[23] A. Albu-Schäffer, Regelung von Robotern mit elastischen Gelenken am
Beispiel der DLR-Leichtbauarme, PhD thesis (in German), Technische
Universität München, 2001.

[24] A. Albu-Schäffer and G. Hirzinger, “A globally stable state-feedback
controller for flexible joint robots”, Advanced Robotics, vol. 15, no.
8, pp. 799–814, 2001.

3364

