Modeling and Control of the Monopedal Robot Thumper
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Abstract— A hybrid controller that induces stable running
gaits on a monopedal robot is developed. The robot features a
rigid leg with a revolute knee and a heavy torso with center
of mass located far from the hip. The torso houses a novel
powertrain that provides series compliance in the compressn
direction of the leg. The proposed control law is developed
within the hybrid zero dynamics framework and it acts on
two levels. On the first level, continuous within-stride cotrol
asymptotically imposes (virtual) holonomic constraints educing
the dynamics of the robot to a lower-dimensional hybrid
subsystem. On the second level, event-based control stabds

the resulting hybrid subsystem. The controller achieves ta dual Virtal | . Knee
objectives of working harmoniously with the system’s natual leg \
dynamics and inducing provably exponentially stable running \ Shin

motions, while all relevant physical constraints are respeted.

|I. INTRODUCTION

|2 1

Thumper, Fig. 1(a), is a novel monopedal robot that @ ®)
grew out of a collaborative effort between the University of
Michigan and Carnegie Mellon University to study |egged:ig. 1. (a): The monopedal robot Thumper (courtesy of Prof. J. Hurst).
locomotion. Two robots were built: a biped called MABEL, "¢ 69 consists of two links—the thigh and the shin—corerbtogether
with a knee joint. The thigh and shin are editm long making the robot
[4], and the monopod Thumper. One of the purposes @he meter tall at the hip. The overall mass is approximes8lyz. The torso
building these robots is to explore a novel powertrain desigc‘?”t‘ai”f]_ﬂ;]ed“ansn:ission_énecﬁﬂtiﬁm an? is é;ﬁaChed ;ﬂt?gh\?tié ET;T— fxp
thatincorporates compliance, with the objective of impngy 125 i dossrot orcide wi e center of mass of e (0 A
the power efficiency of locomotion, both in steady-state opother important quantities.
eration and in responding to disturbances. A second purpose
is to inspire the development of advanced feedback control
algorithms for running on level surfaces and walking orhuman. To the best of the authors’ knowledge, the case of
rough terrain. asymmetric upright running is addressed only in [6], and in
The salient characteristics of Thumper's morphology argl0] and [11].
summarized in Figs. 1 and 2. In particular, the robot feature The feedback law presented here builds upon control ideas
a relatively light leg with a revolute knee and a heavy torsdeveloped for a simplified monopedal model, termed the
with center of mass (COM) displaced from the hip, and iAsymmetric Spring Loaded Inverted Pendulum (ASLIP),
employs a transmission system that incorporates comgianehich was introduced in [10] and [11]; see also [9] for
for shock absorbtion and power efficiency; a detailed accoua detailed exposition. The ASLIP is an extension of the
of the design philosophy can be found in [5]. Spring Loaded Inverted Pendulum (SLIP) that includes torso
This paper focuses on control law design. The majority gpitch dynamics nontrivially coupled to a massless leg, and
control laws suitable for monopods with non-trivial torswe it differs from Thumper mainly in two ways. First, the
derived under the assumption that the torso CE@dihcides presence of leg mass in Thumper leads to energy loss at
with the hip joint; see [2], [3] and [1] for example. The touchdown and, through conservation of angular momentum
purpose of this assumption, which is crucial for the succesiring flight, in torso rotation when the leg is positioned to
of these controllers, is that it results in trivial couplingits desired touchdown position. Second, in transmitting th
between the torso and leg dynamics. However, the COMCtuator torques to the robot’s joints, Thumper's powertra
of Thumper’s torso is located high above the hip, as in #troduces dynamic effects not present in the ASLIP. This pa
per proposes a controller that confronts these challenggs a
|. Poulakakis and J. W. Grizzle are with the Control Systemsyorks in concert with the compliance present in Thumper to
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Additional results and other material supplemental to thisk can be Th . | dal rob ised of th
found in [4] and in [9]. A video of the results of Section VIl@mpanies umper is a planar monopedal robot comprised of three

the paper. links assembled to form a torso and a kneed leg terminated in




a point foot; see Fig. 1. It has been designed to incorporate The transmission system introduces dynamic effects that
some of the dynamic aspects of a SLIP, [2], while mordave significant implications on controller design in atstea
faithfully capturing the dynamics of a human in terms of théawo ways. First, an immediate consequence of the presence
torso and leg morphology. This requirement has given rise tf compliance is the increase of the degree of underactuatio
non-traditional mechanical design solutions, which, imfu of the system. In fact, during the stance phase, Thumper has
pose new challenges in developing control laws that indude/o degrees of underactuation—one more than the previously
stable hopping motions to Thumper. studied ASLIP; see [10] and [11]. Second, Thumper exhibits
Thumper features a novel compliant transmission systergignificant torso dynamics that cannot be captured by any
see Fig. 2 for a conceptual diagram and [5] for design detailgoint-mass approximation such as the SLIP. Moreover, con-
In the transmission, a collection of differentials is used ttrary to most of the existing monopedal robots, Thumper’s
connect Thumper’s two motors to the hip and knee joints &g is attached to the torso so that the hip joint does
that one motor controls the angle of tigtual leg consisting not coincide with the torso’s COM, resulting montrivial
of the line connecting the hip to the toe as shown in Fig. 1(bgouplingbetween the torso and leg dynamics. This particular
and the second motor is connectadserieswith a spring to morphology cannot be addressed by existing control laws for
control the length of the virtual leg. In essence, the pueds one-legged robot models, which are derived based on the
this transmission system is to ensure—mechanically, not [®ssumption that the torso COM coincides with the hip joint.
software—that the thigh and shin are coordinated, so tleat th
leg behaves as if it were prismatic, despite the existence of
a revolute knee. Another novelty in Thumper’s powertrain is Running in Thumper can be represented by a hybrid
that the spring in series with the leg-shape motarmigateral ~ system corresponding to the alternation of stance and flight
in the sense that it compresses, but does not extend beyonddifases. In this section, a mathematical model that captures
nominal rest length; instead, once the spring reachessts réhe dynamics of the system in running is derived. The most
length, the position of the leg-shape motgy,.s, and the general form of the robot model is discussed first. Important
leg-shape angleys, are rigidly connected (i.e. no longer special cases, such as those arising when ground contact
through a compliant element); see Fig. 2 for how this igonditions create holonomic constraints at the leg ends, ar
achieved. This feature provides an advantage in initiatingresented next, followed by the transition maps relating
liftoff during hopping, because at liftoff the leg-shapetoro the stance and flight phases. More details about modeling

does not “fight” the spring that is trying to extend due to thd humper, including explicit derivations of the equatiorfs o
non-zero mass of the shin. motion in the continuous-time phases and discrete transiti
among them, can be found in [9, Ch. V].

IIl. M ODELING THUMPER

leg-shape Bspring

A. Thumper’s Unconstrained Dynamics
motor \,z ~

oL , \\ Fig. 1(b) shows a schematic of a planar mechanism
. N Eg_torso composed of three rigid links representing Thumper’s torso
[

1l Z4

LN 4 thigh, and shin. A model describing the dynamics of the
T==A- -7 T\ mechanism of Fig. 1(b) has five degrees of freedom (DOF):
springﬁ, one DOF associated with the orientation of each link and
1  two DOF associated with the horizontal and vertical dis-
leg-angle ™. I placements of the torso’s COM. The spring present in the
motor \ N transmission system provides an additional DOF, so that the
combined mechanism—transmission plus rigid linkage—has
six DOF in total.

Fig. 1(b) includes a convenient choice of generalized
coordinates describing the configuration of the mechanism,
9'Thigh 9 shin namely, the leg angley.a, i.e. the relative angle between
the torso and the virtual leg connecting the hip with the
qLS:‘]Thighi}qShin Gin _ 9 high + shin toe, the leg-shape angles, i.e. the relative angle of the

2 virtual leg and the thigh that uniquely determines the lbngt
of the virtual leg, the angle of the torso with respect to

Fig. 2. Thumper’s powertrain system. The motors and spriagannected ; ; P
to the hip and knee joints via three differentials. The défsials are realized the vertical,¢ro,, and the cartesian position of the COM,

via cables and pulleys and they are connected so that thatedtuariables (Zem, Yem). Finally, the additional DOF provided by the
are the leg and leg-shape anglesa andqys, respectively; see Fig. 1(b). spring in the transmission will be described by the leg-ghap

The spring is in series with the leg-shape motor: one end imected to i :
the torso and the other to thi&;,,ing pulley via a cable, which makes the motor position measured relative to the torgQys.

spring unilateral. When the spring reaches its rest position, Bigying The corresponding equations of motion are obtained using

pulley hits a hard stop, as shown in the detail. When this éappthe leg- the method of Lagrange; see [9, Ch. V]. In computing the

shape motor is, for all intents and purposes, rigidly coteteto leg shape : : ; :

through a gear ratio. Design details of the transmissionbeafound in [5]. Lagrangl,an’,the tOtal_ kinetic energy 1s _tak,en to be the Sum
of the kinetic energies of the transmission and the rigid
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linkage. Similarly, the total potential energy is compubsd 2) Stance-to-flight TransitionThe stance phase is termi-
adding the corresponding potential energies assuming th@ted by imparting a positive (upwards) acceleration to the
the transmission contributes to the potential energy of thtee when the vertical componehf}, of the ground reaction
system only via its elastic energy. The resulting model diorce becomes zero. This condition can be used to trigger the
the unconstrained robot dynamics can be determined as flight phase. On the other hand, to take full advantage of the
spring, it is desirable that, by the end of stance, the spray
De(ge)de + Ce(ge, Ge)Ge + Ge(ge) = Beu, (1)  completely returned the energy stored in it through thesleg’
compression. Therefore, the nominal motion of Thumper is
where D, is the mass matrix(C, contains Coriolis and designed so that when the vertical ground reaction force
Centrifugal tel’ms, an(d;c is the vector of the Conﬁguration becomes Z€ero, the Spring reaches its natural |ength

dependent forces, gravitational and elastic. However, away from the nominal conditions, the two
events may not be synchronized. It will be assumed that
B. Thumper’s Constrained Dynamics the flight phase is initiated when either of the events occurs

Hence, if the vertical ground reaction force becomes zero

The model (1) can be part|cu|ar|z_ed to_descnbe the ﬂlgiﬁrst, then transition to flight occurs and the energy that is
and stance dynamics through the inclusion of proper holo-

; 4 . . : . Stored in the spring is assumed to be dissipated in the form
nomic constralnts,whlch can be incorporated in (1) follu/i of heat in the leg-shape actuator. On the other hand, if the
standard procedures; see [9, Ch. V].

: L . spring reaches its nominal position first, the flight phase ca
1) Flight Phase Dynamics:Although the flight phase be initiated by lifting the toe off the ground; this is podsib

ijngmlcs can be captured by (1_)’ to S|mpl|fy.the mOdeldue to the unilateral nature of the spring; see Fig. 2. In both
it will be as§umed tr_lat the spring deformat!on can b%ases, the corresponding events each define a suftage
neglected QUrlng the_ flight phase. This assumption resnul_t'_s in the stance state space signifying the end of stance. In
a holonomic constraint between the Ieg-shape motor p(_]"Smocomputing the transition maps note only that in the later
qmLS> gnd the Ie_g-shape angleys, obta|r_1ed b_y Seting case an “internal” impact occurs due to the pull®gfring”
the spring deflection equal to zero. Including this constrai hitting a mechanical stop, not allowing the spring to enter

results in a model similar to (1), in which the com‘iguratioqts extension phase; see Fig. 2 and [9, Ch. V] for details
variables are selected to Q= (qr.a, qLS, Tor; Tem, Yem)'- ' ' T '

2) Stance Phase Dynamic®uring the stance phase, the IV. OVERVIEW OF THE CONTROL METHOD

toe is in contact with the ground. The toe-ground interactio  Thjs section outlines the general framework for controller
is modeled as a frictionless pin-joint rigidly attached be t gesign. As enunciated by Raibert, the control objectives fo
ground, resulting in a holonomic constraint that reduces thmonopedal running can be decomposed into the regulation of
dimension of the unconstrained dynamics by two. This conjpree key variables: torso angle, hopping height, and fodwa
straint can be incorporated to the unconstrained dynamiGgocity. Raibert provided elegant stabilizing controsidor
resulting in a form similar to (1), in which the configurationygpots where the torso COM coincided with the hip and
variables are selected to ge= (qra; gLs; gmLs; 4Tor)- the legs are massless, or nearly so; see [12]. Experiments
In both the flight and stance phases, the second-ordefported in [5] demonstrated the inadequacy of such control
models describing the dynamics can be brought into standaggvs for Thumper, and indicate the need for a controller
state-space form by introducing the state veator (¢;¢),  capable of inducing stable running on the robot. Developing
such a controller is the subject of this work.

&= f(x) +g(z)u. ) The control objectives can be encoded in a set of suit-
ably designed constraints that are imposed on the robot
dynamics during the stance and flight phases through its

1) Flight-to-stance TransitionThe flight phase is termi- actuators. These constraints are parameterized with gespe
nated when the vertical distance of the toe from the grouri@ monotonic quantities that are functions of the state—
becomes zero. The threshold functiéfi__(z¢) := pY,,, NOt time—and can be interpreted &sirtual) holonomic
with pY. . denoting the vertical distance between the toe angPnstraints which restrict Thumper's dynamics on lower-
the ground, see Fig. 1(b), signifies the touchdown evens at flimensional surfaces embedded in the stance and flight state
zero crossing, and defines a smooth switching surfacg ~ SPaces, respectively. Loosely speaking, tfesluction-by-

C. Thumper’s Transitions

in the flight state spacd;, given by feedbackprocedure effectively reduces the feasible motions
of the robot bycoordinatingthe actuated degrees of freedom
St s = {xt € X | Hi—s (x1) =0} . (3) of Thumper, so that a lower-dimensional hybrid subsystem

“emerges” from the robot’s closed-loop dynamics. This
The flight-to-stance transition map taking the (final) statelower-dimensional hybrid subsystem governs the existence
z; of the flight phase to the (initial) states] of the and stability properties of distinguished periodic orlifiat
ensuing stance phase can be derived using the unconstrainedrespond to running motions of interest on Thumper.
dynamics under the assumption of a rigid impact. The details More specifically, to achieve the control objectives, the
are given in [9, Ch. V] and are omitted here for brevity. feedback law exploits the hybrid nature of the system by



introducing control action on two levels; see Fig. 3. On theemains upright throughout stance and, in addition, that
first level, continuous-time feedback laws, are employed it enters the flight phase with suitable initial conditions.

in each of the continuous phases indexed/by M, a Second, the controller regulates the energy stored in the le
finite index set. This stage introduces a set of parametespring so that a desired hopping height is maintained.

a, and §,, and its purpose is to create an invariant and In more detail, to the dynamics

attractive surfaceZ(,,, 5,) embedded in the state spadg .

of the corresponding continuous phase. s = fs(@s) + gs(xs)u )

5 of the stance phase associate the output
8 L-2 To QY Te u l__
I e BV B | e = s 6, 2) 1= o — W (0ae)s 000 B) (5)

where ¢, s contains thecontrolled variables, which are
selected to be the torso orientatien,, and the motor
POSItioNgmrs, i-€. ¢c.s = (¢Tor, gmrs)’- In (5), hd represents
the desired evolutionyd,, and ¢%;s of gror and gmrs,
respectively. It corresponds to a spline that is paranesgdri
with respect to the strictly monotonic (increasing) quignti

0 representing the angle formed by the line connecting the
toe with the hip relative to the ground, i.e.,

t

el _ o L o o 1

Outer-loog Hybrid Zero Dynamics

Fig. 3. Feedback diagram presenting the basic structurbeo€ontroller.

Continuous lines represent signals in continuous timehethéines represent 3

signals in discrete time.The control Ia\Eﬁ andl“;j are intended to create a 9(qs) ‘= —— 4+ qLA + qTor- (6)
well defined hybrid zero dynamics (HZD), while the controllé® ensures 2

that the resulting HZD is exponentially stable. Roughly speaking] is used to replace time in parameterizing

the motion of Thumper in stance. The parameter arrays
On the second level, event-based updates of the parametggs 3. in (5) include polynomial coefficients.

a,, and g, are performed at transitions between continuous Fig. 4 illustrates the general shape of the commanded

phases. The division of the parameters introduced in thg nsiraints oNgror and gmrs. The commanded constraint

continuous-time phases in two arrays, namely,and 8,  for gror is composed by a “transient” part, whose purpose is
follows the structure of the event-based parameter upda 4rive—in a smooth way—the torso angle from its initial

law, which is organized in an inner/outer-loop architeetur value, ¢, to a desired final oney,, in anticipation of

The inner-loop controlle’;; properly updates the parametersisoft The transition stage is followed by a part duringish

a, to ensure _that the initial _Condltlon::j of the corre- g1or is kept constant and equal td;, so that switching to
sponding continuous phase lies on the surfagg, s.),  flight occurs with favorable initial conditions. In partien,

e, z,j € Z(a,,p,- This inner-loop controller leads t0 commanding zero pitch velocity in the late stage of the stanc
the creation of a reduced-order hybrid subsystem govemingase ensures that the angular momentum associated with
the stability properties of the full-order model of Thumperie torsg is small when the system switches to flight, so that
This subsystem is called theybrid Zero Dynamic§HZD).  oycessive pitching during flight is eliminated.

Finally, the outer-loop controllel’” completes the control  The ransition part will be parameterized using a sixth or-
design by updating the parametgis= {(,}.cm SO that  yer Bezier polynomial spanning a period from the beginning

the resulting HZD is exponentially stable. of the stance phas#, = ™" = gmin until the angled
While the procedure described above can be made mathgz hes a “settling” valug = g2ax. l\/cl)élthematically

matically precise using the results in [7], [8] and [10], in

this paper we will turn our attention only to design and 6

implementation issues. In Sections V and VI we particutariz - 4 (9(¢,)):= Z br(s70r) s, (k,1)5 0 < ST0r <1

these ideas through explicit constructions of a set of faeklb ’ %:O s > 1

laws T, T andT'” that are organized according to Fig. 3 s,Tors Tor =% @

and achieve the control objectives. where the dependence bf , on o, and 3, was suppressed;
V. CONTINUOUS-TIME CONTROL OF THUMPER see Fig. 4 for the intuitive meaning of the coefficightro,.

In this section, the feedback objectives are described iH'€ coefficients,. are given by
detail. A set of virtual holonomic constraints is devised, b o M! - Mei 8
which, when enforced on the dynamics of Thumper through k(s) = k! (M —k)! s* (1-s) ’ (8)

zeroing properly selected output functions results inqeici

running motions on Thumper. Explicit constructions of theand the normalized independent variable is computed by

associated control laws can be found in [9, Ch. VI]. 6 — omin ©)
STor *=— 5o -
A. Stance Phase Virtual Holonomic Constraints Oy — Oor

The purpose of t_he contlnuogs—tlme control action during INotation: ‘s+” denotes a value at the beginning of stance;™ denotes
the stance phase is twofold. First, it ensures that the toraalue at the end of stance. Similar convention is adoptedigt.



On the other hand, as shown in Fig. 4, the desiremhcluded in the arrays, and 3, defined as
evolution of the motor position,,1.s is as follows. First, the

. y . : Qg = {a 0.1 Qg (1.1 ceey Qg (6.1 Gmin Hmax
motorshaft is kept at a constant angfg, ¢ until § = g™z, s 017 L1 e Fs,(6,1)> PTors Por 5
. . . . . min max
the point at which the spring is maximally compressed. Os,(~1,2), Os,(0,2)s - Os,(6,2): OmLs, Omist
This ensures that energy is stored in the spring without thg,g
actuator performing unnecessary negative work on the leg. Bs := {Bs.Tors BsmLs},

When maximum compression is reached, the actuator injects

energy through compressing the spring further by rapidl§espectively. It is noted that, in order to avoid discortinu
repositioning the motorshaft at a new desired positifif, ities in the commanded torques, the polynomial coefficients
which depends on the amount of energy that is requiréfiust satisfy certain requirements, which guarantee ttet th
to maintain hopping. Then, the motorshaft is kept at thigesired trajectories a€” functions ofst,, andsmyrs; such
position until liftoff occurs. requirements are given in [9, Sec. 6.2].

Similarly to the torso angle, the transient period fréfj’ By properties of the Beziér polynomials—see [13, p.
to 925 will be a fixed percentage of the nominal durationl39]—the coefficients; o and s, mLs represent the values
of the part of stance between the spring being maximall§f the torso pitch angle and the motorshaft position prior to
compressed and liftoff, and will be parameterized using Hftoff, i.e. ¢3,, andq;; g, respectively; see Fig. 4. Adjusting
sixth order Beziér polynomial. The mathematical deswipt s, Tor determines the posture of the torso as the robot

of the constraint: , for gurs is enters the flight phase, while adjustiry,,..s determines
' how much energy is injected or removed from the leg
Qg (—1,2)5 SmLs < 0 spring during the stance phase so that the hopping height
6 is regulated at the desired value. Updating these parasneter
hdo(0(gs)) = D bi(smLs) s 2y, 0 < Smrs < 1 provides a powerful control input for the stabilization of
k=0 Thumper, as will be detailed in Section VI-B.
fs,mLs; smLs > 1, (10) Finally, note that enforcing the constraints (7) and

(10) organizes the stance phase into three subphases,

namely, stance-compression, stance-injection, and etanc

decompression, which will be denoted by the indices “sc”,

g — omin, “si” and “sd,” respectively; see Fig. 4. These subphases

= pmax _ gmin. (11)  contain parameters that are entries aaf and the events
mLS — TmLS separating them can be defined as crossings of the surfaces

Ssc—>si = {xs S Xs | Bspring(xs) = 0}7
hg,l - q'(il‘or SSi‘)Sd = {CCS S XS | 9(%) - 9’11‘{101)( = O}a (12)
Ssd—t 1= Ss~>f7

where the dependence b§72 on oy and s was suppressed,
by is given by (8), and

SmLS -

is the corresponding normalized independent variable.

s+
Aror

whereBgpying is the spring deflection anfl_¢ is the stance-
to-flight switching surface; see Section 11I-C.2. Thesentse
can be utilized to update the stance phase parameters

. . not only at the beginning of the stance phase, but also at
:9"‘“‘ — gmin | gmax 1 gmax 0 transitions from one subphase to the next. This feature will

S—
Bs,Tor =dqror

Tor Tor |
' be used in Section VI-A to update certain parameters when

d _ d
hs,2 = qmLs

o maximum compression is detected.
mLS ¢

B. Flight Phase Virtual Holonomic Constraints

The purpose of the continuous-time controller during the
flight phase is to place the leg at a proper configuration in
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anticipation of touchdown. In more detail, to the continsiou
A : 0 dynamics
: emm min | pmax gmax .
I mLS - 1PmLS &y = fe(xe) + ge(xe)u (13)
| | | of the flight phase associate the output
' sc si ' sd’

i , ye = he(qe, ar, Br) := qet — hi (€(ge), o, Br), (14)
Fig. 4. The general shape of the stance phase commandedagatissiNote
that 075 = 015 to avoid the introduction of an extra stance subphase.where the VeCtOIqC_,f contains thecontrolled variables. In
selectingg. ¢ note that, as was recognized by Raibert in [12]
This procedure introduces a number of parameterand others, e.g. [2], the position of the foot as it touches th
namely, the coefficients of the polynomials used to descrilground at the end of flight has a strong influence on the ensu-
the various branches of (7) and (10). These coefficients airgy stance phase providing an effective means for cormiglli



forward speed. Moreover, when placing the leg, toe stubbirfgpr given values ok, and 3, differentiating (18) twice

and excessive pitching of the torso should be avoided. Thegéth respect to time results in

objectives can be achieved through commanding properly de- &Py,

signed virtual constraints on the horizontal distance betw o - L?ﬂ Py (2, e, Bu) + Ly, L, hy(qu, o, Bu)u,

the toe and the COM and on the leg-shape ar(gtge—azcm (20)

andgqys, respectively, i.e.qcr = (Ploe — Tem, qus)’- whereLy, Ly, h,(qu. au, By) is the decoupling matrix. Un-
In (14), h{ corresponds to the desired evolutionqf;,  der the condition thaL,, Ly, h,.(qy, oy, 3,) is invertible,

which depends on the parametessand 3¢, and is parame-

-1

terized with respect to the strictly monotonic quantityThe W (24 s B) 7= — (Lg, Ly oy (dus s Br)) 21)
variable/ corresponds to the horizontal distance traveled by L? (20, s B
the COM during flight, i.e., "

) . (15) is the control input that renders the surface
= xem — T 5

£ . (Qf . o L Z(auaﬁu) = {Il‘ € XH | h(ql“al“ﬂ#) =

where z} is the position of the COM at the beginning Ly (@, Ba) = 01

of the flight phase. The desired evolution of the controlled Fultnips G Ppe

variables in flight will be parameterized using sixth ordefnvariant under the flow of the closed-loop dynamics; that

Beziér polynomials, i.e. is, for everyz € 24, 3,

> f (Z O‘,uaﬂ,u) —f,u( )
Zbk(Sf)Oéfy(k,l) + be(st) B¢ t gu (2" (2, s B) € ToZia, 5,

hi(0la) = | *=0 ., (16) o _ _ _
Essentially, imposing the (virtual) holonomic constraibty
Z bi(st)at, (k,2) zeroing the corresponding outputs reduces the dimension of
the system by restricting its dynamics on the surfage 3 )
where the dependence &f on a; and 3; has been sup- embedded in the corresponding continuous-time state space
pressed, and . X,,. Following standard terminology, the surfagg, , 5,) is
st = 5 rix— 5“21;“ (17) called thezero dynamics manifoldand
is the normalized independent variable. Note izt = 0, 2= [N 20,0 (2 s B) (24)
since at the beginning of the flight phasg, = z£}, is the correspondingero dynamicsTo establishattractivity
As in the stance phase, this procedure mtroduces a nuek Z, 5.), the input (21) is modified as
ber of parameters corresponding to the coefficients of the

(22)

(23)

polynomials defininghd, which are grouped in the array w= T3, au By)
. . e . -1
ap 1= {0%,(0,1)5 -+ Of,(5,1)5 U, (0,2)5 > O, (6,2), L5 L7} T (Lg“Lj“h“(q“’a“’ﬂ“)) (25)
. 2
In order to explain why the coefficient of the highest order {U(?Juayme) - quhu(xuvo‘uvﬂu)} )

monomial ofh?1 is denoted byg; instead ofa; (6,1), note
that, by properties of the Beziér polynomlals see [13, p . 1 1 .

139], h¢ | (£™2x) = ;. Hence, the coefficient; corresponds V(Y s €) 1= __KPU“ - _Kvy“’ (26)

to the pOSItlon of the toe relative to the COM JUSt prlor thndKP, Ky are appropnate]y chosen ga|n matnces and
touchdown, i.e(pf,. — zem)'~, and it provides a powerful o, Under the continuous-time feedback laii, constructed
control input for regulating the forward speed. As a resultor each phase:, the solutions of (19) converge to the
following the control diagram of Fig. 31 will be updatedin jnvariant surfacez,,, 5,) exponentially fast at a rate that
the outer-loop discrete controller to achieve stabilitytitd  gepends on. In other words, the controller ensures that the
hybrid zero dynamics, and not in the inner-loop controllegirtual holonomic constraints, which are defined by (18) in
like the rest of the coefficients grouped dn. the form of outputs that are zeroed by the control action,
C. Continuous-time Controller: Enforcing the Constraints are (asymptotically) imposed on Thumper, thus restricting
its dynamics in each phase on the corresponding lower-
dimensional surfac€,, g,,)-

where

In what follows, the finite index seM = {sc, si, sd, {},
contains indices corresponding to each of the continuou
time phases, namely, stance-compression, stance-onecti VI. EVENT-BASED CONTROL OF THUMPER

stance-decompression, and flight. Hence, for each M A key implication of the hybrid nature of Thumper com-
an output function bined with the (trivial) dynamicsi, = 0 and 3, = 0

Y =y (s o, Bu)s (18) governing the parameters in the continuous phases, is the
ossibility of updatingy,, and3,, in an event-based manner.
n this section, a rule for updating the parameteyfswill
be devised, so that at the beginning of each continuous-
&, = fuley) + gu(z,)u. (19) time phase the initial condition lies on the corresponding

has been associated in Sections V-A and V-B with th
continuous dynamics



surfaceZ,, s,). This results in a well-defined hybrid sub-flight-to-stance transition maps, the inner-loop everselia
system governing the stability of Thumper, i.e. the hybrideedback laws and the flow maps associated with the stance
zero dynamics, which can be rendered exponentially stabpdase; see [9, Sec. 6.4] for details.

through updating the parametefs in an outer-loop, as is
schematically shown in Fig. 3.

A. Inner-loop Event-based Control for Invariance

At the beginning of a continuous phagethe parameters
a, can be updated to achieve invariance in the hybrid
setting. The procedure leaves the parametgrsand S;
unc_hanged; hence, for the_ purpose of |nr_1er-loc_>p COﬂtI‘O";@_ﬁ‘g. 6. Outer-loop event-based control for achieving $itstf the HZD.
design, theg-parameters will be grouped in a single array
3 := {0 Br}. Given 3, extending invariance in the hy'j”d A critical aspect of (28) is its dependence on the parameter
setting is accomplished by updating, to a new v?luex# array 3, which can be selected according to an outer-loop
so that the surfaceZ . ; is locally “deformed” at the feedhack lawI® shown in Fig. 3, whose purpose is to
beglr?r.nng of t_he phase to include the corrgspgndlng |p|t!al exponentially stabilize (28). One way of designifi§ is
conditionz;, i.e.z; € Z,+ 5. As shown in Fig. 5, this is py ysing discrete LQR techniques. Selecting the Poincaré
achieved through the parameter update law section to be the surfac§_s, i.e., the ground surface, the

a: — pz(x:’ B). (27) Poincaré maﬁ? : Sffs — St gssomat.ed with the hybrid
system (28) gives rise to the discrete-time control system

Explicit constructions of the parameter update ldVscan
be found in [9, Sec. 6.5]. ay [k+ 1] =P (xf [k], T (zg [K], BK]), BIK]) , (30)

where z; [k] is the state just prior tok-th touchdown.
Linearizing (30) and implementing a discrete LQR result in
I (", B) the following rule for updatings

"""""""""""""""""""""""""""" ‘ BT =0k =B+ K (7 K] —27) = TP(xr), (31)

of = T3 (a2,
wherez; is the nominal (fixed-point) value of the state just
prior to k-th touchdown, and3 the nominal value of the
parametersi. The feedback controller (31) guarantees that
all the eigenvalues of the linearization of (30) are witHie t
unit circle, and completes the control design.

; VII. SIMULATION RESULTS

Fig. 5. Inner-loop event-based control for achieving ifrace of the .ConSIder the hybrid dynamics of ThumPer In qlosed—loop
surfaces Z(,,, g), # € M. This controller, in combination with the with the feedback controllers developed in Sections V and
continuous-time control action (25), results in a well defirhybrid zero  \/|, The problem of finding a periodic motion for the closed-

dynamics, which will be rendered exponentially stable Via buter-loop . L
controller of Section VI-B; see Fig. 6. The symbolg., o, of; represent loop system can be cast as a constrained minimization prob

updated values af;s at the beginning of the corresponding stance subphase@m according to the procedure of [13, Ch. 6]. This procedure
results in a fixed poing; of the Poincaré return map (30),
B. Outer-loop Event-based Control for Stability and in the nom?nal values an(_jﬁ of the parameters. Fig.
i . 7 shows the virtual holonomic constraints for two steps
U_nderthe effect of the continuous-time c_ontrollElfﬁand corresponding to a periodic running motion of Thumper.
the inner-loop updates of the stance and flight parameters the resulting motion respects all the constraints; the tinpu
and oy according to Sections V and VI-A, respectively, theyorques are within the capabilities of the actuators, tioeigd

resulting closed-loop system takes the form reaction forces respect the friction cone constraints &ed t
i fr.alar, ar, B) - un|Iat<_eraI nature of the_ toe/ground |r_1t_eract|on, etc. _
= , T s o illustrate the orbit's local stability, the state priar
' . ¢S To illustrate th bit's local stability, the state priar t
of 0 (28) touchdown is perturbed away from the fixed poinf.

xf A(xf‘,ﬁ) B An initial error of +2deg is introduced on each angle
L | = _ ; Ty € Sios, and an error of+-10deg/s and +0.1m/s on each angular
O T (27, 5) velocity and on the velocity of the COM, respectively.
as shown in Fig. 6. In (28), The resulting motion is shown in the accompanying video.

Fig. 8 presents the constraints imposed on torso angle and
[ C

fea(as, o, B) = fe(we) + ge(we) I (5, o, B), (29) leg-shape motorshaft position during stance (top), and the
Si_.s IS given by (3), andA, T' are discrete maps resulting evolution of the errors in torso angle and horizontal veioci
from appropriate compositions of the stance-to-flight andh discrete time. It is interesting to note how the eventelolas



0.06 K]
e 295
g 004 El
~ [
Q =
S 0.02 S 9
=4 o
g £
& o 2
8 g85
-0.02 ?
j=2]
5
- 8
-0.04/
0 02 _ 0.4 0.6 0 01 02 03 04 05 06
Time (s) Time (s)
@ (b)
E
s o1 _.036
(e} he]
o 8
2 005 o034
e 20232
= ©
S 0 o
o g 03
& -0.05 I
3 go.ze
o 01 0.26
o
2
0 02 _ 0.4 0.6 0 01 02 03 04 05 06
Time (s) Time (s)
(©) (d)

light kneed leg mounted on a heavy torso, and the hip joint
is displaced from the torso COM. The robot features a novel
compliant powertrain, realized through cable differdstia
that are arranged so that the virtual leg, i.e., the line eotin
ing the hip to the toe, is compliant. The proposed feedback
law extends control ideas developed in the context of the
ASLIP—a simplified model with a massless leg introduced
in [10] and [11]—to an elaborate model that constitutes an
accurate representation of Thumper’s dynamics. The contro
law development is systematic and works harmoniously with
Thumper’s natural dynamics to induce running motions with
provable stability. It is anticipated that these propertiéll
render this controller an attractive alternative to triadial
heuristic approaches by avoiding laborious trial-ana1err
procedures during experimental implementation.
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The general features of the morphology of the robot were

Fig. 7. Virtual constraints during nominal motiofop: Stance phase torso
angle, (a), and leg-shape motor position, (b), constraiivien by (7) and

(10), respectively. Compare with Fig. Bottom: Flight phase toe horizontal

position relative to the COM, (c), and leg-shape angle, (d).

-
=

set by J.W. Grizzle, J. Hurst, B. Morris, and A. Rizzi. The

mechanical design of Thumper was done solely by J. Hurst.
Hae-Won Park provided an early version of Fig. 2.
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Fig. 8. Top: Stance phase virtual constraints during recovery from a

(8]

perturbation: torso angle, (a), and leg-shape motor positb). Dashed line
represents nominal liftoff values: The outer-loop conémoadjusts the liftoff
values for the torso angle and the motor position to ensungecgence to
the nominal orbitBottom: Discrete errors in pitch angle and forward speed [l
showing convergence to zero. The norm of the maximum eidie@via 0.8.

. . . [10]
controller manipulates the shape of the imposed consgtaint

For instance, Fig. 8(b) shows how the outer-loop controller
updates the coefficient]s 1.5, corresponding to the motor-
shaft position prior to liftoff,q; ; o, as Fig. 4 illustrates, in

order to manipulate the energy stored at the spring. 12l

VIII. CONCLUSION [13]

A stabilizing feedback control law for running has been
developed for Thumper. The robot is composed of a relatively
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