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Abstract— A hybrid controller that induces stable running
gaits on a monopedal robot is developed. The robot features a
rigid leg with a revolute knee and a heavy torso with center
of mass located far from the hip. The torso houses a novel
powertrain that provides series compliance in the compression
direction of the leg. The proposed control law is developed
within the hybrid zero dynamics framework and it acts on
two levels. On the first level, continuous within-stride control
asymptotically imposes (virtual) holonomic constraints reducing
the dynamics of the robot to a lower-dimensional hybrid
subsystem. On the second level, event-based control stabilizes
the resulting hybrid subsystem. The controller achieves the dual
objectives of working harmoniously with the system’s natural
dynamics and inducing provably exponentially stable running
motions, while all relevant physical constraints are respected.

I. I NTRODUCTION

Thumper, Fig. 1(a), is a novel monopedal robot that
grew out of a collaborative effort between the University of
Michigan and Carnegie Mellon University to study legged
locomotion. Two robots were built: a biped called MABEL,
[4], and the monopod Thumper. One of the purposes of
building these robots is to explore a novel powertrain design
that incorporates compliance, with the objective of improving
the power efficiency of locomotion, both in steady-state op-
eration and in responding to disturbances. A second purpose
is to inspire the development of advanced feedback control
algorithms for running on level surfaces and walking on
rough terrain.

The salient characteristics of Thumper’s morphology are
summarized in Figs. 1 and 2. In particular, the robot features
a relatively light leg with a revolute knee and a heavy torso
with center of mass (COM) displaced from the hip, and it
employs a transmission system that incorporates compliance
for shock absorbtion and power efficiency; a detailed account
of the design philosophy can be found in [5].

This paper focuses on control law design. The majority of
control laws suitable for monopods with non-trivial torsosare
derived under the assumption that the torso COMcoincides
with the hip joint; see [2], [3] and [1] for example. The
purpose of this assumption, which is crucial for the success
of these controllers, is that it results in trivial coupling
between the torso and leg dynamics. However, the COM
of Thumper’s torso is located high above the hip, as in a
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Fig. 1. (a): The monopedal robot Thumper (courtesy of Prof. J. Hurst).
The leg consists of two links—the thigh and the shin—connected together
with a knee joint. The thigh and shin are each50cm long making the robot
one meter tall at the hip. The overall mass is approximately30kg. The torso
contains the transmission mechanism and is attached to the leg via the hip
joint, which doesnot coincide with the center of mass of the torso.(b): A
schematic of Thumper with variables describing linkage configuration, and
other important quantities.

human. To the best of the authors’ knowledge, the case of
asymmetric upright running is addressed only in [6], and in
[10] and [11].

The feedback law presented here builds upon control ideas
developed for a simplified monopedal model, termed the
Asymmetric Spring Loaded Inverted Pendulum (ASLIP),
which was introduced in [10] and [11]; see also [9] for
a detailed exposition. The ASLIP is an extension of the
Spring Loaded Inverted Pendulum (SLIP) that includes torso
pitch dynamics nontrivially coupled to a massless leg, and
it differs from Thumper mainly in two ways. First, the
presence of leg mass in Thumper leads to energy loss at
touchdown and, through conservation of angular momentum
during flight, in torso rotation when the leg is positioned to
its desired touchdown position. Second, in transmitting the
actuator torques to the robot’s joints, Thumper’s powertrain
introduces dynamic effects not present in the ASLIP. This pa-
per proposes a controller that confronts these challenges and
works in concert with the compliance present in Thumper to
produce stable, periodic, natural running motions.

II. T HE MORPHOLOGY OFTHUMPER

Thumper is a planar monopedal robot comprised of three
links assembled to form a torso and a kneed leg terminated in



a point foot; see Fig. 1. It has been designed to incorporate
some of the dynamic aspects of a SLIP, [2], while more
faithfully capturing the dynamics of a human in terms of the
torso and leg morphology. This requirement has given rise to
non-traditional mechanical design solutions, which, in turn,
pose new challenges in developing control laws that induce
stable hopping motions to Thumper.

Thumper features a novel compliant transmission system;
see Fig. 2 for a conceptual diagram and [5] for design details.
In the transmission, a collection of differentials is used to
connect Thumper’s two motors to the hip and knee joints so
that one motor controls the angle of thevirtual leg consisting
of the line connecting the hip to the toe as shown in Fig. 1(b),
and the second motor is connectedin serieswith a spring to
control the length of the virtual leg. In essence, the purpose of
this transmission system is to ensure—mechanically, not by
software—that the thigh and shin are coordinated, so that the
leg behaves as if it were prismatic, despite the existence of
a revolute knee. Another novelty in Thumper’s powertrain is
that the spring in series with the leg-shape motor isunilateral
in the sense that it compresses, but does not extend beyond its
nominal rest length; instead, once the spring reaches its rest
length, the position of the leg-shape motor,qmLS, and the
leg-shape angle,qLS, are rigidly connected (i.e. no longer
through a compliant element); see Fig. 2 for how this is
achieved. This feature provides an advantage in initiating
liftoff during hopping, because at liftoff the leg-shape motor
does not “fight” the spring that is trying to extend due to the
non-zero mass of the shin.
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Fig. 2. Thumper’s powertrain system. The motors and spring are connected
to the hip and knee joints via three differentials. The differentials are realized
via cables and pulleys and they are connected so that the actuated variables
are the leg and leg-shape angles,qLA andqLS, respectively; see Fig. 1(b).
The spring is in series with the leg-shape motor: one end is connected to
the torso and the other to theBspring pulley via a cable, which makes the
spring unilateral. When the spring reaches its rest position, theBspring

pulley hits a hard stop, as shown in the detail. When this happens, the leg-
shape motor is, for all intents and purposes, rigidly connected to leg shape
through a gear ratio. Design details of the transmission canbe found in [5].

The transmission system introduces dynamic effects that
have significant implications on controller design in at least
two ways. First, an immediate consequence of the presence
of compliance is the increase of the degree of underactuation
of the system. In fact, during the stance phase, Thumper has
two degrees of underactuation—one more than the previously
studied ASLIP; see [10] and [11]. Second, Thumper exhibits
significant torso dynamics that cannot be captured by any
point-mass approximation such as the SLIP. Moreover, con-
trary to most of the existing monopedal robots, Thumper’s
leg is attached to the torso so that the hip joint does
not coincide with the torso’s COM, resulting innontrivial
couplingbetween the torso and leg dynamics. This particular
morphology cannot be addressed by existing control laws for
one-legged robot models, which are derived based on the
assumption that the torso COM coincides with the hip joint.

III. M ODELING THUMPER

Running in Thumper can be represented by a hybrid
system corresponding to the alternation of stance and flight
phases. In this section, a mathematical model that captures
the dynamics of the system in running is derived. The most
general form of the robot model is discussed first. Important
special cases, such as those arising when ground contact
conditions create holonomic constraints at the leg ends, are
presented next, followed by the transition maps relating
the stance and flight phases. More details about modeling
Thumper, including explicit derivations of the equations of
motion in the continuous-time phases and discrete transitions
among them, can be found in [9, Ch. V].

A. Thumper’s Unconstrained Dynamics

Fig. 1(b) shows a schematic of a planar mechanism
composed of three rigid links representing Thumper’s torso,
thigh, and shin. A model describing the dynamics of the
mechanism of Fig. 1(b) has five degrees of freedom (DOF):
one DOF associated with the orientation of each link and
two DOF associated with the horizontal and vertical dis-
placements of the torso’s COM. The spring present in the
transmission system provides an additional DOF, so that the
combined mechanism—transmission plus rigid linkage—has
six DOF in total.

Fig. 1(b) includes a convenient choice of generalized
coordinates describing the configuration of the mechanism,
namely, the leg angle,qLA, i.e. the relative angle between
the torso and the virtual leg connecting the hip with the
toe, the leg-shape angle,qLS, i.e. the relative angle of the
virtual leg and the thigh that uniquely determines the length
of the virtual leg, the angle of the torso with respect to
the vertical,qTor, and the cartesian position of the COM,
(xcm, ycm). Finally, the additional DOF provided by the
spring in the transmission will be described by the leg-shape
motor position measured relative to the torso,qmLS.

The corresponding equations of motion are obtained using
the method of Lagrange; see [9, Ch. V]. In computing the
Lagrangian, the total kinetic energy is taken to be the sum
of the kinetic energies of the transmission and the rigid



linkage. Similarly, the total potential energy is computedby
adding the corresponding potential energies assuming that
the transmission contributes to the potential energy of the
system only via its elastic energy. The resulting model of
the unconstrained robot dynamics can be determined as

De(qe)q̈e + Ce(qe, q̇e)q̇e + Ge(qe) = Beu, (1)

where De is the mass matrix,Ce contains Coriolis and
centrifugal terms, andGe is the vector of the configuration
dependent forces, gravitational and elastic.

B. Thumper’s Constrained Dynamics

The model (1) can be particularized to describe the flight
and stance dynamics through the inclusion of proper holo-
nomic constraints, which can be incorporated in (1) following
standard procedures; see [9, Ch. V].

1) Flight Phase Dynamics:Although the flight phase
dynamics can be captured by (1), to simplify the model,
it will be assumed that the spring deformation can be
neglected during the flight phase. This assumption results in
a holonomic constraint between the leg-shape motor position,
qmLS, and the leg-shape angle,qLS, obtained by setting
the spring deflection equal to zero. Including this constraint
results in a model similar to (1), in which the configuration
variables are selected to beqf = (qLA, qLS, qTor, xcm, ycm)′.

2) Stance Phase Dynamics:During the stance phase, the
toe is in contact with the ground. The toe-ground interaction
is modeled as a frictionless pin-joint rigidly attached to the
ground, resulting in a holonomic constraint that reduces the
dimension of the unconstrained dynamics by two. This con-
straint can be incorporated to the unconstrained dynamics,
resulting in a form similar to (1), in which the configuration
variables are selected to beqs = (qLA; qLS; qmLS; qTor)

′.
In both the flight and stance phases, the second-order

models describing the dynamics can be brought into standard
state-space form by introducing the state vectorx := (q; q̇),

ẋ = f(x) + g(x)u. (2)

C. Thumper’s Transitions

1) Flight-to-stance Transition:The flight phase is termi-
nated when the vertical distance of the toe from the ground
becomes zero. The threshold functionHf→s(xf) := pv

toe,
with pv

toe denoting the vertical distance between the toe and
the ground, see Fig. 1(b), signifies the touchdown event at its
zero crossing, and defines a smooth switching surfaceSf→s

in the flight state spaceXf , given by

Sf→s := {xf ∈ Xf | Hf→s (xf) = 0} . (3)

The flight-to-stance transition map taking the (final) states
x−

f of the flight phase to the (initial) statesx+
s of the

ensuing stance phase can be derived using the unconstrained
dynamics under the assumption of a rigid impact. The details
are given in [9, Ch. V] and are omitted here for brevity.

2) Stance-to-flight Transition:The stance phase is termi-
nated by imparting a positive (upwards) acceleration to the
toe when the vertical componentFN

toe of the ground reaction
force becomes zero. This condition can be used to trigger the
flight phase. On the other hand, to take full advantage of the
spring, it is desirable that, by the end of stance, the springhas
completely returned the energy stored in it through the leg’s
compression. Therefore, the nominal motion of Thumper is
designed so that when the vertical ground reaction force
becomes zero, the spring reaches its natural length.

However, away from the nominal conditions, the two
events may not be synchronized. It will be assumed that
the flight phase is initiated when either of the events occurs.
Hence, if the vertical ground reaction force becomes zero
first, then transition to flight occurs and the energy that is
stored in the spring is assumed to be dissipated in the form
of heat in the leg-shape actuator. On the other hand, if the
spring reaches its nominal position first, the flight phase can
be initiated by lifting the toe off the ground; this is possible
due to the unilateral nature of the spring; see Fig. 2. In both
cases, the corresponding events each define a surfaceSs→f

in the stance state space signifying the end of stance. In
computing the transition maps note only that in the later
case an “internal” impact occurs due to the pulley “Bspring”
hitting a mechanical stop, not allowing the spring to enter
its extension phase; see Fig. 2 and [9, Ch. V] for details.

IV. OVERVIEW OF THE CONTROL METHOD

This section outlines the general framework for controller
design. As enunciated by Raibert, the control objectives for
monopedal running can be decomposed into the regulation of
three key variables: torso angle, hopping height, and forward
velocity. Raibert provided elegant stabilizing controllers for
robots where the torso COM coincided with the hip and
the legs are massless, or nearly so; see [12]. Experiments
reported in [5] demonstrated the inadequacy of such control
laws for Thumper, and indicate the need for a controller
capable of inducing stable running on the robot. Developing
such a controller is the subject of this work.

The control objectives can be encoded in a set of suit-
ably designed constraints that are imposed on the robot
dynamics during the stance and flight phases through its
actuators. These constraints are parameterized with respect
to monotonic quantities that are functions of the state—
not time—and can be interpreted as(virtual) holonomic
constraints, which restrict Thumper’s dynamics on lower-
dimensional surfaces embedded in the stance and flight state
spaces, respectively. Loosely speaking, thisreduction-by-
feedbackprocedure effectively reduces the feasible motions
of the robot bycoordinatingthe actuated degrees of freedom
of Thumper, so that a lower-dimensional hybrid subsystem
“emerges” from the robot’s closed-loop dynamics. This
lower-dimensional hybrid subsystem governs the existence
and stability properties of distinguished periodic orbitsthat
correspond to running motions of interest on Thumper.

More specifically, to achieve the control objectives, the
feedback law exploits the hybrid nature of the system by



introducing control action on two levels; see Fig. 3. On the
first level, continuous-time feedback lawsΓc

µ are employed
in each of the continuous phases indexed byµ ∈ M, a
finite index set. This stage introduces a set of parameters
αµ and βµ, and its purpose is to create an invariant and
attractive surfaceZ(αµ,βµ) embedded in the state spaceXµ

of the corresponding continuous phase.

uαµβ

Outer-loop Hybrid Zero Dynamics

Γc
µΓα

µΓβ

Fig. 3. Feedback diagram presenting the basic structure of the controller.
Continuous lines represent signals in continuous time; dashed lines represent
signals in discrete time.The control lawsΓc

µ andΓα
µ are intended to create a

well defined hybrid zero dynamics (HZD), while the controller Γβ ensures
that the resulting HZD is exponentially stable.

On the second level, event-based updates of the parameters
αµ andβµ are performed at transitions between continuous
phases. The division of the parameters introduced in the
continuous-time phases in two arrays, namely,αµ and βµ,
follows the structure of the event-based parameter update
law, which is organized in an inner/outer-loop architecture.
The inner-loop controllerΓα

µ properly updates the parameters
αµ to ensure that the initial conditionx+

µ of the corre-
sponding continuous phase lies on the surfaceZ(αµ,βµ),
i.e., x+

µ ∈ Z(αµ,βµ). This inner-loop controller leads to
the creation of a reduced-order hybrid subsystem governing
the stability properties of the full-order model of Thumper.
This subsystem is called theHybrid Zero Dynamics(HZD).
Finally, the outer-loop controllerΓβ completes the control
design by updating the parametersβ = {βµ}µ∈M so that
the resulting HZD is exponentially stable.

While the procedure described above can be made mathe-
matically precise using the results in [7], [8] and [10], in
this paper we will turn our attention only to design and
implementation issues. In Sections V and VI we particularize
these ideas through explicit constructions of a set of feedback
laws Γc

µ, Γα
µ andΓβ that are organized according to Fig. 3

and achieve the control objectives.

V. CONTINUOUS-TIME CONTROL OFTHUMPER

In this section, the feedback objectives are described in
detail. A set of virtual holonomic constraints is devised,
which, when enforced on the dynamics of Thumper through
zeroing properly selected output functions results in periodic
running motions on Thumper. Explicit constructions of the
associated control laws can be found in [9, Ch. VI].

A. Stance Phase Virtual Holonomic Constraints

The purpose of the continuous-time control action during
the stance phase is twofold. First, it ensures that the torso

remains upright throughout stance and, in addition, that
it enters the flight phase with suitable initial conditions.
Second, the controller regulates the energy stored in the leg
spring so that a desired hopping height is maintained.

In more detail, to the dynamics

ẋs = fs(xs) + gs(xs)u (4)

of the stance phase associate the output

ys = hs(qs, αs, βs) := qc,s − hd
s (θ(qs), αs, βs) , (5)

where qc,s contains thecontrolled variables, which are
selected to be the torso orientationqTor and the motor
positionqmLS, i.e. qc,s = (qTor, qmLS)

′. In (5), hd
s represents

the desired evolutionqd
Tor and qd

mLS of qTor and qmLS,
respectively. It corresponds to a spline that is parameterized
with respect to the strictly monotonic (increasing) quantity
θ representing the angle formed by the line connecting the
toe with the hip relative to the ground, i.e.,

θ(qs) := −
3π

2
+ qLA + qTor. (6)

Roughly speaking,θ is used to replace time in parameterizing
the motion of Thumper in stance. The parameter arraysαs

andβs in (5) include polynomial coefficients.
Fig. 4 illustrates the general shape of the commanded

constraints onqTor and qmLS. The commanded constraint
for qTor is composed by a “transient” part, whose purpose is
to drive—in a smooth way—the torso angle from its initial
value1, qs+

Tor, to a desired final one,qs−
Tor, in anticipation of

liftoff. The transition stage is followed by a part during which
qTor is kept constant and equal toqs−

Tor so that switching to
flight occurs with favorable initial conditions. In particular,
commanding zero pitch velocity in the late stage of the stance
phase ensures that the angular momentum associated with
the torso is small when the system switches to flight, so that
excessive pitching during flight is eliminated.

The transition part will be parameterized using a sixth or-
der Beziér polynomial spanning a period from the beginning
of the stance phase,θ = θmin = θmin

Tor , until the angleθ
reaches a “settling” valueθ = θmax

Tor . Mathematically,

hd
s,1(θ(qs)) :=











6
∑

k=0

bk(sTor)αs,(k,1), 0 ≤ sTor ≤ 1

βs,Tor, sTor > 1,
(7)

where the dependence ofhd
s,1 on αs andβs was suppressed;

see Fig. 4 for the intuitive meaning of the coefficientβs,Tor.
The coefficientsbk are given by

bk(s) :=
M !

k! (M − k)!
sk (1 − s)M−k, (8)

and the normalized independent variable is computed by

sTor :=
θ − θmin

Tor

θmax
Tor − θmin

Tor

. (9)

1Notation: “s+” denotes a value at the beginning of stance; “s−” denotes
a value at the end of stance. Similar convention is adopted for flight.



On the other hand, as shown in Fig. 4, the desired
evolution of the motor positionqmLS is as follows. First, the
motorshaft is kept at a constant angleqs+

mLS until θ = θmin
mLS,

the point at which the spring is maximally compressed.
This ensures that energy is stored in the spring without the
actuator performing unnecessary negative work on the leg.
When maximum compression is reached, the actuator injects
energy through compressing the spring further by rapidly
repositioning the motorshaft at a new desired position,qs−

mLS,
which depends on the amount of energy that is required
to maintain hopping. Then, the motorshaft is kept at this
position until liftoff occurs.

Similarly to the torso angle, the transient period fromθmin
mLS

to θmax
mLS will be a fixed percentage of the nominal duration

of the part of stance between the spring being maximally
compressed and liftoff, and will be parameterized using a
sixth order Beziér polynomial. The mathematical description
of the constrainthd

s,2 for qmLS is

hd
s,2(θ(qs)) :=



















αs,(−1,2), smLS < 0
6

∑

k=0

bk(smLS)αs,(k,2), 0 ≤ smLS ≤ 1

βs,mLS, smLS > 1,
(10)

where the dependence ofhd
s,2 on αs andβs was suppressed,

bk is given by (8), and

smLS :=
θ − θmin

mLS

θmax
mLS − θmin

mLS

(11)

is the corresponding normalized independent variable.

θmin
Tor = θmin θmax

Tor θmax θ

βs,Tor =qs−
Tor

qs+
Tor

hd
s,1 = qd

Tor

θmin θmin
mLS θmax

mLS θmax θ

βs,mLS =qs−
mLS

qs+
mLS

hd
s,2 = qd

mLS

sc si sd

Fig. 4. The general shape of the stance phase commanded constraints. Note
that θmax

Tor = θmax
mLS to avoid the introduction of an extra stance subphase.

This procedure introduces a number of parameters,
namely, the coefficients of the polynomials used to describe
the various branches of (7) and (10). These coefficients are

included in the arraysαs andβs defined as

αs := {αs,(0,1), αs,(1,1), ..., αs,(6,1), θmin
Tor , θmax

Tor ,

αs,(−1,2), αs,(0,2), ..., αs,(6,2), θmin
mLS, θmax

mLS},

and
βs := {βs,Tor, βs,mLS} ,

respectively. It is noted that, in order to avoid discontinu-
ities in the commanded torques, the polynomial coefficients
must satisfy certain requirements, which guarantee that the
desired trajectories areC2 functions ofsTor andsmLS; such
requirements are given in [9, Sec. 6.2].

By properties of the Beziér polynomials—see [13, p.
139]—the coefficientsβs,Tor andβs,mLS represent the values
of the torso pitch angle and the motorshaft position prior to
liftoff, i.e. qs−

Tor andqs−
mLS, respectively; see Fig. 4. Adjusting

βs,Tor determines the posture of the torso as the robot
enters the flight phase, while adjustingβs,mLS determines
how much energy is injected or removed from the leg
spring during the stance phase so that the hopping height
is regulated at the desired value. Updating these parameters
provides a powerful control input for the stabilization of
Thumper, as will be detailed in Section VI-B.

Finally, note that enforcing the constraints (7) and
(10) organizes the stance phase into three subphases,
namely, stance-compression, stance-injection, and stance-
decompression, which will be denoted by the indices “sc”,
“si” and “sd,” respectively; see Fig. 4. These subphases
contain parameters that are entries ofαs and the events
separating them can be defined as crossings of the surfaces

Ssc→si := {xs ∈ Xs | Ḃspring(xs) = 0},

Ssi→sd := {xs ∈ Xs | θ(qs) − θmax
Tor = 0},

Ssd→f := Ss→f ,

(12)

whereBspring is the spring deflection andSs→f is the stance-
to-flight switching surface; see Section III-C.2. These events
can be utilized to update the stance phase parametersαs

not only at the beginning of the stance phase, but also at
transitions from one subphase to the next. This feature will
be used in Section VI-A to update certain parameters when
maximum compression is detected.

B. Flight Phase Virtual Holonomic Constraints

The purpose of the continuous-time controller during the
flight phase is to place the leg at a proper configuration in
anticipation of touchdown. In more detail, to the continuous
dynamics

ẋf = ff(xf) + gf(xf)u (13)

of the flight phase associate the output

yf = hf(qf , αf , βf) := qc,f − hd
f (ℓ(qf), αf , βf), (14)

where the vectorqc,f contains thecontrolled variables. In
selectingqc,f note that, as was recognized by Raibert in [12]
and others, e.g. [2], the position of the foot as it touches the
ground at the end of flight has a strong influence on the ensu-
ing stance phase providing an effective means for controlling



forward speed. Moreover, when placing the leg, toe stubbing
and excessive pitching of the torso should be avoided. These
objectives can be achieved through commanding properly de-
signed virtual constraints on the horizontal distance between
the toe and the COM and on the leg-shape angle,(ph

toe−xcm)
andqLS, respectively, i.e.,qc,f = (ph

toe − xcm, qLS)′.
In (14), hd

f corresponds to the desired evolution ofqc,f ,
which depends on the parametersαf andβf , and is parame-
terized with respect to the strictly monotonic quantityℓ. The
variableℓ corresponds to the horizontal distance traveled by
the COM during flight, i.e.,

ℓ(qf) := xcm − xf+
cm, (15)

where xf+
cm is the position of the COM at the beginning

of the flight phase. The desired evolution of the controlled
variables in flight will be parameterized using sixth order
Beziér polynomials, i.e.

hd
f (ℓ(qf)) :=













5
∑

k=0

bk(sf)αf,(k,1) + b6(sf)βf

6
∑

k=0

bk(sf)αf,(k,2)













, (16)

where the dependence ofhd
f on αf and βf has been sup-

pressed, and

sf :=
ℓ − ℓmin

ℓmax − ℓmin
(17)

is the normalized independent variable. Note thatℓmin = 0,
since at the beginning of the flight phasexcm = xf+

cm.
As in the stance phase, this procedure introduces a num-

ber of parameters corresponding to the coefficients of the
polynomials defininghd

f , which are grouped in the array

αf := {αf,(0,1), ..., αf,(5,1), αf,(0,2), ..., αf,(6,2), ℓmin, ℓmax}.

In order to explain why the coefficient of the highest order
monomial ofhd

f,1 is denoted byβf instead ofαf,(6,1), note
that, by properties of the Beziér polynomials, see [13, p.
139],hd

f,1(ℓ
max) = βf . Hence, the coefficientβf corresponds

to the position of the toe relative to the COM just prior to
touchdown, i.e.(ph

toe − xcm)f−, and it provides a powerful
control input for regulating the forward speed. As a result,
following the control diagram of Fig. 3,βf will be updated in
the outer-loop discrete controller to achieve stability ofthe
hybrid zero dynamics, and not in the inner-loop controller
like the rest of the coefficients grouped inαf .

C. Continuous-time Controller: Enforcing the Constraints

In what follows, the finite index setM = {sc, si, sd, f},
contains indices corresponding to each of the continuous-
time phases, namely, stance-compression, stance-injection,
stance-decompression, and flight. Hence, for eachµ ∈ M
an output function

yµ := hµ(qµ, αµ, βµ), (18)

has been associated in Sections V-A and V-B with the
continuous dynamics

ẋµ = fµ(xµ) + gµ(xµ)u. (19)

For given values ofαµ and βµ, differentiating (18) twice
with respect to time results in

d2yµ

dt2
= L2

fµ
hµ(xµ, αµ, βµ) + Lgµ

Lfµ
hµ(qµ, αµ, βµ)u,

(20)
whereLgµ

Lfµ
hµ(qµ, αµ, βµ) is the decoupling matrix. Un-

der the condition thatLgµ
Lfµ

hµ(qµ, αµ, βµ) is invertible,

u∗(xµ, αµ, βµ) := −
(

Lgµ
Lfµ

hµ(qµ, αµ, βµ)
)−1

L2
fµ

hµ(xµ, αµ, βµ),
(21)

is the control input that renders the surface

Z(αµ,βµ) =
{

xµ ∈ Xµ | h(qµ, αµ, βµ) = 0,

Lfµ
hµ(xµ, αµ, βµ) = 0

} (22)

invariant under the flow of the closed-loop dynamics; that
is, for everyz ∈ Z(αµ,βµ),

f∗(z, αµ, βµ) := fµ(z)

+ gµ(z)u∗(z, αµ, βµ) ∈ TzZ(αµ,βµ).
(23)

Essentially, imposing the (virtual) holonomic constraints by
zeroing the corresponding outputs reduces the dimension of
the system by restricting its dynamics on the surfaceZ(αµ,βµ)

embedded in the corresponding continuous-time state space
Xµ. Following standard terminology, the surfaceZ(αµ,βµ) is
called thezero dynamics manifold, and

ż = f∗|Z(αµ,βµ)
(z, αµ, βµ) (24)

is the correspondingzero dynamics. To establishattractivity
of Z(αµ,βµ), the input (21) is modified as

u = Γc
µ(xµ, αµ, βµ)

:=
(

Lgµ
Lfµ

hµ(qµ, αµ, βµ)
)−1

[

υ(yµ, ẏµ, ǫ) − L2
fµ

hµ(xµ, αµ, βµ)
]

,

(25)

where
υ(yµ, ẏµ, ǫ) := −

1

ǫ2
KPyµ −

1

ǫ
KVẏµ, (26)

andKP, KV are appropriately chosen gain matrices, andǫ >
0. Under the continuous-time feedback lawsΓc

µ, constructed
for each phaseµ, the solutions of (19) converge to the
invariant surfaceZ(αµ,βµ) exponentially fast at a rate that
depends onǫ. In other words, the controller ensures that the
virtual holonomic constraints, which are defined by (18) in
the form of outputs that are zeroed by the control action,
are (asymptotically) imposed on Thumper, thus restricting
its dynamics in each phase on the corresponding lower-
dimensional surfaceZ(αµ,βµ).

VI. EVENT-BASED CONTROL OFTHUMPER

A key implication of the hybrid nature of Thumper com-
bined with the (trivial) dynamicsα̇µ = 0 and β̇µ = 0
governing the parameters in the continuous phases, is the
possibility of updatingαµ andβµ in an event-based manner.
In this section, a rule for updating the parametersαµ will
be devised, so that at the beginning of each continuous-
time phase the initial condition lies on the corresponding



surfaceZ(αµ,βµ). This results in a well-defined hybrid sub-
system governing the stability of Thumper, i.e. the hybrid
zero dynamics, which can be rendered exponentially stable
through updating the parametersβµ in an outer-loop, as is
schematically shown in Fig. 3.

A. Inner-loop Event-based Control for Invariance

At the beginning of a continuous phaseµ, the parameters
αµ can be updated to achieve invariance in the hybrid
setting. The procedure leaves the parametersβs and βf

unchanged; hence, for the purpose of inner-loop controller
design, theβ-parameters will be grouped in a single array
β := {βs, βf}. Given β, extending invariance in the hybrid
setting is accomplished by updatingαµ to a new valueα+

µ

so that the surfaceZ(α+
µ ,β) is locally “deformed” at the

beginning of the phaseµ to include the corresponding initial
conditionx+

µ , i.e. x+
µ ∈ Z(α+

µ ,β). As shown in Fig. 5, this is
achieved through the parameter update law

α+
µ := Γα

µ(x+
µ , β). (27)

Explicit constructions of the parameter update lawsΓα
µ can

be found in [9, Sec. 6.5].

stance
compression

stance
injection

stance
decompression

flight

stance phase

α+
sc = Γα

sc(x
+
sc, β)

α+
si = Γα

si(x
+
si , β) α+

sd = Γα
sd(x+

sd, β)

α+
f =Γα

f (x+
f , β)

Ssc→si

Ssi→sd

Ssd→f

Sf→s

Fig. 5. Inner-loop event-based control for achieving invariance of the
surfacesZ(αµ,β), µ ∈ M. This controller, in combination with the
continuous-time control action (25), results in a well defined hybrid zero
dynamics, which will be rendered exponentially stable via the outer-loop
controller of Section VI-B; see Fig. 6. The symbolsα+

sc, α+
si , α+

sd represent
updated values ofαs at the beginning of the corresponding stance subphases.

B. Outer-loop Event-based Control for Stability

Under the effect of the continuous-time controllersΓc
µ and

the inner-loop updates of the stance and flight parametersαs

andαf according to Sections V and VI-A, respectively, the
resulting closed-loop system takes the form

Σ :



























[

ẋf

α̇f

]

=

[

ff,cl(xf , αf , β)

0

]

, x−

f /∈ Sf→s

[

x+
f

α+
f

]

=

[

∆
(

x−

f , β
)

Γ
(

x−

f , β
)

]

, x−

f ∈ Sf→s,

(28)

as shown in Fig. 6. In (28),

ff,cl(xf , αf , β) := ff(xf) + gf(xf)Γ
c
f (xf , αf , β), (29)

Sf→s is given by (3), and∆, Γ are discrete maps resulting
from appropriate compositions of the stance-to-flight and

flight-to-stance transition maps, the inner-loop event-based
feedback laws and the flow maps associated with the stance
phase; see [9, Sec. 6.4] for details.

β+ = Γβ(x−

f )

flight
Sf→s

Fig. 6. Outer-loop event-based control for achieving stability of the HZD.

A critical aspect of (28) is its dependence on the parameter
array β, which can be selected according to an outer-loop
feedback lawΓβ shown in Fig. 3, whose purpose is to
exponentially stabilize (28). One way of designingΓβ is
by using discrete LQR techniques. Selecting the Poincaré
section to be the surfaceSf→s, i.e., the ground surface, the
Poincaré mapP : Sf→s → Sf→s associated with the hybrid
system (28) gives rise to the discrete-time control system

x−

f [k + 1] = P
(

x−

f [k], Γ(x−

f [k], β[k]), β[k]
)

, (30)

where x−

f [k] is the state just prior tok-th touchdown.
Linearizing (30) and implementing a discrete LQR result in
the following rule for updatingβ

β+ := β[k] = β̄ + K
(

x−

f [k] − x̄−

f

)

=: Γβ(x−

f ), (31)

wherex̄−

f is the nominal (fixed-point) value of the state just
prior to k-th touchdown, and̄β the nominal value of the
parametersβ. The feedback controller (31) guarantees that
all the eigenvalues of the linearization of (30) are within the
unit circle, and completes the control design.

VII. S IMULATION RESULTS

Consider the hybrid dynamics of Thumper in closed-loop
with the feedback controllers developed in Sections V and
VI. The problem of finding a periodic motion for the closed-
loop system can be cast as a constrained minimization prob-
lem according to the procedure of [13, Ch. 6]. This procedure
results in a fixed point̄x−

f of the Poincaré return map (30),
and in the nominal values̄α and β̄ of the parameters. Fig.
7 shows the virtual holonomic constraints for two steps
corresponding to a periodic running motion of Thumper.
The resulting motion respects all the constraints; the input
torques are within the capabilities of the actuators, the ground
reaction forces respect the friction cone constraints and the
unilateral nature of the toe/ground interaction, etc.

To illustrate the orbit’s local stability, the state prior to
touchdown is perturbed away from the fixed pointx̄−

f .
An initial error of +2deg is introduced on each angle
and an error of+10deg/s and +0.1m/s on each angular
velocity and on the velocity of the COM, respectively.
The resulting motion is shown in the accompanying video.
Fig. 8 presents the constraints imposed on torso angle and
leg-shape motorshaft position during stance (top), and the
evolution of the errors in torso angle and horizontal velocity
in discrete time. It is interesting to note how the event-based
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Fig. 7. Virtual constraints during nominal motion.Top: Stance phase torso
angle, (a), and leg-shape motor position, (b), constraintsgiven by (7) and
(10), respectively. Compare with Fig. 4.Bottom: Flight phase toe horizontal
position relative to the COM, (c), and leg-shape angle, (d).
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Fig. 8. Top: Stance phase virtual constraints during recovery from a
perturbation: torso angle, (a), and leg-shape motor position, (b). Dashed line
represents nominal liftoff values: The outer-loop controller adjusts the liftoff
values for the torso angle and the motor position to ensure convergence to
the nominal orbit.Bottom: Discrete errors in pitch angle and forward speed
showing convergence to zero. The norm of the maximum eigenvalue is 0.8.

controller manipulates the shape of the imposed constraints.
For instance, Fig. 8(b) shows how the outer-loop controller
updates the coefficient,βs,mLS, corresponding to the motor-
shaft position prior to liftoff,qs−

mLS, as Fig. 4 illustrates, in
order to manipulate the energy stored at the spring.

VIII. C ONCLUSION

A stabilizing feedback control law for running has been
developed for Thumper. The robot is composed of a relatively

light kneed leg mounted on a heavy torso, and the hip joint
is displaced from the torso COM. The robot features a novel
compliant powertrain, realized through cable differentials
that are arranged so that the virtual leg, i.e., the line connect-
ing the hip to the toe, is compliant. The proposed feedback
law extends control ideas developed in the context of the
ASLIP—a simplified model with a massless leg introduced
in [10] and [11]—to an elaborate model that constitutes an
accurate representation of Thumper’s dynamics. The control
law development is systematic and works harmoniously with
Thumper’s natural dynamics to induce running motions with
provable stability. It is anticipated that these properties will
render this controller an attractive alternative to traditional
heuristic approaches by avoiding laborious trial-and-error
procedures during experimental implementation.
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