
Leaving Flatland: Toward Real-Time 3D Navigation

Benoit Morisset∗, Radu Bogdan Rusu†, Aravind Sundaresan∗,
Kris Hauser‡, Motilal Agrawal∗, Jean-Claude Latombe‡ and Michael Beetz†
∗ Artificial Intelligence Center, SRI International, Menlo Park, CA 94025 USA

† Intelligent Autonomous Systems, Technische Universität München, München, Germany
‡ Computer Science Department, Stanford University, Stanford, CA 94305, USA

Abstract— We report our first experiences with Leaving
Flatland, an exploratory project that studies the key challenges
of closing the loop between autonomous perception and action
on challenging terrain. We propose a comprehensive system
for localization, mapping, and planning for the RHex mobile
robot in fully 3D indoor and outdoor environments. This
system integrates Visual Odometry-based localization with new
techniques in real-time 3D mapping from stereo data. The
motion planner uses a new decomposition approach to adapt
existing 2D planning techniques to operate in 3D terrain.
We test the map-building and motion-planning subsystems on
real and synthetic data, and show that they have favorable
computational performance for use in high-speed autonomous
navigation.

I. INTRODUCTION

A major area of research for unmanned ground vehicles
(UGVs) will be the development of perception, planning,
and control systems that will enable UGVs to autonomously
navigate in the same environments and at the same speeds
as humans. These capabilities are necessary for deploying
UGVs to assist humans in complex tasks such as rescue,
scouting, or transportation. The goal of our “Leaving Flat-
land” project is to study the key challenges of closing the
loop between autonomous perception and action in complex
environments.

Typical state-of-the-art mobile robot systems use 2D
discrete representations of the world, such as occupancy
maps [1]–[3], to plan the robot’s motion. Occupancy maps
define obstacles in a crude binary sense that overly sim-
plifies the complex interactions between the robot and the
environment (see Fig. 1). For example, obstacles can be
context-specific, such as a ledge that acts as an obstacle when
approached from a lower level, but acts as the ground while
the robot is on it. These shortcomings can be addressed by
elevation maps [4], which work well for pre-surveyed natural
terrain. However, both these representations are inherently
2D. 2D elevation maps have been combined with a 3D
occupancy grid to allow a humanoid robot to crawl under
low ceilings [5]. This approach still does not address envi-
ronments with multiple overlapping levels, such as tunnels
or multi-story buildings. Other researchers have addressed
3D mapping and reconstruction for mobile robots [6]–[9]
using laser range finders and stereo cameras. However, these
approaches have not been demonstrated to work in real-time
or in a fully autonomous robot system.

We have applied our mapping and navigation algorithms

Fig. 1. Classical occupancy maps in mobile robotics. Top: Centibots [1],
left: Grand Challenge [2], right: Learning Applied to Ground Robots [3]

to the RHex mobile robot [10]. RHex is a highly capable six-
legged walking robot developed by Boston Dynamics, which
can run at high speed on flat ground, crawl over rocky terrain,
and climb stairs. We use stereo cameras to build a 3D model
of the environment that is updated as RHex moves. Periodic
updates are sent to a motion planner, which generates 3D
trajectories to be executed by the robot. These trajectories
specify a sequence of primitive gait commands to be sent
to the robot’s on-board controller. The planner is typically
asked to reach a nearby goal within the robot’s visual range.
This goal is usually chosen by either a human operator or
some supervisory behavior. Long-range goals are achieved
by frequent replanning. To help the planner select the most
appropriate gait for a given terrain type, we notate the 3D
model elements with semantic labels. The motion planner
then decomposes the terrain into locally 2D regions, and uses
the semantic labels to select fast 2D planning techniques
within each region.

We have tested the core system components in outdoor
and indoor environments. Experiments show that the 3D
mapping module can be operated in real-time, averaging
about 250 ms for each map update. The motion planner is
queried approximately once or twice a second depending on
the complexity of the terrain. We hope to integrate these
components into a complete system in the near future. As
a preliminary step toward this integration, we present an
extension of our system to a smart teleoperation application.

II. SYSTEM OVERVIEW

Input

3D Mapping

Inertial Measurement UnitInertial Measurement UnitStereo CameraStereo Camera

Semantic modelSemantic model

Global poseGlobal pose

Disparity ImagesDisparity Images Local poseLocal pose

RHex Mobile RobotRHex Mobile Robot

GoalGoal

TrajectoryTrajectory
MP2MP2: Rotation: Rotation

MP3MP3: Stair climbing: Stair climbing

MP1MP1: Full speed on flat ground: Full speed on flat ground

Motion Planner

Visual Odometry3D Points3D Points

Fig. 2. The general architecture of Leaving Flatland.

Figure 2 presents the overall architecture of our system.
The two sensing devices (a stereo camera and an Inertial
Measurement Unit) are attached to RHex. The robot lo-
calization and point cloud registration are based on Visual
Odometry [11], [12] which takes angle estimates from the
IMU besides the intensity and disparity images. The 3D
Mapping module uses the robot pose estimate from the VO
module to register the point cloud data from each frame to the
global reference frame and build a polygonal map annotated
with semantic labels. The labeled polygonal map and a user-
designated goal constitute the inputs for the Motion Planner
module. Our motion planner uses a new decomposition
technique, which decomposes the 3D workspace into locally
2D regions. This enables the use of established techniques for
mobile robot planning on elevation maps. It also enables the
use of fast planning techniques on flat ground and reserves
more complex techniques for uneven terrain. The output of
the motion planner is a sequence of gaits to be sent to
the robot. We use gaits that have been designed specifically
for RHex, including high-speed running on flat and uneven
terrain [10] and stair climbing gaits [13].

III. 3D MAPPING

The 3D mapping module builds a polygonal model of
the world using disparity images obtained from a stereo
camera attached to the robot. Figure 3 presents the complete
3D mapping pipeline. A disparity image is computed from
the stereo images and is used to produce point cloud data
(PCD) in the camera coordinate frame. A Visual Odometer
is used to estimate the camera motion between consecutive
frames (Section III-A). The camera pose with respect to a
fixed global coordinate system is then used to register the
PCD from each frame to the global coordinate system. A
Polygonal Modeling step is applied in which planar patches
are used to approximate the underlying surface model. Each
local model is merged with the global model in the Polygonal
Growing step and the global model is refined (Section III-
A). Finally, the polygonal patches in the model are annotated
with semantic labels.

Fig. 3. The 3D mapping system pipeline.

A. Visual Odometry and Point Cloud Registration

The accuracy of the global map depends directly on the
precision with which we evaluate the position of each sepa-
rate PCD. This process is called registration and its accuracy
is determinant for the quality of the final model. Instead of
employing a classical registration framework (e.g., Iterative
Closest Point), our solution employs a Visual Odometer
(VO).

Our VO system derives from recent research by the authors
and others on high-precision VO [14]. Distinctive features are
extracted from each new frame in both the left and the right
image. The features in the left image are matched to those
in the right image and also to the features extracted in the
previous frame. From these uncertain matches, we recover
a consensus pose estimate using a RANSAC method [15].
Several thousand relative pose hypotheses are generated by
randomly selecting three matched non-colinear features, and
then scored using pixel reprojection errors. If the motion
estimate is small and the percentage of inliers is large
enough, we discard the frame, since composing such small
motions increases error. This pose estimate is then refined
further in a sparse bundle adjustment (SBA) framework [16].
When we have IMU data available, we further fuse the VO
results with this IMU data.

Several type of features can be employed. An impor-
tant consideration is using features that are stable across
viewpoint changes. While SIFT [17] and SURF [18] are
the features of choice, they are not suitable for real-time
implementations (15 Hz or greater). Instead, we use a novel
multiscale center-surround feature called CenSurE [12]. We
have shown that CenSurE has the requisite stability proper-
ties, is extremely efficient to compute and works quite well
for visual odometry applications [12].

Given the pose of the robot in an arbitrary global coor-
dinate system, each PCD computed in the robot’s camera

frame can be registered to extend the global model. Figure
4 illustrates the Visual Odometry registration process for
two individual local PCD obtained from two different view
points.

Fig. 4. Point cloud registration using Visual Odometry. The two images on
the left represent two different PCDs, and the image on the right illustrates
the resulting aligned model.

Because the VO algorithm computes new camera poses at
about 10 Hz, the variation between two consecutive poses is
typically small, and therefore it would be highly inefficient
to update the 3D model with the same frequency. Therefore,
we only update the model if the change in the camera pose
since the last update is greater than a threshold (we use 0.1
m for the translation and 0.1 rad for the rotation). Figure
5 shows the final result after aligning approximately 1600
stereo frames.

Fig. 5. Globally aligned point cloud model for a dataset composed of
approximately 1600 stereo frames.

B. Polygonal Modeling and Data Simplification

A purely point-based map grows in size as more frames
are captured by the camera (e.g., the model in Fig. 5 contains
millions of points) and therefore storing and transmitting
such models would quickly become unmanageable. Further-
more, the motion planner needs to perform many geometric
queries on the model, such as distance and collision tests.
Therefore, a simple and suitable model is critical to the
efficiency of the entire system and towards this end we
maintain and update a polygonal surface representation. This
simplification reduces the size of the model by orders of
magnitude, from several million points to tens of thousands
of polygons.

For each new PCD frame, we construct a local octree,
whose cells are aligned with some global underlying grid of
resolution h. We restrict the octree to divide cells no smaller
than h. We assign h to roughly determine the minimum size
of the model’s polygons. For each cell in the local octree,
we examine the set of points S contained within. We then fit
a plane p to S using the RMSAC (Randomized M-Estimator
SAmple Consensus) [19] method. We then project the inliers

Fig. 6. Point Cloud model simplification using polygonal fitting. From left
to right: overlapping aligned point cloud views, combination PCD model
and polygonal model, and the resulting polygonal model.

Fig. 7. Reducing the model complexity through merging and duplicate
removal: before (left) and after (right).

S̃ to p, and then compute a reweighted convex polygon of
the projected points.

To incrementally merge multiple polygonal models, we
use the following procedure (illustrated in Fig. 6). For each
overlapping octree cell, we compare the colliding polygons
based on their relative orientation and distance. If the poly-
gons are similar, we construct a new polygon that is the
“average” of the two polygons weighted by their inlier
support.

For efficiency purposes, we only consider the cells updated
with the latest frame. We perform simple outlier removal by
erasing lone polygons, i.e, polygons that have no neighbors
in the scene. Because a single location can be observed
several times during the mapping process, some surfaces may
generate duplicate polygons in adjacent cells (see Fig. 7). We
identify these duplicates by searching for parallel polygons
among the neighboring polygons. If a coplanar polygon is
found, the two polygons are merged. Experimentally, we
observed that this procedure reduced the global number of
polygons by a factor of 2.5 on average.

C. Semantic Labeling

The motion planner manipulates several types of motion
primitives, each of them adapted to a specific terrain type.
To help the motion planner to select the appropriate series
of motion primitives along the trajectory, some semantic
information is added to the polygonal model. Our approach
segments the terrain using rules that only examine the local
terrain geometry. This helps achieve real-time performance.
More sophisticated terrain types might be addressed by
the methods of [20]–[23], which account for more global
geometric relationships.

We predefined the following four labels (see Fig-
ure 8): Level- polygons that form an angle less than 15◦

with the horizontal plane; Ground- Level polygons that
are 5cm from the ground plane or are attached to Ground
polygons; Vertical- polygons that form an angle greater than
75◦ with the horizontal plane; Steps- Groups of adjacent
polygons that form a step- (i.e., belong to planes that are
parallel or perpendicular to the horizontal plane); Unknown-
everything else.

After refining the global model, we label each polygon
in an absolute sense based on its orientation and position
with respect to the ground plane. We then propagate the
ground plane by the process of relabeling Flat polygons
that are adjacent to Ground polygons as Ground polygons
in an iterative manner. With this ground propagation, a
surface with a smooth inclination (up or down) is still
considered flat ground. RHex can traverse small slopes and
unevenness with ease, so ignoring minor irregularities helps
speed up the motion planner. Figure 9 presents the refined

Fig. 8. Semantic labeling of polygonal surfaces based on heuristic
geometrical rules. The labeled classes are: flat and level terrain (green and
yellow), vertical structures (red), steps (purple), and unclassified or unknown
(gray).

semantically annotated polygonal model of the point cloud
dataset presented in Figure 5.

Fig. 9. Semantically annotated polygonal model for a dataset (“dumpster”)
consisting of approximately 1600 stereo frames.

D. 3D Mapping Performance

1) Computation Time.: To evaluate performance, we mon-
itored the computation time for each component of our 3D
Mapping module. The components are labeled as follows:
• Stereo + VO - produces the disparity image from the

stereo system and computes the global pose estimate;
• PCD→LocalOctree - produces the local PCD from the

disparity image and creates/updates the local octree;
• GlobalOctree growing - expands the local octree’s

boundaries when needed;
• LocalOctree→Polygon→GlobalOctree - generates the

polygonal model and merges it with the existing model;
• GlobalOctree→GlobalModel - refines the model

(polygonal merging, polygonal growing, outlier
removal);

• Semantic Labeling - labels the model.
Figure 10 presents the results for the dataset that corre-

spondings to the model presented in figure 5. The majority
of the model-building components have low computational
requirements. Almost consistently, Stereo + VO requires the
majority of resources. To address this, we implemented the

0 500 1000 1500 2000 2500 3000
Stereo Frames

0.0

0.5

1.0

1.5

2.0

T
im

e
 (

in
 s

e
c
o
n

d
s
)

Computational time requirements for the dumpster sequence

Stereo + VO
PCD->LocalOctree
GlobalOctree growing

LocalOctree->Polygon->GlobalOctree

GlobalOctree->GlobalModel
Functional Labeling

Total

Fig. 10. Computational time of each 3D Mapping component for the
dataset presented in Figs. 5 and 9.

Fig. 11. Global pose corrections by integrating an IMU into the VO system
(top right and bottom row) for a blurred frame (top left).

Stereo + VO component in a separate process from the other
(model-building) components. By concurrently running the
two processes, the global map can be updated every 250 ms
on average.

2) Accuracy.: As previously explained in Sec. III-A, the
accuracy of the global map depends on the quality of the
Visual Odometry pose estimate. Some images can be blurred
primarily due to rapid rotational accelerations of the robot
(see the top-left part of Fig. 11). In addition, some areas of
the environment do not contain enough features for the VO
module. If several failures from VO occur consecutively, the
system could lose track of robot pose and the integrity of
the 3D model could be compromised.

These effects can be attenuated by integrating an Inertial
Measurement Unit (IMU) and using it to fill in when VO
fails to estimate a pose. In this version of our work, we
did not integrate the translational information given by the
IMU. We simply entered the angle data to update the last
pose computed by VO. Figure 11 presents the corrections in
roll (bottom left) and pitch (bottom right) before and after
the IMU integration with VO. Even if some error in pitch
persists, the drift on z is reduced by approximatively 65%
(top right).

IV. MOTION PLANNING

The motion-planning subsystem is called periodically to
generate a trajectory that connects the current position of
the robot to a user-designated target. The planner is given
a map of the environment built by the 3D Mapping system.
Its output is a trajectory that consists of a sequence of gait
primitives to be executed by the robot, and their intermediate
milestones. We seek a trajectory with low (but not necessarily
optimal) execution cost. We define execution cost as a
function of local terrain characteristics such as slopes and
unevenness, as in [4].

A. Overview

Usually, our planner treats RHex like a mobile robot on a
2D elevation map [4]. As mentioned in the Introduction, the
elevation map approach cannot represent environments with
multiple overlapping levels. Therefore, our planner starts by
decomposing the 3D environment model into regions that
are locally 2D, using a grid-based approach. Furthermore,
when planning on uneven outdoor terrain, we must perform
frequent stability tests in addition to collision tests. These
tests are computationally moderately expensive, and are
unnecessary on flat terrain. Similar simplifications can be
made when planning on stairs and steep slopes. Thus, our
planner chooses planning techniques that are specialized to
the certain types of ground.

To implement this idea, the planner has a repertoire of
primitive planners that are used only when the robot interacts
with certain semantic types of terrain. The planner uses a
two-phase algorithm to generate multi-region paths. First,
the planner builds a large graph of configurations, with
edges representing candidate primitive planning queries. This
graph is used in the second phase to help choose low-cost
primitive planning queries that are likely to yield a path to
the goal. Several single-mode trajectories are then composed
to produce a trajectory from the start to the goal.

B. Terrain Decomposition

The terrain decomposition step decomposes the empty
workspace into volumetric cells, which are bounded on the
top and bottom by terrain surfaces (or no surface at all),
and bounded on the sides by vertical faces. A region is
defined as a collection of cells whose upper and lower terrain
surfaces have the same semantic label, and are connected
along boundary faces. The lower surface of a region can
be represented as an elevation map. If two regions have
connected boundary faces, we say they are adjacent. The
graph of regions is called the region graph.

This structure could potentially be computed exactly
from the polygonal model (Figs. 12a and b), but for large
models of tens of thousands of polygons, this would be
computationally expensive, and the structure would become
extremely large. Instead, we use an approximation in which
the polygons are projected and rasterized onto a x-y grid.
The total running time of the approximate decomposition is
O(CK logK), where C is the number of grid cells, and K

is the maximum number of polygons overlapping a single
grid cell.

The approximation is computed as follows. Consider a 2D
grid cell c. Let p1, . . . , pk be the polygons whose projection
onto the x-y plane intersect c. For each polygon pi, let [ai, bi]
be the vertical range of the intersection between pi and c.
Let S =

⋃k
i=1[ai, bi] be the vertical range of c intersected

by surfaces, and F = R \ S be the vertical range which
is free. For each connected component f of F , we output
a cell, whose top and bottom surfaces are identified by the
polygon defining f ’s upper and lower bound (Fig. 12c).

A flood-fill algorithm is used to determine coherent re-
gions and their adjacencies (Fig. 12d). Additionally, we
reduce the total number of regions by aggregating regions
that only differ by their upper surface. This reduces the de-
composition’s complexity, which speeds up the multi-region
planner. During this process, we refrain from incorporating
regions that cause the x-y projection of the aggregated region
to self-overlap.

C. Primitive Planners

A mode is simply a set of regions in which a primitive
planner can be applied. A mode is considered invalid if
its regions are disconnected, or they overlap in the x-y
plane. A primitive planning query is specified with a (valid)
mode, a start configuration, and a goal configuration. The
query terminates when the planner either produces a feasible
trajectory, determines that no path exists, or exceeds a user-
specified time limit.

(a) Unlabeled terrain planner (b) Flat ground planner.

Fig. 13. Examples of paths planned by primitive planners. The cost function
in (a) is increasing from red to blue

We use the following primitive planners, classified by the
type of region(s) on which they are applicable:
• Unlabeled terrain. We use an A* search on a discretized

(x, y, θ) state space [4]. Successors are generated by
enumerating all gait primitives. At each generated con-
figuration, we check for collisions with the region’s
ceiling, and compute the execution cost. We use a
straight-line distance heuristic. The planner finds the
trajectory with minimum cost (see Fig. 13a).

• Flat ground. We use a sample-based motion planner
called SBL [24], which builds trees bidirectionally in
configuration space to connect the start and goal. SBL
is typically much faster than A* search and uses random
sampling to avoid discretization artifacts. We use an
(x, y, θ) configuration space, and propagate either car-
like paths or turn-and-drive paths, depending on the

(a) An example terrain with three
levels.

(b) An exact decomposition. (c) Approximate decomposition of
the cell c.

(d) Regions of the approximate de-
composition.

Fig. 12. Illustrating the terrain decomposition step for a 2D slice of terrain.

Fig. 14. Configuration space sampling at the junction of 2 different regions
(transitions).

user’s preference (see Fig. 13b). The robot’s elevation,
pitch, and roll are constant, so we do not need to
consult an elevation map to assess stability. We check
for collisions with the region’s ceiling.

• Stairs or steep slopes. We restrict the robot’s heading
to either face up or down the slope, and use the stair-
climbing gait primitive. The planner examines a 1D line
in configuration space for collisions.

• Flat ground and stairs, or flat ground and steep slopes.
The same as above.

The unlabeled terrain planner is also used as a backup when
no other primitive planner is applicable.

D. Multi-Region Planner

Each primitive planner can only be applied to modes
whose regions are connected and do not overlap in the x-y
plane (otherwise, this is considered an invalid mode). It is the
multi-region planner’s responsibility to select (valid) modes
for primitive planner queries, and to choose fast planners
when possible. For example, even though the unlabeled
terrain planner can be applied anywhere, it is much slower
on flat ground than the flat ground planner.

It is the multi-region planner’s responsibility to select
(valid) modes, initial and final configurations for primitive
planner queries, and to choose the fastest planner for the
given query. We use a two-phase algorithm, which is similar
to the one used in motion planning for a climbing robot [25].

In the first phase, the algorithm builds a network of
configurations including the start and goal configurations,
as well as sampled configurations that transition between
modes. We call this the transition graph. Each edge in the
transition graph corresponds to a potential primitive planning
query. Rather than making the query immediately, the edge
is assigned a heuristic cost that includes an estimate of the
planning cost and the cost of execution. The second phase of
the algorithm refines the transition graph, making primitive
planning queries corresponding to each edge.

The transition graph G is built using a search. To expand
a configuration q at a given mode m, we consider all modes
m′ obtained by either 1) adding a region r′ adjacent to some
region r in m, or 2) removing a region in m. For each valid
m′, we sample a set T of configurations that transition from
m to m′, and add them to G (Fig. 14). If m contains the goal
configuration qg , then we add qg to T . For each transition
configuration q′ ∈ T , we connect an edge between q and q′.
The process is repeated for some number of iterations, and
at least until G contains a path to qg .

To sample a configuration q′ that transitions from m to
m′, we use the following procedure. First, consider the case
where m′ was obtained by adding a region r′ to m. To
maximize the amount of terrain covered by simpler primitive
planners, we try to find q′ that is still in m, but is close to
r′. This can be done easily by sampling q′ in the cells in the
terrain decomposition that border both r′ and a region r in
m, and then shifting q′ so that it is not supported by r′. If q′

violates the constraints of either m or m′, it is rejected. Now
consider the case where m′ removes a region r from m. If
the robot at configuration q is supported by r, we sample q′

in the cells in the terrain that border both r and a region r′

in m′, and shift q′ out of r. Otherwise, we simply set q′ = q.
The second phase tries to find trajectories that correspond

to edges in G. For each edge e = (q, q′) in G, we set
the edge cost ce equal to a heuristic c̃(q, q′) that estimates
the sum of the planning cost and execution cost. We then
perform Dijkstra’s algorithm to find the lowest cost path from
start to goal. This path is then refined by executing single-
mode planning queries along each unsolved edge e along
the path. If a single-mode trajectory is successfully found
between q and q′, we mark e as solved, and replace ce with
the trajectory’s actual execution cost. If not, we remove e
from the graph. This procedure is repeated until a feasible

Fig. 15. Motion Planning example based on semantic polygonal labels for
the “dumpster” dataset.

trajectory to the goal is found.
We also adaptively improve estimates of the heuristic

edge costs. For each primitive planning query, we measure
the computation time, and use it to update the planning
cost estimate. For a primitive planner p, the planning cost
cp(q, q′) between q and q′ is assumed to be a linear model
apd(q, q′)+ bp. We improve our estimates of ap and bp over
time, using a recursive least squares estimation. We use a
similar procedure to adaptively estimate execution cost.

E. Experiments

We tested the planner with and without semantic labeling.
First, we tested a problem with a uniformly flat terrain of
over 20,000 triangles, with a point target 5 m away from the
robot’s initial position. The decomposition step takes approx-
imately 220 ms. If the terrain is unlabeled, the multi-region
planning stage took 184 ms to generate a path (averaged over
10 runs). Labeled as flat ground, it took 53 ms. We then tested
a two-level problem consisting of flat ground and stairs, with
a point target on a second level, approximately 2m above the
robot. The decomposition step took approximately 200 ms.
Multi-region planning took 886 ms on unlabeled terrain, and
134 ms on labeled terrain. Similar speedups were observed
in several other experiments.

Experiments on terrain generated from the 3D Mapping
module (e.g., Fig. 15) show that the planner can generally
produce a path to targets up to approximately 5m away
from the robot’s initial position in less than a second. The
running time can vary significantly depending on the size of
the model, the shape of obstacles, and the performance of
heuristics.

V. APPLICATION : ASSISTED TELEOPERATION

Teleoperating a robot is a difficult task, especially when
the robot is not in sight. The feedback from the robot’s
cameras is an insufficient source of information to guarantee
collision-free navigation and the appropriate selection of
motion primitives by a user. Our system, in real time, fulfills
these objectives for the user. In order to combine the user’s
commands with our autonomous navigation system, we
added some intuitive controls to task the motion planner. A
user’s simple direction, given via a joystick, is automatically

Fig. 16. Example of intuitive control using a joystick. The user describes
a general direction (red line), and the motion planner adapts it to a correct
trajectory (yellow polyline).

translated to a complex trajectory in the 3D model with the
correct series of motion primitives (Fig. 16). The user can
also control the aggressiveness of the motion planning to
modify the level of risk taken by the robot (Fig. 17).

A. Intuitive Control

The motion planner described above assumed that a goal
configuration was specified. This level of task specification
is inefficient for a human operator, who most likely would be
using a joystick or console to command the robot. Here, we
describe how the planner can be adapted to handle more
intuitive tasks, like a point target or line following (see
Fig. 16).

We assume the user’s input is translated into an early
termination penalty function p(q) defined over configuration
space, which penalizes the planner if it chooses to terminate
planning at a path ending in q. For example, a point target t
would define a reward function p(q) = a||t − x(q)||, where
a is a positive constant and x(q) is the center of the robot
at configuration q. The function can be shifted uniformly by
an arbitrary constant without affecting the planner.

We implement early termination as follows: When build-
ing the transition graph G, we do not add the goal config-
uration qg as a node in G. Rather, we add a virtual edge e
between each transition configuration q and a virtual goal
configuration. We assign the cost ce = p(q) to each of these
edges. We also allow the planner to early terminate within a
mode, not necessarily at a transition. To do this, we augment
G with configurations sampled inside a single mode. The
second phase of the planner proceeds as usual, except that
virtual edges are treated as solved, and the virtual goal is
treated as the de facto goal.

B. Aggressiveness Modulation

The early termination penalty function relies on the def-
inition of a scale factor a. We denote this factor the ag-
gressiveness. A high aggressiveness value causes the planner
to: 1) produce trajectories with higher execution costs, and
2) spend more time trying to find a path before terminating.
A low aggressiveness will make the planner act greedily and
reactively, and be more risk-averse. Figure 17 illustrates an
example.

(a) Low aggression (b) 5x higher aggression

Fig. 17. Plans to reach target on unlabeled terrain with different levels of
aggression.

VI. CONCLUSION

We present a comprehensive system for real-time 3D
mapping and motion-planning for mobile robots. The robot
is localized using Visual Odometry techniques and the map-
ping sub-system builds a labeled polygonal model using
point cloud data in realtime. The semantic labeling helps
the motion planner choose appropriate gaits and planning
techniques. The motion planner uses a new decomposition
technique to convert a 3D model into locally 2D regions.
Existing mobile robot planning techniques can be used within
each region, and our planner uses a repertoire of techniques
specialized for certain terrain types, such as flat ground and
stairs. We demonstrate that the mapping and planning sub-
systems exhibit favorable computational performance, which
makes the overall system suitable for fast, real time 3D
navigation.

Our short-term goals include system integration work
and testing on the RHex robot in realistic reconnaissance
and search-and-rescue scenarios. We plan to improve the
mapping and localization modules by incorporating loop-
closure techniques to globally align maps gathered over long
periods of time. We plan to improve the accuracy of the 3D
map by better polygon fitting, especially when environment
features are not aligned to grid cell boundaries. We also
plan to further develop our preliminary work on assisted
teleoperation.

ACKNOWLEDGMENTS

The authors thank Edward Van Reuth and DARPA for sup-
port on the “Leaving Flatland” project (contract #FA8650-04-
C-7136). This work was partially supported by the CoTeSys
(Cognition for Technical Systems) cluster of excellence at
the Technische Universität München.

REFERENCES

[1] R. Vincent, F. Dieter, J. Ko, K. Konolige, B. Limketkai, B. Morisset,
C. Ortiz, D. Schulz, and B. Stewart, “Distributed multirobot explo-
ration, mapping, and task allocation,” in Special Issue on Multi-Robot
Coverage, Search, and Exploration, D. A. Shapiro and D. G. A.
Kaminka, Eds. Annals of Math and Artificial Intelligence (AMAI),
2008.

[2] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron,
J. Diebel, P. Fong, J. Gale, M. Halpenny, G. Hoffmann, K. Lau,
C. Oakley, M. Palatucci, V. Pratt, P. Stang, S. Strohband, C. Dupont,
L.-E. Jendrossek, C. Koelen, C. Markey, C. Rummel, J. van Niek-
erk, E. Jensen, P. Alessandrini, G. Bradski, B. Davies, S. Ettinger,
A. Kaehler, A. Nefian, and P. Mahoney, “Winning the darpa grand
challenge,” J. of Field Robotics, 2006.

[3] K. Konolige, M. Agrawal, R. C. Bolles, C. Cowan, M. Fischler, and
B. P. Gerkey, “Outdoor mapping and navigation using stereo vision,”
in Int. Symp. on Exp. Robotics (ISER), Rio de Janeiro, Brazil, 2006.

[4] T. Simèon and B. Dacre-Wright, “A Practical Motion Planner for
All-terrain Mobile Robots,” in IEEE/RSJ Int. Conf. Intel. Rob. Sys,
Yokohama, Japan, 1993.

[5] J.-S. Gutmann, M. Fukuchi, and M. Fujita, “3d perception and
environment map generation for humanoid robot navigation,” The
International Journal of Robotics Research, vol. 27, no. 10, pp. 1117–
1134, 2008.

[6] Y. Liu, R. Emery, D. Chakrabarti, W. Burgard, and S. Thrun, “Using
EM to Learn 3D Models of Indoor Environments with Mobile Robots,”
in ICML, 2001, pp. 329–336.

[7] P. Biber, H. Andreasson, T. Duckett, and A. Schilling, “3D Modeling
of Indoor Environments by a Mobile Robot with a Laser Scanner and
Panoramic Camera,” in IEEE/RSJ Int. Conf. on Intel. Rob. Sys., 2004.

[8] J. Weingarten, G. Gruener, and R. Siegwart, “A Fast and Robust 3D
Feature Extraction Algorithm for Structured Environment Reconstruc-
tion,” in Int. Conf. on Advanced Robotics, 2003.

[9] J. Diebel and S. Thrun, “An Application of Markov Random Fields
to Range Sensing,” in Advances in Neural Information Processing
Systems 18, Y. Weiss, B. Schölkopf, and J. Platt, Eds. Cambridge,
MA: MIT Press, 2006, pp. 291–298.

[10] U. Saranli, M. Buehler, and D. E. Koditschek, “Rhex: A simple and
highly mobile hexapod robot,” Int. J. of Robotics Research, vol. 20,
no. 7, pp. 616 – 631, July 2001.

[11] M. Agrawal and K. Konolige, “Real-time localization in outdoor
environments using stereo vision and inexpensive GPS,” in Int. Conf.
on Pattern Recognition, 2006.

[12] M. Agrawal, K. Konolige, and M. R. Blas, “Censure: Center surround
extremas for realtime feature detection and matching,” in ECCV (4),
ser. Lecture Notes in Computer Science, D. A. Forsyth, P. H. S. Torr,
and A. Zisserman, Eds., vol. 5305. Springer, 2008, pp. 102–115.

[13] E. Z. Moore and M. Buehler, “Stable stair climbing in a simple
hexapod robot,” in Int. Conf. Climbing and Walking Rob., Karlsruhe,
Germany, 2001.

[14] K. Konolige, M. Agrawal, and J. Solà, “Large scale visual odometry
for rough terrain,” in Proc. International Symposium on Robotics
Research, November 2007, p. To appear.

[15] M. Fischler and R. Bolles, “Random sample consensus: a paradigm
for model fitting with application to image analysis and automated
cartography,” Commun. ACM., vol. 24, pp. 381–395, 1981.

[16] C. Engels, H. Stewnius, and D. Nister, “Bundle adjustment rules,”
Photogrammetric Computer Vision, September 2006.

[17] D. G. Lowe, “Distinctive image features from scale-invariant key-
points,” International Journal of Computer Vision, vol. 60, no. 2, pp.
91–110, 2004.

[18] T. T. Herbert Bay and L. V. Gool, “Surf: Speeded up robust features,”
in European Conference on Computer Vision, May 2006. [Online].
Available: http://www.vision.ee.ethz.ch/ surf/

[19] P. Torr and A. Zisserman, “MLESAC: A new robust estimator with
application to estimating image geometry,” Computer Vision and
Image Understanding, vol. 78, pp. 138–156, 2000.

[20] O. M. Mozos, R. Triebel, P. Jensfelt, A. Rottmann, and W. Burgard,
“Supervised Semantic Labeling of Places using Information Extracted
from Laser and Vision Sensor Data,” Rob. and Aut. Syst., vol. 55,
no. 5, pp. 391–402, May 2007.

[21] D. Schröter, T. Weber, M. Beetz, and B. Radig, “Detection and
Classification of Gateways for the Acquisition of Structured Robot
Maps,” in Proc. of 26th Pattern Recognition Symposium (DAGM),
Tübingen/Germany, 2004.

[22] A. Nuechter, H. Surmann, and J. Hertzberg, “Automatic Model Re-
finement for 3D Reconstruction with Mobile Robots,” in Proc. of the
4th IEEE Int. Conf. on Recent Advances in 3D Digital Imaging and
Modeling (3DIM’03), Banff, Canada, October 2003.

[23] R. B. Rusu, Z. C. Marton, N. Blodow, M. Dolha, and M. Beetz,
“Towards 3D Point Cloud Based Object Maps for Household Envi-
ronments,” Robotics and Autonomous Systems Journal (Special Issue
on Semantic Knowledge), 2008.

[24] G. Sánchez and J.-C. Latombe, “On Delaying Collision Checking in
PRM Planning: Application to Multi-Robot Coordination,” Int. J. of
Rob. Res., vol. 21, no. 1, pp. 5–26, 2002.

[25] T. Bretl, S. Lall, J.-C. Latombe, and S. Rock, “Multi-Step Motion
Planning for Free-Climbing Robots,” in WAFR, Zeist, Netherlands,
2004.

