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Abstract— This paper introduces a sensor-based planning
algorithm that uses less sensing information than any other
within the family of bug algorithms. The robot is unable
to access precise information regarding position coordinis,
angular coordinates, time, or odometry, but is nevertheles
able to navigate itself to a goal among unknown piecewise-
analytic obstacles in the plane. The only sensor providingeal
values is an intensity sensor, which measures the signal strgth
emanating from the goal. The signal intensity function may o
may not be symmetric; the main requirement is that the level
sets are concentric topological circles. Convergence awyals and
distance bounds are established for the presented approach

. INTRODUCTION

Suppose a woman is walking around a city trying to
get to a tower. The person can navigate around vario®g. 1. The robot starts at the lower-left green dot and mésesrds the
buildings without knowing if she is in Kansas or Japan anapper-right red_dot while traversing various_obstacle lotauies. Level sets

. . : . . of equal intensity are represented by the circular arcs.
without knowing her longitude and latitude. To make it more
interesting, suppose she is blindfolded. There is not only
uncertainty about position, but also about the surrounding
environment. What information could she use to get to the The motivation for our paper came from carefully studying
tower? Suppose that the tower sends a signal, which codfée models of previous bug algorithms. Even though these
be a loud sound or a radio broadcast. Does there exf@odels are aimed at minimizing sensing and mapping re-
a strategy that enables her to successfully navigate to tAEirements, they appear to require some precise informatio
tower? What kinds of sensing and actuation are needed? THi@t may not be necessary. For example, the original Bugl
paper is motivated by such basic questions. Figure 1 sho®8d Bug2 algorithms [13] use: 1) a contact sensor, 2)
an example of a simulated robot that executes a strate§9ordinates of the initial robot position, 3) coordinates o
based on incrementally maximizing a single intensity whiléhe current robot position, 4) coordinates of the targed, n
moving among unknown obstacles. odometry to obtain the distance traveled around an obstacle

Our mathematical model falls mostly into the well-knownPoundary. This information is evident when studying the
family of bug algorithms, which have two main modegParticular approach. Bugl goes around the entire obstacle,
of movement: following obstacle boundaries and movin§alculates the closest leaving point, returns to that point
towards the goal. The original bug algorithms [13]'[15]and then goes in a straight line towards the target. Bug2
propose a minimalist sensing model and a robot navigatirficulates an “m-line”, which is a line segment that consiect
algorithm to bring the robot to a specified goal in a 20ihe initial point to the goal point, and always moves on that
environment with unknown smooth obstacles. The worline unless it is contacted an obstacle. While moving along
was later extended to include a range sensor, which led & obstacle, it follows the boundary until it is once more on
improve bounds on the total distance traveled [14]. Sinc&€ m-line, and then it returns to moving towards the target
then there have been several other bug algorithms. In [AN the m-line. Thus, it seems that the robot needs a position
the TangentBug was proposed, which enhanced the sensffj!sor. a linear odometer, and angular odometer to execute
model to improve the bound on the length of the path to theoth the Bugl and Bug2 algorithms. Bug2 would also need
goal. In [8], TangentBug was extended to three dimensiont calculate whether the obstacle has intersected the en-lin
WedgeBug and its relative RoverBug [10],[9],[11] resttiué VisBug's algorithm is based on the Bug?2 algorithm but uses a
TangentBug sensing model so that it can be applied in d4aNge sensor to decrease the Bug2 path bound. TangentBug
actual planetary rover. A bug algorithm for solving pursuit Uses a360° range sensor to avoid following the boundary
evasion was presented in [17]. and instead move a certain distance away from the boundary

unless it is unavoidable. WedgeBug is based on TangentBug
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modeled as an intensity function ov&f. Let m denote the
signal mapping m : R? — [0, 1], in which m(p) yields the
intensity at p € E, generated from a tower &b, 0) € R?. It
is assumed that the maximum intensityjs achieved at the
tower: m(0,0) = 1. If the tower is atp, and the robot is at
p, then the intensity is translated accordinglyragp — p;).

For any: € [0, 00), consider the level sets (or preimages)

m~'(i) ={p € R* [ m(p — p;) = i}. 1)

We want to allow intensity functions that are as complicated
as those measured in practice from radio signals or other
physical sources. An important restriction, however, il
that we allow only one local maximum, which is at the
tower. In spite of this, it will be assumed that could be
any locally Lipschitz, piecewise-analytic function for iwh
Fig. 2. There may be an outer obstaclgucr, Which has a finite-length mfl(i) is homeomorphic to a circle for every € (0,1)
boundary curve but extends infinitely outward in all direns. and m_l(l) = {(0,0)} (this includes, for example, some
polyhedral surfaces). Furthermore, the level sets must be
concentric, with(0,0) at the center. We make a general
osition assumption that for the boundary of evepy e

rely on knowing the robot's exact coordinates. Our moti

vation comes from a simple observation: the previous bu q X “100). th ither disiof
robots had access to the exact coordinates of every plage ttfe n¢ €Very fr_)r_elmagmb (Z)f' tl ey are e'td er 'sz'nt or
visited, and in some cases to the exact distance they teaveldt€rSect in a finite number of places. L&t denote the set
If they had had unlimited memory, it would even have beeﬂ'c all intensity functions that satisfy these condmons._
possible to reconstruct a perfect map of their environments Let M, C M denote the set of alfadially symmetric

It seems that it ought to be possible to navigate through éﬂtensny functions. In this case, the level sets form cotrie

environment without collecting all of this information. We .CII‘C|e.S in the classical sense (rather than concentricdgeo
| circles). As an example,

therefore want to determine whether the robot can naviga'l(éa

to a goal without collecting all of this information. Can it m(p) = 1 )
reach the goal without having any coordinates? P2 +p?
Section Il introduces a coordinate-free mathematicglayses the intensity to decay quadratically with distance,

model for a bug that navigates based on the intensity of githout regard to direction. This is a common idealized
signal emanating from the goal. Section Ill presents a solyyodel for radio transmission. More generally, if the level
tion for the case of a radially symmetric intensity functiongets are not concentric circles, thene M \ M, is called
The resulting plan guarantees that the robot reaches tHe 998/mmetric.
and an upper bound on the total distance traveled is given.The environment?, the tower locatiorp;, and even the
Section IV addresses the more general case of an asymmetignal mappingn are unknown to the robot. Furthermore,
intensity function. the robot does not even know its own position and orienta-
Il. PROBLEM FORMULATION tion. Based on these quantitiesstate space X is defined

Suppose that a point robot moves R? according to 2
a kinematic differential drive model. Two independently X CSEQ)xExR XM 3)
controlled wheels are attached to an axle. By sending equalwhich SE(2) is the set of all possible robot positions and
power to both identical wheel motors, the robot can moverientations,£ is the set of all possible environment&?
straight or rotate in place. covers the set of all possible tower locations, dvdis the

Let © be a set ofobstacles, in which eachO € © is set of all possible intensity mappings.
closed with a connected piecewise-analytic boundary that Each sensor available to the robot will be defined as a
is finite in length. Furthermore, the obstacles @h are mapping~ : X — Y from the state spac&X into an
pairwise-disjoint. There may be a countably infinite numbe@bservation space Y. Three main sensors will be considered.
of obstacles; however, at most a finite number are containé&drst, the contact sensor indicates whether the robot is
in any fixed disc (this property is called locally finite in [J6 touching the environment boundady~:
The obstacle se&D may contain amuter obstacle O, ;.- that 1 ifzedE
is unbounded; all other obstacles are bounded. See Figure 2. hi(x) = { 0 otherwise.

Let E be the closure oR? minus allO € O and be called
the environment. Note that the environment is connected an
may or may not be bounded.

A point called thetower exists at some locatiop;, =
(r¢,y:) € R2 The tower broadcasts signal, which is hi(z) = h(p,0, E, pt,m) = m(p — p:). (5)

(4)

he other two sensors obtain information regarding the
ower. Theintensity sensor indicates the strength of the signal
from positionp:



The robot can use the intensity sensor to determine Whg AN FOR THE SYMMETRIC CASE

it is at the tower, which uniquely occurs whén(xz) = 1. 1) Letir = hi(z).
However, if the robot does not know the maximum possible 2) APPIY uor; and thenu suq.
intensity, then a “tower detection sensor” can be addegdijshi  3) If 2i(z) =1, then terminate; the tower was reached.
avoided for this paper since the two become mathematically4) If iz 7 hi(z), then letig = hi(x).
equivalent. 5) Apply usor.
For the third sensor, there are two possibilities. Tveer 6) If hi(x) > in then go to Step 1.
alignment sensor indicates whether the robot is facing the 7) Go to Step S.

tower: Fig. 3. A successful plan for the case of a radially symmaettensity

B 1 if 0 =atar(p; — p) function.
ha() = { 0 otherwise. ©)

Alternatively, the gradient alignment sensor indicates checking the relationg,_; > ix_o andii_, > 4y, of the last

whether the robot is facing the direction of steepest ascettiree intensity observations aije s, i,_1, andiy. This could

of m: obviously cause the robot to slightly pass the maximum,
, [ 1 if (cosf,sind) oc Vim(p — pr) 7 which could be deemed to be insignificant due to a high
a(7) = 0 otherwise. @) sampling rate, or the robot could execute a short reversal

motion. Furthermore, fow sy, the robot must be able to
move itself along the wall using the contact sensor. This
ight be achieved by mounting a horizontal wheel that rolls
along the wall and is force controlled. Such details will not
be considered further; however, it is important to point out
that some subtle details remain regarding the implememtati
of the primitives in practice. In this paper, the primitiva®
given, and seem reasonable under the sensing model.

in which thep; correspond to any sequence that converges to I”: RADIALLY SYMMETRIC CASE .

p, co denotes the convex hull, ama’ denotes the derivate of ~ The section presents a plan for the robot that guarantees it

m. Intuitively, this definition gathers up all possible grewtis ~ Will reach the tower after a finite number of primitives have

by taking derivatives along all sequences convering for ~been applied. In this sectiom,., always terminates when

which derivatives exist. either the tower or boundary is reached; the possibility of a
In Section I, m is radially symmetric, in which case local maximum in intensity arises only in Section IV.

either alignment sensor can be used because they give hep plan for the 1-Bug

same result. In Section IV, the asymmetric case is handled, . . . -
Using its motion primitives and enough memory to store

and only the gradient alignment sensor is used. The robot htas0 intensity valuesi, andi. . the plan is shown in Fiqure
no other sensors, such as global positioning, odometry, o % y 4L LH P 9

r ; L . .
compass. Therefore, it is unable to obtain precise position gblgil'emegz'%’; tiascttr::i m_;e(r:];;y ?;?’:r:\;id erl:?gt.tgﬁ (_:ruhr(reent
angular coordinates. w vi plet f&d motion.

Now consider possible actions anotion primitives that intensity iy, is the value obtained just prior to the execution

are given to move the robot. Each motion primitive mus?ftgr{;”i?' Z_h's I?ougztde r'gﬂifsvﬁeﬁ;fmpi;euge'? ttr:]ee r(ﬁ)ubr(r)?nt
terminate on its own using sensor information. The robot it% mo Z lhgxt)he robot moved. then f;‘;e alue for is
allowed only three motion primitives: VE- ved, W valu !

Th b iaht f din the direction it i stored because the robot moved across the interidr.at
uswa The robot goes straight forward in the direction It iSig 5oqmed that the starting position lies in the interioFEof

facing, stopplng_only if: 1) it contacts the ObSta‘Cle\/\/hich guarantees thay; is defined in the first iteration. In

(he(w) = 1)’.2) h|t_s the tOWer ki) n 1)_’ 3) detec_ts each execution of Step 5, the robot moves to another local

a local maximum in intensity alongllts line of _mot|on. maximum, and then it tries to leave the boundary in Step 6
uor; The robot rotates counterclockwise, stopping onl)(f the maximum is greater thany. If after u,,; the robot

when it is aligned with the towerh(z) = 1). is facing the boundary, then it cannot make progress, and

uyror The robot travels around an obstacle boundary countleL— — iy, This indicates that another local maximum must
clockwise, maintaining contact to its left at all times :

. v when i h local _ _ h’be reached before trying to escape again. Note that our robot
stopping only when it reaches a local maximum in the ot follow the Bugl approach in [16] because the robot

intensity._ _ _ ) is unable to determine whether it has traveled completely
There are obviously some hidden details regarding how thegeynd the obstacle.

primitives are implemented, especially in the cases gfq

anduy,;. Both of these have termination conditions that deB. Convergence

pend on detecting a local maximum. This could be achieved Does this plan actually succeed? The following lemma
in practice by sampling the intensity at high frequency andepresents a crucial step in establishing convergenceeto th

At nonsmooth points, the gradier® is assumed to be
extended in a standard way from nonsmooth analysis; s
[4] in general, and [3] for the use of this in the context o
sensor-based planning. In this general cdsgy) = 1 if
(cosd,sin @) is proportional to any vector in thgeneralized
gradient [4]:

co { lim Vm(p; —pi) : pi — p, m'(pi) exists} ,  (8)
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tower:

Lemma 1. For every obstacle bounda§O and every
possible tower locatiop; € R? — O, there exists at least one
intensity local maximum € 90 for which the disc centered
at p, with radius||p; — p|| is disjoint from the interior ofO.

Proof: Using the general position assumption, there are
at most a finite number of intensity local maxima along
00. One or more of these may be global maxima. Since
intensity increases monotonically as distance decredses,
global maxima are also the points alof@ that are closest
to p;. Let p denote any one of these and B{p;, p) be the
closed disc centered at with p lying on its boundary. All
other global maxima must lie on the boundary of this disc.
By construction, no other points i@ are closer top; than

p; hence,D and the interior ofO are disjoint. ]
Fig. 4. When path segments are linearly rotated, their suegisvalent

Convergence is established in the following proposition:to a single path.

Proposition 2 (Convergence): The plan in Figure 3 causes
the robot to reach the tower after a finite number of steps,
regardless of the particular environmeat, initial robot at p;. A local maximum at a poinp € 9O is called
position in the interior off, and tower location inF. unblocked if the robot can freely move toward the tower

Proof: After executing Step 2 for the first time, either thefrom p, without immediately entering the interior 6f. The
tower is reached or the robot contacts the boundary of dallowing proposition bounds the total distance traveled:
obstacle. Assuming the latter, Step 4 stargsthe intensity Proposition 3 (Bounding the Path Length): The total dis-
at this boundary point. The main idea of the proof is thatance traveled by the robot satisfies the bound:
the intensity increases monotonically with every subsatjue
execution of Step 2. Since distance decreases monotgnicall
as intensity increases, the robot arrivepatStep 6 ensures
thatuy,,q is attempted only at a point that is closerothan
the point at which the robot arrived at the obstacle boundaig which n;, is the number of unblocked local maxima along
(where it recordedp). It might seem that an infinite loop is O andc;, is its perimeter.
possible by failure to satisfy the condition of Step 6 or by th  Proof: The proof proceeds by bounding the total path
motion being blocked by the obstacle boundary. Howevelgngth due tou,q separately from that ofis,;. Let {54
Lemma 1 ensures that it is always possible to leave thienote the total distance traveled fromafl,q executions. If
obstacle boundary and obtain a higher intensity value. lay,,q is executed only once before reachimng then clearly
the worst case, the robot may repeatedly return to the samig,q = ||p: — po||. In the more general case, each timg,q
obstacle boundarpO, but it cannot become trapped. Eachis applied the path coincides with a line through All
time it arrives atO, iy is larger, and the number of local path segments can be radially rotated, as shown in Figure
maxima is finite. A new departure point alodl) exists 4, so that their sum is clearly no larger thigm — po||. This
each time due to Lemma 1. Eventually, the robot must leawxplains the first term in (9).
from a global intensity maximum, and its direction faces Now let ¢;,; be the total distance traveled due to all
the interior of the discD from the proof of Lemma 1. wuy, motions. For a single obstacte, with perimetercy,
Therefore, the robot is not blocked, it increases the iitgns consider the total number amount of boundary traveling that
and will never contac®O again. Since this is assured foroccurs. The robot never leaves, twice from the same local
every obstacle, the robot must eventually arriveat B maximum because the intensity increases monotonically eac

) time 00y, is reached by aif,,q primitive. This implies that
Note that in the proof above, the robot does not necessariya robot must leave)), via the u .4 primitive no more
Jw

know whether it is returning to the same obstacle multiplg,,, . times. Furthermore, the total distance traveled by

_tlmes. It may alternate between several obstacles “nkno\%?ecuting a consecutive sequence gf; primitives is always

ingly, but this causes no harm. less theryy,; otherwise, it would surpass the desired departure

C. Bounding the total distance point. Therefore, the total distance traveled alofg is
How far might the robot travel in the worst case toPounded above bﬁ}“vc’“' Summing over all obstacles yields

reach the tower? Let(po, p:, ) denote the distance traveled 1€ Poundfyor < 350, niey. _

by the robot after executing the plan in Figure 3 from COmbining the two components yields

positionpg. This would be the reading obtained by a perfect N

odometer, if it had existed. LelV be the total number of ¢, F) = Crwd + Lior < |Ipe — pol| + anck_ (10)

obstacles that intersect a disc of radilgs — po||, centered =1

N

(po,pe, B) < |lpe — poll + > mcx, ©)
k=1



Fig. 6. The robot approaches both termig,,q and £, in the bound in
the case of convex obstacles.

D. Decidability

It has been assumed so far that the tower liesEin
Suppose that the tower may lie anywher&ihand the robot
must either move to the tower if it exists or declare after a
finite number of steps that the tower is unreachable. Not only
does the plan in Figure 3 fail to achieve this, the following
proposition establishes that the robot cannot generattidde
whetherp, € E:

Proposition 4 (Decidability): Using its sensors and mo-
tion primitives, it is impossible for the robot to determine
whether the tower is reachable, in other words whether
pe € E.

Proof: See Figure 7. There exists a sequence of rippled
disc obstacles for which each hadntensity maxima. Over
the sequence; ranges froml to any natural number. Since
the robot does not know, it must repeatedly advance to
local maxima in hopes of an opportunity to move jg
Since there could be arbitrarily many maxima and the robot
cannot determine whether it has gone completely around the
obstacle, it will iterate forever without learning whether
is reachable. |

Fig. 5. The robot is repeatedly sent around the obstaclerédioally

reaching the goal. - . . .
9mhed The main impediment with the robot deciding when the

tower is reachable is that it cannot tell when it returns to
the same point alon@O. This is a familiar problem in

There aren;, unblocked local maxima along each obstaclet€ séarching of unknown mazes [2], graphs [1], [5], and

each of which could cause the robot to traverse nearly all ®Plygons [6]. The usual solution is to introducepeabble
the perimeter of the same obstacle. that serves as a marker. There are many ways to simulate the

effect of a pebble, but all of them require additional sensor

Figure 5 shows the worst-case behavior for thg term. or actuation capabilities.

Note that if all obstacles are convex, then the second terBh Obstacles Without Nonsmooth Points

of (9) can be improved 6, S.Z]kv Py. Paths arbitrarily Suppose that we restrict the obstacle boundaries to be

close to this worst-case behavior exist, as shown in F'gu%ﬁ\alytic, rather than piecewise-analytic. This impliestth

6. every point alon@O has a well-defined normal, in the sense
It is interesting that the bound in Proposition 3 is similafrom classical calculus. Now remove the tower alignment

to that of Bug2 [16], even though our robot receives muckensor and converts,q into a new primitive u,,, that

less information. In that case, the bound ©On; is 1/2 of  always moves toward the tower in the direction of the normal

what is obtained in (10). at the robot position iDO. Suppose that the plan in 3



Fig. 8. Robot makes progress towards the target in an emaiah with
asymmetric intensity.

function m, andg is replaced bydO. Each time thatu,,
terminates due to an extremum, the gradient of the intensity
function must be normal to the boundary. Due to radial
symmetry, the direction o¥ f (z) is always on a line through
p¢. Thus, the robot can move toward the tower by executing
Unor- ThiS produces the same motion that would have been
executed by the original plan in Figure 3. Therefore, the
convergence proof in Proposition 2 and length bound in
Proposition 3 still hold. ]

IV. GENERAL ASYMMETRIC CASE

This section generalizes some of the ideas from Section
[l to the setting of intensity functions that are asymmetri
In this section, the level sets are topologically equivalen
to circles, but may take any shape. The intensity function
m iS piecewise-analytic with a single maximum @t The
! . . _ primary trouble caused by this case is that the gradient of
Fig. 7. The environment on the top is one representative ff@rsequence

of obstacles that causelocal maxima. The robot does not know how many the |nten§|ty function no Ionger ‘points” to the tower. II‘Eth_
peaks may exist. Furthermore, it cannot determine whelieze tis a solution = Symmetric case, the tower alignment sensor (6) and gradient

beyond_the next peak, as would occur for the exam_ple on tI‘ter‘noSinc_e alignment sensor (7) produce the same orientation. In this
the environment is unknown, the robot cannot decide whetretower is . .
reachable. section, the two sensors generally produce different t@sul
It is assumed here that the gradient alignment sensor is used
Note that a straight-line motion will no longer take the robo
is modified by executing.,. In Step 2, instead oti,,; to the tower. Fortunately, the robot is able to make progress
followed by u f4yq. by relying on the main idea from the classical optimization
Proposition 5: If the boundary of every obstacle is an-techniquesteepest descent with line searching (SDLS) [12].
alytic, then the modified plan (which avoids the tower The plan from Figure 3 is modified in the present setting to
alignment sensor) always succeeds and the path satisfies ¢itain the plan shown in Figure 9. The only real difference
bound in Proposition 3. is given by the insertion of Step 5. During the execution
Proof: The proof follows from the key observation from of w4, the robot may fail to reach the obstacle boundary.
classical constrained optimization. Recall that whenrojzti  Therefore, it must realign itself and move in a new direction
ing an analytic functiorf (z) subject to an analytic constraint Figure 8 shows a sample path in the asymmetric intensity
g(z) = 0, then local extrema occur only W f(z) = AVg(z)  scenario. This iteration continues until the tower or bamd
for some nonzero scalar constant (called a Lagrange is reached. If the boundary is reached, they, is applied
multiplier). In our context,f is replaced by the intensity as in Section IIl.




PLAN FOR THE ASYMMETRIC CASE
1) Letir = he(x).
2) Apply uer; and thenu fy,q. It is natural to wonder whether a bound can be constructed
3) If h;(x) =1, then terminate; the tower was reached. on the total path length, as established in Proposition 3. In
N

4) If ¢ h;(x), then letig = h;(z). ) )
5; If h];(f) :(O,) then go t(l)qStep (1.) the current setting, the second term Enkck remains as

infinite number of steps in general. ]

k=1
6) Apply uor. an upper bound on the motions dueutg,;. The first term,
7) It hi(w) > iy then go to Step 1. however, is complicated by the convergence rate of the SDLC
8) Go to Step 6. iterations, which depends on the properties of the intgnsit
Fig. 9. A successful plan for the case of an asymmetric itiefisnction. function m. For optimization problems, conjugate gradlent
The difference is that multiple iterations are needed whesssing the descent is usually preferred over SDLC because of its faster
interior of E. This is reflected in Step 5, which did not exist in Figure convergence rate; however’ our robot does not receive énoug
3. information to apply the method.

V. CONCLUSIONS
The proof of convergence follows the same general strat-

egy as in Section IV. Recall Lemma 1, which was perfect f0||;] Within the well-known family of bug algorithms, we

. ; ave introduced I-Bug, which uses the weakest sensing
ensuring that the robot does not get trapped moving alon . .
) ifformation to date among these algorithms. The robot uses
an obstacle boundary. In the current setting, replace e di

: . . S : a contact sensor, an intensity sensor, and an alignmerdrsens
fs(pt,p) with a topological disc, B(pr, p), which is defined to achieve the task of reaching a goal, which is the signal

source. The robot does not have access to perfect clocks,
Blpi,p)={p € E|mp —p) >mp—p)}. (11) odometry, or other sensors that would enable it to infer
any coordinates ifR?, its orientation in[0, 2x), or its total
Informally, the topological disc includes all points with distance traveled. For a radially symmetric intensity tiorg
intensity greater than or equal to the intensitypatUsing we presented a plan for I-Bug that is guaranteed to succeed
this definition, the following lemma can be stated, whichin a finite number of steps. Also, a bound is provided
generalizes Lemma 1 to a topological disc: on the total distance traveled. If the intensity function is
Lemma 6: For every obstacle boundaO and every asymmetric, the plan is slightly modified, but nevertheless
possible tower locatiop, € R? — O, there exists at least one converges. This case seems quite interesting due to its
intensity local maximunp € 90O for which the topological €xtreme generality. Although the robot is unable to move
disc B(p;, p) is disjoint from the interior ofO. directly to the goal, its convergence is assured through an
Proof: The argument is similar to the proof of Lemma 6.2pproach that is mathematically equivalent to the steepest
Using the general position assumption, there are at mostdgscent line search algorithm from optimization.
finite number of intensity local maxima alori@). One or Many interesting questions remain for future research.
more of these may be global maxima. lretienote any one It is interesting that the robot can accomplish the task
of these and letB(p;,p) be the corresponding topological without being aware of whether it is returning to the same
disc. All other global maxima must lie on the boundaryobstacles. What other tasks can be accomplished in spite of
of B(p,p). By construction, no other points i@ have an this confusion? What tasks require distinguishabilityneegn

intensity greater than the intensity @thence,B(p;, p) and obstacles? What forms of sensing should be added to give
the interior of O are disjoint. g therobot enough information to make such distinctions.{e.g
a mathematical pebble)? In another direction, can the plans

Using Lemma 6, it is straightforward to establish theyiven in this paper be improved by allowing the robot to
convergence of the plan in Figure 9: alternative between clockwise and counterclockwise eirec

Proposition 7 (Convergence): For anye > 0, the plan in tions? Could a randomized approach lead to good expected-
Figure 9 causes the robot to arrive withindistance from case behavior? Another interesting direction is to comside
the tower after a finite number of steps, regardless of thghat can be accomplished with a bug among multiple towers.
particular environmenk, initial robot position in the interior
of E, and tower location inf. Acknowledgments
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