
I-Bug: An Intensity-Based Bug Algorithm

Kamilah Taylor and Steven M. LaValle

Abstract— This paper introduces a sensor-based planning
algorithm that uses less sensing information than any others
within the family of bug algorithms. The robot is unable
to access precise information regarding position coordinates,
angular coordinates, time, or odometry, but is nevertheless
able to navigate itself to a goal among unknown piecewise-
analytic obstacles in the plane. The only sensor providing real
values is an intensity sensor, which measures the signal strength
emanating from the goal. The signal intensity function may or
may not be symmetric; the main requirement is that the level
sets are concentric topological circles. Convergence analysis and
distance bounds are established for the presented approach.

I. INTRODUCTION

Suppose a woman is walking around a city trying to
get to a tower. The person can navigate around various
buildings without knowing if she is in Kansas or Japan and
without knowing her longitude and latitude. To make it more
interesting, suppose she is blindfolded. There is not only
uncertainty about position, but also about the surrounding
environment. What information could she use to get to the
tower? Suppose that the tower sends a signal, which could
be a loud sound or a radio broadcast. Does there exist
a strategy that enables her to successfully navigate to the
tower? What kinds of sensing and actuation are needed? This
paper is motivated by such basic questions. Figure 1 shows
an example of a simulated robot that executes a strategy
based on incrementally maximizing a single intensity while
moving among unknown obstacles.

Our mathematical model falls mostly into the well-known
family of bug algorithms, which have two main modes
of movement: following obstacle boundaries and moving
towards the goal. The original bug algorithms [13],[15]
propose a minimalist sensing model and a robot navigating
algorithm to bring the robot to a specified goal in a 2D
environment with unknown smooth obstacles. The work
was later extended to include a range sensor, which led to
improve bounds on the total distance traveled [14]. Since
then there have been several other bug algorithms. In [7],
the TangentBug was proposed, which enhanced the sensing
model to improve the bound on the length of the path to the
goal. In [8], TangentBug was extended to three dimensions.
WedgeBug and its relative RoverBug [10],[9],[11] restrictthe
TangentBug sensing model so that it can be applied in an
actual planetary rover. A bug algorithm for solving pursuit-
evasion was presented in [17].

K. Taylor is with the Department of Computer Science, University of
Illinois at Urbana-Champaignktaylo21@illinois.edu

S. Lavalle is with the Department of Computer Science, University of
Illinois at Urbana-Champaignlavalle@uiuc.edu

Fig. 1. The robot starts at the lower-left green dot and movestowards the
upper-right red dot while traversing various obstacle boundaries. Level sets
of equal intensity are represented by the circular arcs.

The motivation for our paper came from carefully studying
the models of previous bug algorithms. Even though these
models are aimed at minimizing sensing and mapping re-
quirements, they appear to require some precise information
that may not be necessary. For example, the original Bug1
and Bug2 algorithms [13] use: 1) a contact sensor, 2)
coordinates of the initial robot position, 3) coordinates of
the current robot position, 4) coordinates of the target, and 5)
odometry to obtain the distance traveled around an obstacle
boundary. This information is evident when studying the
particular approach. Bug1 goes around the entire obstacle,
calculates the closest leaving point, returns to that point,
and then goes in a straight line towards the target. Bug2
calculates an “m-line”, which is a line segment that connects
the initial point to the goal point, and always moves on that
line unless it is contacted an obstacle. While moving along
an obstacle, it follows the boundary until it is once more on
the m-line, and then it returns to moving towards the target
on the m-line. Thus, it seems that the robot needs a position
sensor, a linear odometer, and angular odometer to execute
both the Bug1 and Bug2 algorithms. Bug2 would also need
to calculate whether the obstacle has intersected the m-line.
VisBug’s algorithm is based on the Bug2 algorithm but uses a
range sensor to decrease the Bug2 path bound. TangentBug
uses a360◦ range sensor to avoid following the boundary
and instead move a certain distance away from the boundary
unless it is unavoidable. WedgeBug is based on TangentBug
and uses a more limited30◦ to 45◦ range sensor to minimize
the number of sensor readings.

A common theme among the bug algorithms is that they



Fig. 2. There may be an outer obstacleOouter, which has a finite-length
boundary curve but extends infinitely outward in all directions.

rely on knowing the robot’s exact coordinates. Our moti-
vation comes from a simple observation: the previous bug
robots had access to the exact coordinates of every place they
visited, and in some cases to the exact distance they traveled.
If they had had unlimited memory, it would even have been
possible to reconstruct a perfect map of their environments.
It seems that it ought to be possible to navigate through an
environment without collecting all of this information. We
therefore want to determine whether the robot can navigate
to a goal without collecting all of this information. Can it
reach the goal without having any coordinates?

Section II introduces a coordinate-free mathematical
model for a bug that navigates based on the intensity of a
signal emanating from the goal. Section III presents a solu-
tion for the case of a radially symmetric intensity function.
The resulting plan guarantees that the robot reaches the goal
and an upper bound on the total distance traveled is given.
Section IV addresses the more general case of an asymmetric
intensity function.

II. PROBLEM FORMULATION

Suppose that a point robot moves inR2 according to
a kinematic differential drive model. Two independently
controlled wheels are attached to an axle. By sending equal
power to both identical wheel motors, the robot can move
straight or rotate in place.

Let O be a set ofobstacles, in which eachO ∈ O is
closed with a connected piecewise-analytic boundary that
is finite in length. Furthermore, the obstacles inO are
pairwise-disjoint. There may be a countably infinite number
of obstacles; however, at most a finite number are contained
in any fixed disc (this property is called locally finite in [16]).
The obstacle setO may contain anouter obstacle Oouter that
is unbounded; all other obstacles are bounded. See Figure 2.

Let E be the closure ofR2 minus allO ∈ O and be called
theenvironment. Note that the environment is connected and
may or may not be bounded.

A point called thetower exists at some locationpt =
(xt, yt) ∈ R

2. The tower broadcasts asignal, which is

modeled as an intensity function overR
2. Let m denote the

signal mapping m : R
2 → [0, 1], in which m(p) yields the

intensity at p ∈ E, generated from a tower at(0, 0) ∈ R
2. It

is assumed that the maximum intensity,1, is achieved at the
tower: m(0, 0) = 1. If the tower is atpt and the robot is at
p, then the intensity is translated accordingly asm(p − pt).

For anyi ∈ [0,∞), consider the level sets (or preimages)

m−1(i) = {p ∈ R
2 | m(p − pt) = i}. (1)

We want to allow intensity functions that are as complicated
as those measured in practice from radio signals or other
physical sources. An important restriction, however, willbe
that we allow only one local maximum, which is at the
tower. In spite of this, it will be assumed thatm could be
any locally Lipschitz, piecewise-analytic function for which
m−1(i) is homeomorphic to a circle for everyi ∈ (0, 1)
and m−1(1) = {(0, 0)} (this includes, for example, some
polyhedral surfaces). Furthermore, the level sets must be
concentric, with(0, 0) at the center. We make a general
position assumption that for the boundary of everyO ∈
O and every preimagem−1(i), they are either disjoint or
intersect in a finite number of places. LetM denote the set
of all intensity functions that satisfy these conditions.

Let Ms ⊂ M denote the set of allradially symmetric
intensity functions. In this case, the level sets form concentric
circles in the classical sense (rather than concentric topolog-
ical circles). As an example,

m(p) =
1

p2
x + p2

y

(2)

causes the intensity to decay quadratically with distance,
without regard to direction. This is a common idealized
model for radio transmission. More generally, if the level
sets are not concentric circles, thenm ∈ M \ Ms is called
asymmetric.

The environmentE, the tower locationpt, and even the
signal mappingm are unknown to the robot. Furthermore,
the robot does not even know its own position and orienta-
tion. Based on these quantities, astate space X is defined
as

X ⊂ SE(2) × E × R
2 × M (3)

in which SE(2) is the set of all possible robot positions and
orientations,E is the set of all possible environments,R

2

covers the set of all possible tower locations, andM is the
set of all possible intensity mappings.

Each sensor available to the robot will be defined as a
mapping h : X → Y from the state spaceX into an
observation space Y . Three main sensors will be considered.
First, the contact sensor indicates whether the robot is
touching the environment boundary∂E:

ht(x) =

{

1 if x ∈ ∂E
0 otherwise.

(4)

The other two sensors obtain information regarding the
tower. Theintensity sensor indicates the strength of the signal
from positionp:

hi(x) = h(p, θ, E, pt, m) = m(p − pt). (5)



The robot can use the intensity sensor to determine when
it is at the tower, which uniquely occurs whenhi(x) = 1.
However, if the robot does not know the maximum possible
intensity, then a “tower detection sensor” can be added; this is
avoided for this paper since the two become mathematically
equivalent.

For the third sensor, there are two possibilities. Thetower
alignment sensor indicates whether the robot is facing the
tower:

ha(x) =

{

1 if θ = atan2(pt − p)
0 otherwise.

(6)

Alternatively, the gradient alignment sensor indicates
whether the robot is facing the direction of steepest ascent
of m:

ha(x) =

{

1 if (cos θ, sin θ) ∝ ∇m(p − pt)
0 otherwise.

(7)

At nonsmooth points, the gradient∇ is assumed to be
extended in a standard way from nonsmooth analysis; see
[4] in general, and [3] for the use of this in the context of
sensor-based planning. In this general case,ha(x) = 1 if
(cos θ, sin θ) is proportional to any vector in thegeneralized
gradient [4]:

co
{

lim
i→∞

∇m(pi − pt) : pi → p, m′(pi) exists
}

, (8)

in which thepi correspond to any sequence that converges to
p, co denotes the convex hull, amdm′ denotes the derivate of
m. Intuitively, this definition gathers up all possible gradients
by taking derivatives along all sequences convering top for
which derivatives exist.

In Section III, m is radially symmetric, in which case
either alignment sensor can be used because they give the
same result. In Section IV, the asymmetric case is handled,
and only the gradient alignment sensor is used. The robot has
no other sensors, such as global positioning, odometry, or a
compass. Therefore, it is unable to obtain precise positionor
angular coordinates.

Now consider possible actions ormotion primitives that
are given to move the robot. Each motion primitive must
terminate on its own using sensor information. The robot is
allowed only three motion primitives:
ufwd The robot goes straight forward in the direction it is

facing, stopping only if: 1) it contacts the obstacle
(ht(x) = 1), 2) hits the tower (hi(x) = 1), 3) detects
a local maximum in intensity along its line of motion.

uori The robot rotates counterclockwise, stopping only
when it is aligned with the tower (ha(x) = 1).

ufol The robot travels around an obstacle boundary counter-
clockwise, maintaining contact to its left at all times,
stopping only when it reaches a local maximum in the
intensity.

There are obviously some hidden details regarding how these
primitives are implemented, especially in the cases ofufwd

andufol. Both of these have termination conditions that de-
pend on detecting a local maximum. This could be achieved
in practice by sampling the intensity at high frequency and

PLAN FOR THE SYMMETRIC CASE

1) Let iL = hi(x).
2) Apply uori and thenufwd.
3) If hi(x) = 1, then terminate; the tower was reached.
4) If iL 6= hi(x), then letiH = hi(x).
5) Apply ufol.
6) If hi(x) > iH then go to Step 1.
7) Go to Step 5.

Fig. 3. A successful plan for the case of a radially symmetricintensity
function.

checking the relationsik−1 > ik−2 andik−1 > ik, of the last
three intensity observations areik−2, ik−1, andik. This could
obviously cause the robot to slightly pass the maximum,
which could be deemed to be insignificant due to a high
sampling rate, or the robot could execute a short reversal
motion. Furthermore, forufol, the robot must be able to
move itself along the wall using the contact sensor. This
might be achieved by mounting a horizontal wheel that rolls
along the wall and is force controlled. Such details will not
be considered further; however, it is important to point out
that some subtle details remain regarding the implementation
of the primitives in practice. In this paper, the primitivesare
given, and seem reasonable under the sensing model.

III. RADIALLY SYMMETRIC CASE

The section presents a plan for the robot that guarantees it
will reach the tower after a finite number of primitives have
been applied. In this section,ufwd always terminates when
either the tower or boundary is reached; the possibility of a
local maximum in intensity arises only in Section IV.

A. A plan for the I-Bug

Using its motion primitives and enough memory to store
two intensity values,iL andiH , the plan is shown in Figure
3. The intensityiH is the intensity observed when the current
obstacle was contacted via completion of aufwd motion. The
intensity iL is the value obtained just prior to the execution
of ufwd. This is used in Step 4 to compare with the current
intensityhi(x) to determine whetherufwd caused the robot
to move. If the robot moved, then a new value foriH is
stored because the robot moved across the interior ofE. It
is assumed that the starting position lies in the interior ofE,
which guarantees thatiH is defined in the first iteration. In
each execution of Step 5, the robot moves to another local
maximum, and then it tries to leave the boundary in Step 6
if the maximum is greater thaniH . If after uori the robot
is facing the boundary, then it cannot make progress, and
iL = iH . This indicates that another local maximum must
be reached before trying to escape again. Note that our robot
cannot follow the Bug1 approach in [16] because the robot
is unable to determine whether it has traveled completely
around the obstacle.

B. Convergence

Does this plan actually succeed? The following lemma
represents a crucial step in establishing convergence to the



tower:
Lemma 1: For every obstacle boundary∂O and every

possible tower locationpt ∈ R
2−O, there exists at least one

intensity local maximump ∈ ∂O for which the disc centered
at pt with radius‖pt − p‖ is disjoint from the interior ofO.

Proof: Using the general position assumption, there are
at most a finite number of intensity local maxima along
∂O. One or more of these may be global maxima. Since
intensity increases monotonically as distance decreases,the
global maxima are also the points along∂O that are closest
to pt. Let p denote any one of these and letD(pt, p) be the
closed disc centered atpt with p lying on its boundary. All
other global maxima must lie on the boundary of this disc.
By construction, no other points inO are closer topt than
p; hence,D and the interior ofO are disjoint.

Convergence is established in the following proposition:
Proposition 2 (Convergence): The plan in Figure 3 causes

the robot to reach the tower after a finite number of steps,
regardless of the particular environmentE, initial robot
position in the interior ofE, and tower location inE.

Proof: After executing Step 2 for the first time, either the
tower is reached or the robot contacts the boundary of an
obstacle. Assuming the latter, Step 4 storesiH , the intensity
at this boundary point. The main idea of the proof is that
the intensity increases monotonically with every subsequent
execution of Step 2. Since distance decreases monotonically
as intensity increases, the robot arrives atpt. Step 6 ensures
thatufwd is attempted only at a point that is closer topt than
the point at which the robot arrived at the obstacle boundary
(where it recordediH). It might seem that an infinite loop is
possible by failure to satisfy the condition of Step 6 or by the
motion being blocked by the obstacle boundary. However,
Lemma 1 ensures that it is always possible to leave the
obstacle boundary and obtain a higher intensity value. In
the worst case, the robot may repeatedly return to the same
obstacle boundary∂O, but it cannot become trapped. Each
time it arrives atO, iH is larger, and the number of local
maxima is finite. A new departure point along∂O exists
each time due to Lemma 1. Eventually, the robot must leave
from a global intensity maximum, and its direction faces
the interior of the discD from the proof of Lemma 1.
Therefore, the robot is not blocked, it increases the intensity,
and will never contact∂O again. Since this is assured for
every obstacle, the robot must eventually arrive atpt.

Note that in the proof above, the robot does not necessarily
know whether it is returning to the same obstacle multiple
times. It may alternate between several obstacles unknow-
ingly, but this causes no harm.

C. Bounding the total distance

How far might the robot travel in the worst case to
reach the tower? Letℓ(p0, pt, E) denote the distance traveled
by the robot after executing the plan in Figure 3 from
positionp0. This would be the reading obtained by a perfect
odometer, if it had existed. LetN be the total number of
obstacles that intersect a disc of radius‖pt − p0‖, centered

Fig. 4. When path segments are linearly rotated, their sum isequivalent
to a single path.

at pt. A local maximum at a pointp ∈ ∂O is called
unblocked if the robot can freely move toward the tower
from p, without immediately entering the interior ofO. The
following proposition bounds the total distance traveled:

Proposition 3 (Bounding the Path Length): The total dis-
tance traveled by the robot satisfies the bound:

ℓ(p0, pt, E) ≤ ‖pt − p0‖ +
N

∑

k=1

nkck, (9)

in which nk is the number of unblocked local maxima along
Ok andck is its perimeter.

Proof: The proof proceeds by bounding the total path
length due toufwd separately from that ofufol. Let ℓfwd

denote the total distance traveled from allufwd executions. If
ufwd is executed only once before reachingpt, then clearly
ℓfwd = ‖pt −p0‖. In the more general case, each timeufwd

is applied the path coincides with a line throughpt. All
path segments can be radially rotated, as shown in Figure
4, so that their sum is clearly no larger than‖pt − p0‖. This
explains the first term in (9).

Now let ℓfol be the total distance traveled due to all
ufol motions. For a single obstacleOk with perimeterck,
consider the total number amount of boundary traveling that
occurs. The robot never leavesOk twice from the same local
maximum because the intensity increases monotonically each
time ∂Ok is reached by aufwd primitive. This implies that
the robot must leaveOk via the ufwd primitive no more
than nk times. Furthermore, the total distance traveled by
executing a consecutive sequence ofufol primitives is always
less thenck; otherwise, it would surpass the desired departure
point. Therefore, the total distance traveled alongOk is
bounded above bynkck. Summing over all obstacles yields
the boundℓfol ≤

∑N

k=1
nkck.

Combining the two components yields

ℓ(p0, pt, E) = ℓfwd + ℓfol ≤ ‖pt − p0‖ +

N
∑

k=1

nkck. (10)



Fig. 5. The robot is repeatedly sent around the obstacle before finally
reaching the goal.

There arenk unblocked local maxima along each obstacle,
each of which could cause the robot to traverse nearly all of
the perimeter of the same obstacle.

Figure 5 shows the worst-case behavior for theℓfol term.

Note that if all obstacles are convex, then the second term
of (9) can be improved toℓfol ≤

∑N

k Pk. Paths arbitrarily
close to this worst-case behavior exist, as shown in Figure
6.

It is interesting that the bound in Proposition 3 is similar
to that of Bug2 [16], even though our robot receives much
less information. In that case, the bound onℓfol is 1/2 of
what is obtained in (10).

Fig. 6. The robot approaches both terms,ℓfwd andℓfol, in the bound in
the case of convex obstacles.

D. Decidability

It has been assumed so far that the tower lies inE.
Suppose that the tower may lie anywhere inR

2 and the robot
must either move to the tower if it exists or declare after a
finite number of steps that the tower is unreachable. Not only
does the plan in Figure 3 fail to achieve this, the following
proposition establishes that the robot cannot generally decide
whetherpt ∈ E:

Proposition 4 (Decidability): Using its sensors and mo-
tion primitives, it is impossible for the robot to determine
whether the tower is reachable, in other words whether
pt ∈ E.

Proof: See Figure 7. There exists a sequence of rippled
disc obstacles for which each hask intensity maxima. Over
the sequence,k ranges from1 to any natural number. Since
the robot does not knowE, it must repeatedly advance to
local maxima in hopes of an opportunity to move topt.
Since there could be arbitrarily many maxima and the robot
cannot determine whether it has gone completely around the
obstacle, it will iterate forever without learning whetherpt

is reachable.

The main impediment with the robot deciding when the
tower is reachable is that it cannot tell when it returns to
the same point along∂O. This is a familiar problem in
the searching of unknown mazes [2], graphs [1], [5], and
polygons [6]. The usual solution is to introduce apebble
that serves as a marker. There are many ways to simulate the
effect of a pebble, but all of them require additional sensor
or actuation capabilities.

E. Obstacles Without Nonsmooth Points

Suppose that we restrict the obstacle boundaries to be
analytic, rather than piecewise-analytic. This implies that
every point along∂O has a well-defined normal, in the sense
from classical calculus. Now remove the tower alignment
sensor and convertufwd into a new primitiveunor that
always moves toward the tower in the direction of the normal
at the robot position in∂O. Suppose that the plan in 3



Fig. 7. The environment on the top is one representative fromthe sequence
of obstacles that causek local maxima. The robot does not know how many
peaks may exist. Furthermore, it cannot determine whether there is a solution
beyond the next peak, as would occur for the example on the bottom. Since
the environment is unknown, the robot cannot decide whetherthe tower is
reachable.

is modified by executingunor in Step 2, instead ofuori

followed by ufwd.
Proposition 5: If the boundary of every obstacle is an-

alytic, then the modified plan (which avoids the tower
alignment sensor) always succeeds and the path satisfies the
bound in Proposition 3.

Proof: The proof follows from the key observation from
classical constrained optimization. Recall that when optimiz-
ing an analytic functionf(x) subject to an analytic constraint
g(x) = 0, then local extrema occur only if∇f(x) = λ∇g(x)
for some nonzero scalar constantλ (called a Lagrange
multiplier). In our context,f is replaced by the intensity

Fig. 8. Robot makes progress towards the target in an environment with
asymmetric intensity.

function m, andg is replaced by∂O. Each time thatufol

terminates due to an extremum, the gradient of the intensity
function must be normal to the boundary. Due to radial
symmetry, the direction of∇f(x) is always on a line through
pt. Thus, the robot can move toward the tower by executing
unor. This produces the same motion that would have been
executed by the original plan in Figure 3. Therefore, the
convergence proof in Proposition 2 and length bound in
Proposition 3 still hold.

IV. GENERAL ASYMMETRIC CASE

This section generalizes some of the ideas from Section
III to the setting of intensity functions that are asymmetric.
In this section, the level sets are topologically equivalent
to circles, but may take any shape. The intensity function
m is piecewise-analytic with a single maximum at0. The
primary trouble caused by this case is that the gradient of
the intensity function no longer “points” to the tower. In the
symmetric case, the tower alignment sensor (6) and gradient
alignment sensor (7) produce the same orientation. In this
section, the two sensors generally produce different results.
It is assumed here that the gradient alignment sensor is used.
Note that a straight-line motion will no longer take the robot
to the tower. Fortunately, the robot is able to make progress
by relying on the main idea from the classical optimization
techniquesteepest descent with line searching (SDLS) [12].

The plan from Figure 3 is modified in the present setting to
obtain the plan shown in Figure 9. The only real difference
is given by the insertion of Step 5. During the execution
of ufwd, the robot may fail to reach the obstacle boundary.
Therefore, it must realign itself and move in a new direction.
Figure 8 shows a sample path in the asymmetric intensity
scenario. This iteration continues until the tower or boundary
is reached. If the boundary is reached, thenufol is applied
as in Section III.



PLAN FOR THE ASYMMETRIC CASE

1) Let iL = ht(x).
2) Apply uori and thenufwd.
3) If hi(x) = 1, then terminate; the tower was reached.
4) If iL 6= hi(x), then letiH = hi(x).
5) If ht(x) = 0, then go to Step 1.
6) Apply ufol.
7) If hi(x) > iH then go to Step 1.
8) Go to Step 6.

Fig. 9. A successful plan for the case of an asymmetric intensity function.
The difference is that multiple iterations are needed when crossing the
interior of E. This is reflected in Step 5, which did not exist in Figure
3.

The proof of convergence follows the same general strat-
egy as in Section IV. Recall Lemma 1, which was perfect for
ensuring that the robot does not get trapped moving along
an obstacle boundary. In the current setting, replace the disc
D(pt, p) with a topological disc, B(pt, p), which is defined
as

B(pt, p) = {p′ ∈ E | m(p′ − pt) ≥ m(p − pt)}. (11)

Informally, the topological disc includes all points with
intensity greater than or equal to the intensity atp. Using
this definition, the following lemma can be stated, which
generalizes Lemma 1 to a topological disc:

Lemma 6: For every obstacle boundary∂O and every
possible tower locationpt ∈ R

2−O, there exists at least one
intensity local maximump ∈ ∂O for which the topological
disc B(pt, p) is disjoint from the interior ofO.

Proof: The argument is similar to the proof of Lemma 6.
Using the general position assumption, there are at most a
finite number of intensity local maxima along∂O. One or
more of these may be global maxima. Letp denote any one
of these and letB(pt, p) be the corresponding topological
disc. All other global maxima must lie on the boundary
of B(pt, p). By construction, no other points inO have an
intensity greater than the intensity atp; hence,B(pt, p) and
the interior ofO are disjoint.

Using Lemma 6, it is straightforward to establish the
convergence of the plan in Figure 9:

Proposition 7 (Convergence): For anyǫ > 0, the plan in
Figure 9 causes the robot to arrive withinǫ distance from
the tower after a finite number of steps, regardless of the
particular environmentE, initial robot position in the interior
of E, and tower location inE.

Proof: The proof follows in the same manner as the proof
of Proposition 2. In each step, the intensity is guaranteed
to increase. The only significant change is that it may take
multiple iterations ofufwd to traverse the interior ofE. Since
the robot moves along a line in the direction of the gradient in
each step, this is equivalent to SDLS optimization, which is
well-known to converge asymptotically [12]. The asymptotic
convergence of SDLS is the reason whyǫ is used in the
proposition; precise convergence topt would require an

infinite number of steps in general.

It is natural to wonder whether a bound can be constructed
on the total path length, as established in Proposition 3. In

the current setting, the second term of
N

∑

k=1

nkck remains as

an upper bound on the motions due toufol. The first term,
however, is complicated by the convergence rate of the SDLC
iterations, which depends on the properties of the intensity
function m. For optimization problems, conjugate gradient
descent is usually preferred over SDLC because of its faster
convergence rate; however, our robot does not receive enough
information to apply the method.

V. CONCLUSIONS

Within the well-known family of bug algorithms, we
have introduced I-Bug, which uses the weakest sensing
information to date among these algorithms. The robot uses
a contact sensor, an intensity sensor, and an alignment sensor
to achieve the task of reaching a goal, which is the signal
source. The robot does not have access to perfect clocks,
odometry, or other sensors that would enable it to infer
any coordinates inR2, its orientation in[0, 2π), or its total
distance traveled. For a radially symmetric intensity function,
we presented a plan for I-Bug that is guaranteed to succeed
in a finite number of steps. Also, a bound is provided
on the total distance traveled. If the intensity function is
asymmetric, the plan is slightly modified, but nevertheless
converges. This case seems quite interesting due to its
extreme generality. Although the robot is unable to move
directly to the goal, its convergence is assured through an
approach that is mathematically equivalent to the steepest
descent line search algorithm from optimization.

Many interesting questions remain for future research.
It is interesting that the robot can accomplish the task
without being aware of whether it is returning to the same
obstacles. What other tasks can be accomplished in spite of
this confusion? What tasks require distinguishability between
obstacles? What forms of sensing should be added to give
the robot enough information to make such distinctions (e.g.,
a mathematical pebble)? In another direction, can the plans
given in this paper be improved by allowing the robot to
alternative between clockwise and counterclockwise direc-
tions? Could a randomized approach lead to good expected-
case behavior? Another interesting direction is to consider
what can be accomplished with a bug among multiple towers.

Acknowledgments

This work was supported by the DARPA SToMP program
(DSO HR0011-07-1-002). The views expressed in this paper
are not necessarily endorsed by DARPA. The authors thank
Stephen Bond for a helpful discussion.

REFERENCES

[1] M. A. Bender, A. Fernandez, D. Ron, A. Sahai, and S. Vadhan.
The power of a pebble: Exploring and mapping directed graphs. In
Proceedings Annual Symposium on Foundations of Computer Science,
1998.



[2] M. Blum and D. Kozen. On the power of the compass (or, why mazes
are easier to search than graphs). InProceedings Annual Symposium
on Foundations of Computer Science, pages 132–142, 1978.

[3] H. Choset and J. Burdick. Sensor-based exploration: Incremental con-
struction of the hierarchical generalized Voronoi graph.International
Journal of Robotics Research, 19(2):126–148, 2000.

[4] F. H. Clarke.Optimization and Nonsmooth Analysis. Springer-Verlag,
Berlin, 1998.

[5] P. Fraigniaud, D. Ilcinkas, G. Peer, A. Pelc, and D. Peleg. Graph
exploration by a finite automaton.Theoretical Computer Science,
345(2-3):331–344, December 2005.

[6] B. Gfeller, M. Mihalak, S. Suri, E. Vicari, and P. Widmayer. Counting
targets with mobile sensors in an unknown environment. InALGO-
SENSORS, July 2007.

[7] I. Kamon and E. Rivlin. Sensory-based motion planning with global
proofs.IEEE Transactions on Robotics & Automation, 13(6):814–822,
December 1997.

[8] I. Kamon, E. Rivlin, and E. Rimon. Range-sensor based navigation in
three dimensions. InProceedings IEEE International Conference on
Robotics & Automation, 1999.

[9] S. L. Laubach and J. W. Burdick. An autonomous sensor-based path-
planning for planetary microrovers. InProceedings IEEE International
Conference on Robotics & Automation, 1999.

[10] S. L. Laubach and J. W. Burdick. Practical autonomous path planner
for turn-of-the-century planetary microrovers.Proceedings of SPIE,
3525:182, 1999.

[11] S. L. Laubach and J. W. Burdick. RoverBug: Long Range Navigation
for Mars Rovers.LECTURE NOTES IN CONTROL AND INFORMA-
TION SCIENCES, pages 339–348, 1999.

[12] D. G. Luenberger.Introduction to Linear and Nonlinear Programming.
Wiley, New York, 1973.

[13] V. J. Lumelsky. Sensing, Intelligence, Motion: How Robots and
Humans Move in an Unstructured World. Wiley Interscience, 1005.

[14] V. J. Lumelsky and T. Skewis. A paradigm for incorporating vision
in the robot navigation function. InProceedings IEEE International
Conference on Robotics & Automation, pages 734–739, 1988.

[15] V. J. Lumelsky and A. A. Stepanov. Path planning strategies for a
point mobile automaton moving amidst unknown obstacles of arbitrary
shape.Algorithmica, 2:403–430, 1987.

[16] Vladimir Lumelsky. Sensing, Intelligence, Motion: How Robots and
Humans Move in an Unstructured World. Wiley-Interscience, 2005.

[17] S. Rajko and S. M. LaValle. A pursuit-evasion bug algorithm. In Pro-
ceedings IEEE International Conference on Robotics and Automation,
pages 1954–1960, 2001.


