
Adaptive Triangular Mesh Generation of Self-configuring Robot

Swarms

Geunho Lee1, Nak Young Chong1, and Henrik Christensen2

Abstract— We address the problem of dispersing a large
number of autonomous mobile robots toward building wireless
ad hoc sensor networks performing environmental monitoring
and control. For the purpose, we propose the adaptive triangu-
lar mesh generation algorithm that enables robots to generate
triangular meshes of various sizes adapting to changing envi-
ronmental conditions. A locally interacting, geometric technique
allows robots to generate each triangular mesh with their two
neighbor robots. Specifically, we have assumed that robots are
not allowed to have the identifier, any pre-determined leaders or
common coordinate systems, and any explicit communication.

Under such minimal conditions, the positions of the robots
were shown to converge to the desired distribution, which
was mathematically proven and also verified through extensive
simulations. Our preliminary results indicate that the proposed
algorithm can be applied to the problem regarding the coverage
of an area of interest by a swarm of mobile sensors.

I. INTRODUCTION

With the advance of wireless and mobile networking tech-

nologies, much attention has been paid to the use of large-

scale swarms of simple mobile robots for environmental or

habitat monitoring. In particular, self-configuration of robot

swarms requires a type of collective behavior that allows

robots to disperse themselves in a certain area at a uniform

spatial density. Thus, it is essential to properly coordinate

the (relative) positions of robots, and this issue has been

widely reported in the literature [2]-[12]. Taking steps to

further improve those previous approaches, this work is

aimed at presenting an algorithm that enables robot swarms

to configure themselves adaptively in an area of interest

with varying spatial densities. As illustrated in Fig. 1, robot

swarms can explore an unknown area and detect and sense

oil or chemical spills across the area. The contaminated area

should be covered efficiently with mobile robots or sensors to

investigate the degree and extent of contamination as quickly

as possible and, if possible, prevent the possible expansion

of the area. Therefore, in this paper, we address the problem

of how to enable swarms of autonomous mobile robots to

self-adjust their configuration or spatial density to fit local

environmental conditions.

Based on our prior research on swarm configuration

[16][17], we propose the adaptive triangular mesh generation

algorithm that enables robot swarms to explore an area and

adjust the interval between neighboring robots. The main

objective is to provide robots with adaptive deployment
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(a) uniform deployment (b) adaptive deployment

Fig. 1. Uniform vs. adaptive triangular meshes of mobile robot swarms

capabilities to cover an area of interest more efficiently

with variable triangular meshes according to sensed area

conditions. This also can give us a more accurate picture

of variations in the conditions of area. In this paper, the

properties of the proposed algorithm are mathematically

explained and the convergence is provided. We also demon-

strated that a large-scale swarm of robots can establish a

triangular mesh network adapting to varying degrees of

contamination through extensive simulations. The results

have been encouraging and indicate that self-configurable

robot swarms are expected to be deployed for environmental

or habitat monitoring.

II. BACKGROUND

Decentralized control for robot swarms can be broadly

classified into global and local strategies according to

whether sensors have range limits. Global strategies [2]

may provide fast, accurate, and efficient deployment, but are

technically non-feasible and lack scalability as the number

of robots increases. On the other hand, local strategies are

mainly based on interactions between individual robots in-

spired by nature. Local strategies can further be divided into

biological emergence [3][4], behavior-based [5], and virtual

physics-based [6]-[12] approaches. Many of the behavior-

based and virtual physics-based approaches used such phys-

ical phenomena as electric charges [6], gravitational forces

[7], spring forces [8][11][12], potential fields [9], van der

Waals forces [10], and other virtual models.

Robot swarm configurations achieved by the above-

mentioned local interactions may result in lattice-type net-

works. These configurations offer high level coverage and

multiple redundant connections ensuring maximum reliabil-

ity and flexibility from the standpoint of topology. Depending

on whether there are interactions among all robots, the

network can be classified into fully and partially connected
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topologies [18]. The fully connected topologies have each

robot interact with all of other robots simultaneously within

a certain range. Thus, those approaches might over-constrain

individual robots and frequently lead to deadlocks. On the

contrary, using the partially connected topology, robots in-

teract selectively with other robots, but are connected to

all robots. For example, robots may choose to exert forces

in a certain direction [11], where this selective interaction

helps prevent them from being too tightly constrained. Due

to similar reasons, robots are enabled to achieve faster

formation without deadlocks [12].

In our earlier work [16], we presented self-configuration

of a robot swarm that enables a large number of robots

to configure themselves into a 2-dimensional plane with

geographic constraints. A locally interacting geometric tech-

nique based on the partially connected topology provides a

unique solution that allows robots to converge to the uniform

distribution by forming an equilateral triangle with their two

neighbors. By collecting such local behavior of each robot,

a uniformly spaced swarm of robots was organized to fill

in the environment. Compared with aforementioned works

[3]-[12], our approach first is to construct uniformly spaced

equilateral triangles conforming to the border of an unknown

area when the robot sensors are subject to range and accuracy

limitations. Secondly, an equilateral triangle lattice is built

with a partially connected mesh topology. Among all the

possible types of regular polygons, the equilateral triangle

lattices can reduce the computational burden and become

less influenced by other robots, due to the limited number

of neighbors, and be highly scalable. Thirdly, the proposed

local interaction is computationally efficient, since each robot

utilizes only position information of other robots. Fourthly,

our approach eliminates such major assumptions as robot

identifiers, common coordinates, global orientation, and di-

rect communication. More specifically, robots compute the

target position without requiring memories of past actions or

states, helping cope with transient errors.

For typical application examples, many works have been

devoted to odor source localization. Jatmiko et al. [13]

presented an algorithm for odor source localization in a

changing environment based on particle swarm optimization.

In [14], the authors introduced a combination of a local track-

ing controller and a high-level behavior-based framework

that distribute robots into regions according to goal density.

Krishnanand et al. [15] addressed the problem of multiple

odor source localization using mobile robot swarms.

III. PROBLEM STATEMENT

We consider a swarm of mobile robots denoted as

r1, · · · , rn. It is assumed that all robots are within a

swarm network configured by our previously proposed self-

configuration method [16][17]. Each robot autonomously

moves on a 2-dimensional plane. They have no leader and no

identifiers, and do not share any common coordinate system,

and do not retain any memory of past actions. Due to limited

sensing range, they can detect the position of other robots

only within a certain range. In addition, each robot does not

communicate explicitly with other robots.

Let us consider a robot ri with its local coordinates ~rx,i

and ~ry,i. Here, ~ry,i defines the horizontal axis of ri’s coordi-

nate system as its heading direction. It is straightforward to

decide the vertical axis ~rx,i by rotating the horizontal axis 90

degrees counterclockwise. The position of ri is denoted as

pi. Note that pi is (0, 0) with respect to ri’s local coordinates.

The distance between pi and pj is denoted as dist(pi, pj).
We define a uniform interval du, the desired distance between

ri and rj . ri detects the position {p1, p2, · · · } of other robots

located within its sensing boundary SB, yielding a set of the

positions Oi with respect to its local coordinates. Next, ri can

select two robots rs1 and rs2 within ri’s SB that we call the

neighbors of ri and denote their positions, {ps1, ps2}, as Ni.

Given pi and Ni, the triangular configuration, denoted by Ti,

is defined as a set of three distinct positions {pi, ps1, ps2}.

As mentioned above, if robots detect an event such as oil

or chemical spills within an area, they attempt to cooperate

with each other to cover the area as efficiently as possible.

The gradient in density across the area of contamination

forces robots to adapt the interval between neighboring

robots. For a certain point pi occupied by ri, the densities

of contamination are expressed by ki ranging between 0 ≤
ki ≤ 1, where ki = 0 represents the maximum density and

ki = 1 corresponds to zero density.

Now, we formally address the ADAPTIVE TRIANGULAR

MESH GENERATION PROBLEM as follows.

Given a swarm of mobile robots self-configured in a

2-dimensional plane, how to enable the robots to form

triangular mesh patterns of various sizes adapting to

varying environmental conditions.

Our solution approach to the above problem enables robots

to disperse themselves into equilateral triangular patterns

of various sizes according to the change in the degree

of contamination within an area of interest. We will take

advantage of the fact that, among all the possible types of

n-polygons, the triangular mesh is highly scalable, and less

influenced by the number of neighboring robots.

IV. ADAPTIVE TRIANGULAR MESH

GENERATION ALGORITHM

A. Algorithm Description

At each time, ri observes other robots within Oi to select

a neighbor rs1 located the shortest distance. When there exist

more than two candidates as illustrated in Fig. 2-(a), rs1 is

determined according to the degree of contamination density

km. Next, as illustrated in Fig. 2-(b), the second neighbor

rs2 within Oi is selected such that the total distance from the

position ps1 of rs1 to pi passing through ps2 is minimized.

Likewise, if there are more than two candidates for rs2, ri

selects rs2 with a higher kn. Then, ri measures the angle φ
between the line ps1ps2 connecting two neighbors and the

horizontal axis of the observing ri’s coordinate system. Next,

as illustrated in Fig. 2-(c), the centroid pct in Ti (△pips1ps2)
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(a) 1st neighbor selection (b) 2nd neighbor selection

(c) target computation (d) moving to the target

Fig. 2. Illustrating how to adapt a triangular mesh to varying densities

is computed. Moreover, based on ki, ks1, and ks2 at each

positions occupied by ri, rs1, and rs2, ri finds the average

of densities ka through the computation of (ki+ks1+ks2)/3
where ks1 and ks2 indicate the densities of rs1 and rs2,

respectively. Then, from pct, ri executes a desired interval

computation as follows: da = ka × du/
√

3. Utilizing da and

φ, ri calculates its target point pti = (pti,x, pti,y) located on

a line with the previously calculated interval from pct and

perpendicular to ps1ps2 by the following equations: (pct,x +
kadu cos(φ + π/2)/

√
3, pct,y + kadu sin(φ + π/2)/

√
3).

Finally, as presented in Fig. 2-(d), ri moves toward pti. By

doing this process repeatedly, ri can form a triangular lattice.

B. Algorithm Property

Let’s consider a triangle whose centroid is pct of

△pips1ps2 (= Ti) configured from three positions occupied

by ri, rs1, and rs2. By the algorithm described above, at time

t, ri in Ti(t) finds the next target point pti where the line

segment pctpti is kadu/
√

3 in length and is perpendicular to

ps1ps2. In other words, at t + 1, the altitude of △ptips1ps2

is the straight line through pti and perpendicular to ps1ps2.

Likewise, since rs1 and rs2 also execute the same algorithm,

it is easily seen that pct in Ti(t) is the orthocenter in Ti(t+1)
at t + 1.

In Fig. 3, we denote pi, ps1, ps2, and pct for simplicity

as A, B, C, and H , respectively. The lengths of lines AB,

AC , and BC are denoted as c, b, and a, respectively. The

points P , Q, and R are the foot of the perpendicular from

the vertices C, B, and A to the vectors
−−→
AB,

−→
AC , and

−−→
BC,

respectively. Moreover, H is the orthocenter of △ABC.

Since
−−→
AB and

−→
AC are linearly independent,

−−→
AH can be

defined as −−→
AH = x

−−→
AB + y

−→
AC, (1)

ip 1sp

2sp

ctp

)(A )(B

)(C

)(H

P

Q

R

α

γ

β

a
b

c

Fig. 3. Convergence of a triangular mesh by the algorithm

where x and y are scaling coefficients, respectively. Since

we can easily see that
−→
AP = ((b cosα)/c)

−−→
AB, the following

relation holds:
−−→
PH =

−−→
AH−−→

AP = (x−((b cosα)/c))
−−→
AB+

y
−→
AC. Thus, the inner product between

−−→
PH and

−−→
AB can be

expressed as follows:

−−→
PH · −−→AB = (x − ((b cosα)/c))c2 + (bc cosα)y = 0. (2)

Similarly, the following equation holds:

−−→
QH · −→AC = (bc cosα)x + (y − ((c cos α)/b))b2 = 0. (3)

Now, using (2) and (3), the following simultaneous equations

can be obtained:

cx − (b cosα)y = b cosα
(c cosα)x + by = c cosα.

(4)

By solving (4), we can obtain the coefficient x as follows:

x = b cos α(b−c cos α)
bc sin2 α

.

Using the cosine formula (b = c cosα + a cos γ), x

is expressed as follows: x = (a cosα cos γ)/(c sin2 α).
In addition, by utilizing the sine formula ( a

sin α
=

c
sin γ

), x is rewritten as the following equations: x =
(cosα cos γ)/(sinα sin γ). Thus, if we do not consider the

case of a right triangle, it is straightforward to rewrite x as

the following equation:

x =
1

tan α tan γ
=

tan β

tan α tan β tan γ
. (5)

Similarly, the coefficient y can be represented as follows:

y =
tan γ

tan α tan β tan γ
. (6)

Using the addition theorems of the trigonometrical function,

we can obtain the result of tan α tan β tan γ = tanα +
tan β + tanγ. Thus, (5) and (6) are rewritten as follows:

x =
tan β

tan α + tanβ + tanγ
, y =

tan γ

tan α + tanβ + tan γ
.

(7)
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Fig. 4. Motion control of a robot by the algorithm

With respect to a reference point O, (1) can be rewritten as

follows:
−−→
AH =

−−→
OH −−→

OA = x(
−−→
OB −−→

OA)+ y(
−−→
OC −−→

OA).

Now
−−→
OH can be represented into the following form.

−−→
OH = (1 − x − y)

−→
OA + x

−−→
OB + y

−−→
OC. (8)

Substituting (7) into (8), finally,
−−→
OH is given by

−−→
OH =

tan α
−→
OA + tanβ

−−→
OB + tan γ

−−→
OC

tan α + tanβ + tan γ
. (9)

The equations above include two important properties for

our proposed algorithm. From (9), first ri forms Ti(t) using

pi and Ni since it can compute pct and the orthocenter H .

Secondly, ri uses pct at t as a basis to generate Ti(t + 1)
with kadu/

√
3 from pct to pti in length at t + 1. In detail,

since ri has no common coordinates (see Section III) and

pct and H between t and t + 1 remain unchanged,
−−→
OH in

(9) means the position vector toward pct with respect to the

origin of ri’s local coordinates.

Next, under the adaptive triangular mesh generation al-

gorithm, three neighboring robots attempt to cooperatively

configure themselves into an equilateral triangle adapting to

the density of contamination. Let us consider the circum-

scribed circle of a triangle △ptips1ps2 configured from three

positions occupied by ri, rs1, and rs2 where the circumcenter

is pct and the circumradius is kadu/
√

3 in length. From the

desired configuration, we design the motion of each robot by

controlling the distance di from pct and the internal angle θi

between pctpti and pctps2 (see Fig. 4). First, di is controlled

by the following equation

ḋi(t) = −a(di(t) − dr), (10)

where a is a positive constant and dr represents kadu/
√

3.

Indeed, the solution of (10) is di(t) = |di(0)|e−at + dr

that converges exponentially to dr as t approaches infinity.

Secondly, θi is controlled by the following equation

θ̇i(t) = k(θs1(t) + θs2(t) − 2θi(t)), (11)

where k is a positive number. Using the feature of a triangle

whose total external angle is 2π, (11) can be rewritten as

θ̇i(t) = k′(
2

3
π − θi(t)), (12)

where k′ is 3k. Likewise, the solution of (12) is θi(t) =
|θi(0)|e−k′t + 2π/3 that converges exponentially to 2π/3 as

t approaches infinity. Note that (10) and (12) imply that the

trajectory of ri converges to an equilibrium state [dr
2
3π]T .

From Fig. 4, this also implies that the equilibrium for θi is

defined as θi = θs1 since △ptipctps1 and △ptipctps2 are

eventually congruent. In order to show the convergence into

the state [di(t) θi(t)]
T , we will take advantage of stability

based on Lyapunov’s theory [19]. The convergence into the

desired configuration is one that minimizes the energy level

of a scalar function. Consider the following scalar function:

fi(di, θi, θs1) =
1

2
(di − dr)

2 +
1

2
(θs1 − θi)

2. (13)

This scalar function is always positive definite except di 6=
dr and θi 6= θs1. The derivative of the scalar function is

given by ḟi = −(di − dr)
2 − (θs1 − θi)

2, which is negative

definite. The scalar function is radially unbounded since it

tends to infinity as ||[di(t) θi(t)]
T || → ∞. Therefore, the

equilibrium state is asymptotically stable, implying that ri

reaches a vertex of the desired triangle. Now we show the

convergence of the algorithm for n robots. The n-order scalar

function F is defined as

F =

n∑

i=1

fi(di, θi, θs1). (14)

It is straightforward to verify that F is positive definite and

Ḟ is negative definite. F is radially unbounded since it tends

to infinity as t approaches infinity. Consequently, n robots

move toward the equilibrium state.

V. SIMULATION RESULTS

In this section, we performed simulations of filling an

area of interest with a swarm of robots in order to show

the validity of our proposed algorithm. In these simulations,

we represent the area of varying density as the colored circle

that will be sparsely or densely populated with robots.

First, in order to assist in understanding the self-

configuration of robot swarms from an initial distribution,

Fig. 5 presents snapshots for the simulation result by 100

robots. With initial distributions in Fig. 5-(a), robots con-

figured themselves in the 2-dimensional plane (see Fig. 5-

(c)). After constructing an equilateral triangle network, we

investigated how they adapt their triangular mesh network

according to the assigned densities. The snapshots from

Fig. 5-(d) to -(i) show that robots could generate adaptive

triangular meshes based on ka and da. If the series of

snapshot are carefully observed, the number of robots within

the area of interest represented as the red circle increases. In

detail, it is initially observed in Fig. 5-(d) that there are 7

robots within the area. By executing the adaptive triangular

mesh generation algorithm repeatedly, the number of robots

located at the area becomes 17 robots in the final distribution
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Fig. 5. Simulation result for the whole deployment by 100 robots ((a)∼(c):
uniform configuration [16][17], (d)∼(i): adaptive configuration with high
center density of 0.7)

(a) uniform configuration (b) adaptive configuration

Fig. 6. Adaptive triangular mesh generation with geographic borders

(see Fig. 5-(i)). Compared with Fig. 5-(c), the overall size

of the final distribution was reduced. Likewise, Fig. 6 shows

the result from another simulation when geographical borders

exist.

Secondly, Fig. 7 shows the results from simulations with

four different degrees of center density. In the figure, the

number of robots within the circle increases in proportion

to the degree of density. Likewise, the size of swarm in its

final converged shape varies according to the center density.

Higher densities forced robots decrease the interval between

neighboring robots.

Thirdly, we performed simulations for multiple varying

densities in a single swarm. Figs. 8-(a) and -(b) show the

results of two identical center densities. Although a swarm

was spilt into two smaller groups, robots could adaptively

configure themselves encompassing the desired area. Figs.

8-(c) and -(d) present the results when the center densities

vary: 0.7 on the left hand side and 0.9 on the right hand side.

The higher center density area is more densely populated.

In Figs. 8-(e) and -(f), the simulation was performed for

three different center densities in a swarm: 0.9, 0.7, and 0.8

(a) center density: 0.9 (b) center density: 0.8

(c) center density: 0.7 (d) center density: 0.6

Fig. 7. Simulation results according to varying densities

from left to right. Robots could adapt the interval to each

other according to the varying densities, which is similar to

previous simulations. The overall size of swarm also varies

accordingly.

VI. CONCLUSION

The adaptive triangular mesh generation problem was

addressed to disperse a swarm of mobile robots adapting

to the degree of contamination. There were several ma-

jor assumptions underlying our proposed approach to this

problem: no robot identifiers, no common coordinates or

global orientation, and no direct communication. Robots

computed their desired position without requiring memories

of past actions or states. Under such conditions, the proposed

adaptive mesh generation algorithm enables a large-scale

swarm of robots to configure themselves into triangular

patterns while changing the uniform interval according to the

density that can be detected by sensors. We took advantage of

the fact that, among all the possible types of n-polygons, the

triangle is highly scalable, and less influenced by the number

of neighboring robots. To form the desired pattern, robots

were allowed to interact with only two selected neighbors

at each time. By collecting such local behavior of each

robot, a swarm of robots composed of triangular meshes was

self-configured into the area of varying degrees of density.

The properties of the algorithm was shown mathematically,

and also verified through extensive simulations. Finally, we

expect that the proposed approach can be used as a simple

and effective way to deploy mobile sensor networks for

coverage in unknown areas of interest.
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