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Abstract— We present a novel approach to compute collision-
free paths for multiple robots subject to local coordination
constraints. More specifically, given a set of robots, their
initial and final configurations, and possibly some additional
coordination constraints, our goal is to compute a collision-free
path between the initial and final configuration that maintains
the constraints. To solve this problem, our approach generalizes
the social potential field method to be applicable to both
convex and nonconvex polyhedra. Social potential fields are then
integrated into a “physics-based motion planning” framework
which uses constrained dynamics to solve the motion planning
problem. Our approach is able to plan for over 200 robots while
averaging about 110 ms per step in a variety of environments.

I. INTRODUCTION

Multiple robots and agents are increasingly used in dif-
ferent applications to cooperatively solve complex tasks.
These include assembly, manufacturing, swarm or distributed
robotics, virtual prototyping, animation, traffic engineering,
crowd simulation, etc. Given a set of rigid or articulated
robots with their initial and final configurations, the goal is
to compute a collision-free path for each robot. We assume
that an accurate geometric model of the robot and obstacles is
available to us and that we also know their position precisely.

As compared to single-robot motion or path planning, the
multiple-robot problem is more challenging in terms of the-
oretical complexity as well practical implementations. One
of the main challenges is coordination among the different
robots, as they attempt to reach the goal configurations or
complete a task. This can be in the form of collision avoid-
ance, grouping and formations, or collectively carrying out a
task. Various factors contribute to this added complexity of
multi-robot planning. Most notably, in a multi-robot system
each robot’s degrees of freedom (DOFs) contribute to the
total number of DOFs of the system. This property makes it
challenging to develop a complete planner even for systems
with only a few robots.

Prior techniques for motion planning and coordination
in multi-robot systems can be classified into centralized
and decentralized methods. The centralized methods group
the robots into one large system and reduce the problem
to planning the motion of a single composite robot with
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Fig. 1. Guarding and escorting: This image is from a guarding and
escorting scenario. 35 aggressive robots (in red) are trying to reach an
important robot (in green). The black robots are attempting to stay in a
formation while protecting the important robot. Their goal is to escort
it across the environment. Our social force model allows the aggressive
robot to move toward the important robot while avoiding collisions and
distance coordination constraints are used to help maintain the formation.
This benchmark took 132.9 s with an average step time of 42 ms.

high DOFs. Coordination requirements can further constrain
the search space and result in rather narrow passages.
Decentralized methods reduce this overall complexity by
exploiting the independent nature of DOFs between robots.
Typically, each robot initially plans a path independently of
the other robots. Then, a coordination step is required to
ensure that different robots do not collide with each other
while traversing their paths. However, the overall approach
is susceptible to reliability issues and may not work well in
practice [1], [2].

A. Main Results

In this paper, we present an efficient approach that com-
putes collision-free paths for multiple robots and maintains
local coordination constraints. Specifically, we address the
problem: Given n robots with initial and goal configurations
as well as coordination constraints, find a collision-free
path from the initial to goal configurations that maintains
the constraints. This work considers coordination constraints
including general repulsive or attractive behaviors, grouping,
formations, local navigation, collision avoidance, and dis-
tance constraints. While much of the related work for mul-
tiple robots assumes point, point-like, circular or cylindrical
robot primitives, our approach can handle arbitrary robot and
obstacle shapes, including non-convex polyhedra.



Like other decentralized approaches, each robot plans
and coordinates its motion independently from other robots.
Instead of a separate coordination phase, our approach inter-
leaves coordination with motion generation through the use
of coordination constraints.

Our approach builds upon physics-based motion planning
(PMP) [3], [4] and social potential fields (SPF) [5], [6].
PMP solves motion planning problems through the use of
a constraint-directed physical simulation. Social potential
fields are a variation of the potential field methods whose
resulting motion appears to exhibit various social behaviors.

We generalize and reformulate social potential fields to be
integrated with the PMP framework and also to be applicable
to a more general robot primitive. The social potentials will
act as a constraint on the system, allowing the robot to
change its current trajectory and move toward or away from
other robots or obstacles. The PMP framework supports ad-
ditional constraints, such as creating and maintaining group
formations and other behaviors. To reduce the effects of local
minima, an excitation factor has also been included. When a
robot’s velocity is low and it is not at its goal, excitation will
increase the strength of the forces leading toward its goal to
encourage it to escape the minima.

The method is relatively simple to implement and provides
practical solutions to a wide variety of complex problems.
Fig. 1 highlights an example of our approach applied to
a group of robots (in black) guarding and escorting an
important robot (in green). Additional benchmarks and more
detailed results are given in Sec. V.

B. Organization

The remainder of the paper is organized as follows. In
Section II we review prior work in the area and briefly
describe how our work relates to it. Section III describes
the main concepts and the framework that our approach is
built on. We describe the coordination algorithm in Section
IV. In section V we highlight its performance and analyze
the results.

II. RELATED WORK

Motion planning has been extensively studied for more
than three decades during which a wide variety of plan-
ning frameworks and solutions have been proposed. For
the general background and theory of motion planning and
coordination, we refer readers to the following texts [7], [8].
The remainder of this section briefly describes prior work
related to motion planning or coordination of multiple robots.
We provide a more detailed comparison between our work
and prior work in Sec. V-C.1.

As briefly mentioned earlier, prior methods for multiple
robots are often classified into centralized and decentralized
planners. The centralized approaches aggregate all the in-
dividual robots into one large composite system and apply
single-robot motion planning algorithms; implicitly coordi-
nating the motion of the individual robots. These include
exact motion planners, potential field methods, or sampling-
based planners such as Probabilistic Roadmap Methods

(PRM) [9], Rapidly-exploring Random Trees (RRT) [10], or
their variations. Other specialized algorithms are known for
specific cases, such as for pairs or triples of robots in low-
density workspaces [11] or flocking behavior [12].

Decentralized planners compromise completeness by us-
ing a decoupled approach [13], [14], [15]. Generally, these
approaches plan for each robot individually and then per-
form a velocity tuning step in order to avoid collisions
and other coordinate motions along these paths [16], [17].
Alternatively, other schemes such as coordination graphs
[18], incremental planning [2], integration with replanning
[19], and velocity obstacles [20] can help to ensure that no
collisions occur along the paths even in cases with complex
dynamics.

Potential field methods [21] and related path modification
methods [22] have also been a popular choice for multiple
robots [23], [24] due to their relative ease and effectiveness
at coordinating motion between multiple robots [25]. In the
potential field method, a navigation function is used as a
potential field. As the robot follows the gradient of the
potential field, it moves toward the goal. Social potential
fields alter the navigation function such that the resulting
motion reflects social behaviors [5]. Our work is most closely
related to this approach.

III. BACKGROUND AND OVERVIEW

In this section, we introduce and define several of the
concepts of our approach, including physics-based motion
planning, the use of social potential fields, and the combina-
tion of these two concepts.

A. Physics-Based Motion Planning

Physics-based Motion Planning (PMP), and similarly
Constraint-based Motion Planning [3], pose the motion
planning problem much like a boundary value problem,
where the robot’s initial and goal configurations represent the
boundaries. The problem is reduced to constrained dynamical
simulation and the path is computed iteratively by solving the
constraints on the system. The underlying constraints apply
artificial forces to the robot that guide it toward its goal.
Thus, the general motion planning problem is reduced to
finding a set of constraints which will guide the robot toward
its goal. The advantage of PMP is that motion planning
is no longer purely geometric, but also takes into account
mechanical and dynamical properties as well as constraints
associated with the simulation.

More specifically, for the multi-robot problems, let there
be a set of N robots, R = {r1 . . . rN }. The physical state,
qi(t), of robot ri(t) at time t can be described by its degrees
of freedom (DOFs) and the first-order derivatives of the
DOFs with respect to time, i.e. qi(t) = [xi(t) ẋi(t)]T .
The robots are in an environment E with a set of possibly
moving obstacles O. A set of m constraints, C = {ci . . . cm}
are defined such to act on robots in R and obstacles in
O. The constraints include both the coordination constraints
and other hard constraints such as non-penetration of other
bodies. Given an initial state of the system Q(tinitial) =
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Fig. 2. Planner Architecture: The physics-based motion planning cores
uses the robots, goals, obstacles, and a set of planning constraints as its
input. By solving the constraints and applying the resulting forces, motion
is generated and the system is updated. The resulting value is a waypoinit
along the path and serves as the next input.

{qi(tinitial) . . .qn(tinitial)}, and a final state Q(tfinal) =
{qi(tfinal) . . .qn(tfinal)}, the PMP algorithm begins by first
initializing the robots to Q(tinitial). At each step, PMP
updates the state vector Q(t) by solving the constraints and
integrating a robot’s motion equation. The Euler-Newton
laws of motion are used as our robot’s motion equation,
though other motion equations could also be used:

Fnet =
d(mẋ)

dt
=
∑
si

fsi

and

τnet = I
dω

dt
=
∑
si

dsi × fsi

where each force fsi
occurs at a site si on the body and dsi

is vector from the site si to the origin of the inertial frame,
I , and ω is the angular velocity. This process continues
iteratively until the final state or a local minima is reached.

B. Social Potential Fields

As briefly mentioned earlier, potential field methods [26]
are a popular choice for real-time motion planning of mul-
tiple robots due to their efficiency and simplicity. Social
potential fields (SPF) [5] are a variation of potential fields
which characterize the potential function by inverse-force
laws, rather than a navigation function. The motion of result-
ing systems have been shown to exhibit emergent “social”
behaviors, such as clustering, guarding, or escorting.

In the initial work, given point robots r1 , r2 , . . . , rn with
positions x1 ,x2 , . . . ,xn , the force between robots i and j
is defined as:

Fsoc(ri , rj ) =

(
L∑

k=1

c
(k)
i,j

d(i, j)σ
(k)
i,j

)(
xj − xi

d(i, j)

)
(1)

Thus, the social force acting on ri from rj is the summation
of L force laws, where c

(k)
i,j is the force coefficient for

the kth law, σ
(k)
i,j is the inverse power of the kth law, and

d(i, j) = ||xj − xi ||. Here, the sign of the force coefficient
determines if the force acts in a attractive (positive) or
repulsive (negative) manner. These force laws can be easily

Fig. 3. Social Potential Fields: This figure compares Inverse-force laws
(dark-blue and green curves) and Helbing’s social force laws (red and cyan
curves) with differing parameters. The Inverse-force plots initially decline
rapidly, and then the rate of decline slows greatly. On the other hand,
the Helbing plots do not smoothen out quite as quickly and do not grow
indefinitely as distance approaches 0.

assigned based on desired behavior to an individual robot, a
group of robots, or even an entire set of robots.

Other variations on the Eq. 1 have been proposed, such as
that by Helbing et al [6]. The behavior of Helbing’s social
force law is similar to that of Eq. 1, but also has been shown
to exhibit emergent behavior of lane formation for point-
based robot primitives. This force is defined as:

Fsoc(ri , rj ) = αe−d(i,j)/βni,j (2)

where α is our force coefficient, β is the force fall-of
distance, and ni,j is the normalized vector between xi and
xj . Similarly, the sign of α determines whether the force is
repulsive or attractive. And, like Eq. 1, several force terms
could be used instead of just one for both repulsive and
attractive behaviors.

C. Our Approach

As previously mentioned, this work builds upon and
combines key ideas of physics-based motion planning and
social potential fields. First, PMP is an useful framework for
solving motion planning problems with potential fields and
multiple robots. This is due to the fact that potential fields
can be sampled and transformed into artificial force fields.
In PMP, an artificial force field subsequently applies forces
directly onto the robot to influence its motion. In this manner,
the artificial force field is a type of constraint in itself.

We utilize this property to establish a general local avoid-
ance function based on social potential fields. We general-
ize the approach to consider both convex and nonconvex
polyhedra instead of point-like bodies. Our implementation,
we considered the use of both types of social potential
functions, Eq. 1 and 2. We achieved similar results with both,
and decided to use Eq. 2 since its magnitude is bounded
as distance approaches 0 (See Fig. 3). This helps greatly
for simulation stability since large forces result in stiff
systems. Also, the parameters of Eq. 2 are more intuitive
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Fig. 4. Antipodal Robots: In this benchmark, 16 polygonal robots, colored by starting quadrant, start along the edge of a circle. Each robot must travel
to a position across the circle and to a different orientation. This sequence shows four steps in the planning. (a) The robots are at their initial position. (b-c)
The robots are in the process of moving across the circle, where social forces help prevent collision while also leading toward the anti-podal position. (d)
The agents arrive at their anti-podal positions and we see the paths they traveled.

to tune, since they carry physical meaning. Briefly, α is the
maximum magnitude of the social force in Newtons and β
is the distance at which the force is approximately 1

3 of
its maximum. Finally, there parameters can also allow for
algorithmic improvements which can help with performance.

On top of PMP and SPF, many coordination constraints
such as maintaining formations can be easily represented
and quickly computed to give the robot the appearance of
more advanced behaviors. Finally, the framework is relatively
simple to implement given a simulation framework and can
usually be easily parallelized for improved performance or
distributed control (as shown in Fig. 2).

IV. LOCAL COORDINATION WITH GENERALIZED SOCIAL
FORCES

Social forces have been shown to work well for coordina-
tion and planning of point-based primitives. However, little
work has been done on a similar formulation for a general
robot. In this section, we generalize the concept of social
forces and integrate it along with other coordination con-
straints into the physics-based motion planning framework.

A. Generalized Social Potential Fields
As previously mentioned, social potential fields are an

useful tool for motion and coordination which resemble
various complex behaviors. Here, we propose a generalized
version of social potential feilds which are applicable to non-
point primitives. For a general body, the effect of a social
potential field can be felt with varying magnitudes across the
entire body. The potential field will not only apply a force,
but also induce a torque on the robot.

From Eq. 2 we first define the value of the social potential
field from robot rj at an arbitrary point in space, x by

Fsoc(x, rj ) = αe−d(x,rj )/βn(x, rj ) (3)

where d(x, rj ) is the shortest distance between x and rj ,
and n(x, rj ) is the normal vector between x and the nearest
point on rj . A similar social potential can be defined from
Eq. 1.

Using Eq. 3, the social force between ri and rj , can then
be defined as

Fsoc(ri , rj ) =
∫

A(ri )

Fsoc(p, rj ) dA (4)

where A(ri) is the region of ri and p is a point on the area
of ri in 2D or a point in the volume of ri in 3D. And, the
associated torque on the body is

τ soc(ri , rj ) =
∫

A(ri )

(n(p, rj )× Fsoc(p, rj )) dA (5)

In effect, the translation component of the total force on ri
will be the resulting social force over the entire region of
the robot, and the total torque will similarly be the torque
induced by each of these forces at each point on the body.

Like the formulations in Eq. 1 and Eq. 2, the constants of
the social force can be adjusted for varying strengths, ranges
of effect, and for repulsion or attraction. For a repulsive
social force, as the distance between these points decreases
the resulting force and torque will increase causing those
points on the bodies to separate. Then, the total social force
and torque on a single robot would be the summation of the
resulting values of Eq. 4 and 5.

1) Discretization: While the general social potential field
is formulated over a continuous space, it is not simple to
evaluate this integral in implementation. Instead, in our im-
plementation we approximate the integral. Given a uniform
sampling of the robot ri ’s region, Pi = {pi

1,p
i
2, . . . ,p

i
K}

Fsoc(ri , rj ) =
1
K

∑
p∈Pi

Fsoc(p, rj ) (6)

and

τ soc(ri , rj ) =
1
K

∑
p∈Pi

(n(p, rj )× Fsoc(p, rj )) (7)

It should be noted that this can lead to a very large number
samples, which could become computationally expensive.
By using Helbing’s formulation of the social force, the
force parameters provide several ways of approximating the
summations. First, note that the parameter β controls the rate
at which the Fsoc declines. Thus, when the distance between
points and robots is greater than cβ, for relatively large c,
the value of the force is negligible and does not contribute
greatly to the social force. In our implementation, we set c
such that αe−c < 0.001. We can use this value as a distance
bound and quickly cull away the negligible point-robot pairs.
(See Fig. 5).



2) Excitation: One well known drawback of potential
field based methods is the possibility of getting stuck in a
local minima. This is also the case for the forces generated
by our approach. To help overcome a local minima, we
define an excitation factor, E. Briefly, while an agent has
not reached its goal and its velocity is below a predefined
threshold, v0, it’s excitation level increases. As excitation
rises, the attractive force in the direction of its goal grows
as well.

We define excitation to evolve over time as
dE

dt
= −E

T
+ (1− ||v||

v0
)

where T is a damping factor (we use T = 2). Essentially, the
first term smooths the excitation so that it does not grow too
large too quickly, while the latter term increases or decreases
the level of excitation depending on how fast a robot is
moving in relation to v0. Then, given E, we can redefine
α in Eq. 2 by

α(E) = α ∗ (1.0 + E)

In practice, this approach has performed well and we have
not observed many situations where a complete deadlock has
occurred due to local minima.

B. Additional Coordination Constraints
The social potential forces provide a strong basis for

coordination between several robots. A variety of behaviors
including grouping, following, guarding, moving toward a
local goal, and more can be directly implemented through
manipulation of the social potential fields. However, there
are a number of situations which are less suitable for use
with these fields.

1) Distance Constraints: There are several situations in
which group of robots need to be able to form and maintain a
formation. While strong attractive social fields could be used
to help keep robots in close proximity, they lose strength
rapidly when robots get further apart. Therefore, we add
a distance constraint which works to maintain a distance
between points on a pair of robots. Depending on the strength
of the constraint, other robots may or may not be able to
easily affect a formation built from these constraints. Briefly,
we can define a distance constraint between points xi and
xj on different robots by the function:

Cdist(xi ,xj ) = ||xj − xi || − r

where r is the desired distance between the points. While this
constraint could be solve exactly, we relax the constraint so
that the formation can also adapt to necessary changes in the
environment or by other robots. Instead, we use a spring-like
force:

fdist(xi ,xj ) = −
(

ks(|x| − r) + kd
ẋ · x
|x|

)
x
|x|

where ks is a spring constant, kd is a spring damping
constant, and x = xj − xi . As before, the related torque
on robot ri is:

τ i
dist(xi ,xj ) = (dxi ,O)× fdist(xi ,xj )

ri
Fsoc(pi15,rj)

rj

pi15

pi6

Fsoc(pi6,rj)

pi4

Fig. 5. Social Force Discretization: Since the general social force integral
is difficult to compute, we discretize the domain. This figure shows the
discretized social force computation on ri from rj . Robot ri has been
uniformly sampled into a set of points, shown as small blue dots. For
each sample, pi

n within a fixed distance from rj , Fsoc(pi
n, rj ) will be

computed. By the force law definition, points closer to rj such as pi
15 will

receive larger forces than points farther away, such as pi
6. For points too

far away, such as pi
4, no force is computed.

where dxi ,O is the vector from the origin of the inertial frame
O to xi . The net result of this force can be seen in Fig. 1,
since the guard robots use a distance constraint to maintain
their formation.

V. RESULTS

We have completed a preliminary implementation of this
approach and tested its performance and scalability on a
workstation computer with 2.66 GHz Intel X5355 Xeon
CPUs and 3 GB of main memory. To understand the ef-
fectiveness of the approach, we have applied it to a variety
of local coordination benchmarks.

A. Benchmarks

We have tested our approach on three different bench-
marks, each designed to test different aspects of the coordi-
nation technique.
• Antipodal: In this benchmark, a fixed number of ran-

dom robots are placed around the circumference of a
circle. Each robot must move across the circle and
toward the opposing orientation. This benchmark uses
social potential fields between all bodies as well as an
attractive force to have the robots cross the circle to its
antipodal position. Planning took 125 s to complete the
task for 16 robots with an average step time of 8ms.
See Fig 4.

• Letters: In the letters benchmark, 33 randomly placed
robots must navigate to form the letters ICRA’09. Like
the Antipodal demo, only social repulsive and attractive
forces are used. The benchmark took 273 s to complete,
with an average step time of 5 ms. See Fig 7.

• Guarding and Escorting: In this benchmark, an im-
portant robot is trying to navigate to a position across
the environment. Several guard robots form a formation
around the important robot and then escort it to its goal
while trying to remain in formation. This benchmark
has 35 aggressive robots, and uses formation constraints
as well as social repulsive and attractive potentials.
Planning completed in 133 s with an average step time
of 42 ms. See Fig 1.



Demo Num Forces Update Avg Step Total
Robots (s) (s) Time (s) Time (s)

Antipodal 16 0.0078 0.00001 0.00781 125.7
Antipodal 32 0.0231 0.00003 0.02313 358.7
Antipodal 48 0.0303 0.00004 0.03034 637.2
Antipodal 64 0.0464 0.00005 0.04645 881.1
Antipodal 80 0.0290 0.00007 0.02907 939.3
Antipodal 100 0.0300 0.00008 0.03008 969.4
Antipodal 200 0.0752 0.00017 0.07537 3748.8
Guarding 39 0.0419 0.00003 0.04193 132.9
Letters 33 0.0053 0.00002 0.00532 273.8

TABLE I
Planning times for benchmarks: THIS TABLE SHOWS THE TIMING FOR

EACH OF OUR BENCHMARKS. FORCES (FORCE COMPUTATION,
CONSTRAINT UPDATES), UPDATE (MOTION EQUATION INTEGRATION),

AND STEP TIME ARE AVERAGES OVER THE ENTIRE PLANNING RUN.
AND, TOTAL TIME IS THE AMOUNT OF TIME IT TOOK TO FIND A

PLANNING SOLUTION.

The preliminary results of our approach are very promis-
ing. In a mostly unoptimized implementation, we were able
to generate collision-free, coordinated motion plans in a rela-
tively short amount of time. The included video shows these
results for the Antipodal, Letters, and Guarding scenarios. It
should be noted that there is no global planner present, so
robots will simply attempt to take the straight-line path to
goal even if it is less free than other paths. Even though
this results in a great deal of traffic, they are frequently
able to still reach their goals. Table I highlights the run-time
performance for our benchmarks. We note that in all cases,
as the number of robots scales from 16 to 200, the average
step time remains at a few to tens of milliseconds (ms) which
shows that it scales well with the number of robots. For the
Antipodal benchmark, there was a drop in the average time as
we went beyond 64 robots. This can be attributed to the fact
that the size of the circle was increased to accommodate the
robots. When the robots are further apart, fewer interactions
occur. Fig. 6 confirms the scalability with the number of
robots, as it shows the average step time as the number of
robots increases. The total planning times can be misleading,
since these are also dependent on how far each robot must
travel. The average step time is a better indicator of the actual
performance.

B. Analysis

There are numerous factors which play a role in the
theoretical run-time performance of our approach. The most
dominant feature would be the number of robots, N , and
their discretization. Each sample on a robot ri could po-
tentially visit every other sample on every other robot and
obstacle at each time step. Thus, in the worst case, our time
step complexity approaches O(M2), for M > N samples.
However, by exploiting the fall-off distance parameter in Eq.
2, this is typically not the case. Given the maximum search
distance of cβ (as defined in Sec. IV-A.1), each sample visits
a finite, bounded number of other samples within that region.
This reduces our run-time complexity to O(M), but it is
important to note that while bounded, the maximum number

Fig. 6. Antipodal benchmark timings: To test scalability, the number of
robots was increased in the antipodal benchmark.

of samples a single sample could visit could still be a large
number. In our tests, we did see cases where too fine of a
sampling severly degraded performance but these are usually
eliminated by the previously mentioned optimizations.

Like other simulations with several parameters, the values
of these parameters played a role in the success of the
approach. However, since many of the parameters in our
approach have real-world interpretations (distance, force in
Newtons, etc), we found that giving them realistic values
often resulted in successful and stable planning.

C. Comparison and Limitations

In this section, we provide a qualitative comparison of
our work with the large body of work on multi-robot motion
planning and note some limitations of our approach.

1) Comparisons: Like other decentralized methods, our
work relaxes completeness for efficiency. Thus, compared
to centralized approaches such as Probabilistic Roadmap
Methods (PRM) [9], Rapidly-exploring Random Trees [10],
or other variations on these methods, our approach scales
much better in the number of robots, but does not offer
completeness or convergence. Furthermore, additional co-
ordination constraints can greatly restrict the search space,
making it more difficult for centralized approaches to find
suitable paths. As a result, these methods become impractical
for systems with a large number of robots, such as in the
scenarios we are attempting to solve.

Of the decentralized methods, we can group them into
several categories; incremental planning, decoupled planning
and coordination, dynamic replanning, path modification, and
potential fields.

Incremental planning methods first determine a priority
for each robot. Then, robots plan in the priority order
such that they avoid collisions with robots who have al-
ready found a path. Variations on this interleave centralized
planning with incremental to improve reliability [2]. Since
each robot is completely independent other robots, certain
coordination constraints such as distance constraints are more
difficult to satisfy than in our approach. In contrast, the
social potential model in our approach accommodates close



proximity between robots and scales well, as the number of
robots increases. However, since incremental planning uses
a planner for each individual robot, it supports a wider range
of robots than is currently supported by our approach and can
navigate in environments where a global path is required.

Decoupled planning and coordination is a variation on
incremental planning and decomposes multi-robot planning
into two phases. In the first phase, paths are planned without
consideration of other robots. Then, a coordination phase
adjusts the robot’s velocity along their path so that no colli-
sions occur [13], [14], [17]. Similarly, graph representations
such as coordination graphs, help to combine planned paths
to avoid collisions [18]. This approach shares many of the
same qualities as incremental planning. Particularly, stiffer
coordination constraints increase the difficulty and lower the
chance of success as compared to our approach.

Dynamic replanning methods wait until the current path
becomes invalidated, and then uses any remaining valid
information to determine a new plan [27], [28], [29], [19].
Some replanning methods have been popular choices for
higher-DOF multi-robot problems. The key drawback of
replanning methods is that the cost of replanning can be high,
particularly for a large group of robots or with additional
coordination constraints such as distance constraints. Thus,
they will not always scale as well as potential field methods.
Path modification approaches [22], [30], [31] attempt to bend
or deform the path around moving obstacles, rather than
allow them to become invalidated. However, in general these
methods cannot handle global changes in connectivity which
commonly occur in multiple robot problems.

Various planners also make different assumptions for
sensing or exchange of information. Communication is a
popular choice, and was successfully used for a replanning
approach coupled with decentralized planning of multiple
vehicles [19]. Several communication configurations assume
that sufficiently precise position and trajectory information
can be passed to robots within a local region such that the
position of nearby robots is known at any point in time as
long as the robot follows that trajectory. This works well and
provides essentially the same information as needed by SPF.
But, on the other hand, sensing of position information like
in SPF can also account for unexpected changes to the paths
of other robots or other inaccuracies in sensing.

As discussed earlier, potential field methods [21], [23],
[5], [24] rapidly update a navigation function in order to
adjust to moving obstacles and robots. Constraint-based
Motion Planning (CBMP) [3] also falls into this category
with iterative methods to satisfy additional constraints. We
propose a generalization of the social potential field, which
has assisted in generating collision-free motion in crowded
settings while offering real-time performance.

2) Limitations: There are some limitations to our work.
There is no guarantee that a robot will find a path even
if one exists. However, this has not often been the case in
our experiments. While the excitation helps robots escape
a local minimum, it is not guaranteed to always work. For
instance, a relatively small and light robot will not be able

to move past several larger, heavier robots. Since we do not
consider points beyond our distance criteria, a fast moving
robot or obstacle might collide with a robot before it could
react. While dynamic constraints are inherently simulated,
they are not explicity handled and thus it is possible for
a robot to reach an inevitable collision state. However, it
should be noted that by either bounding relative velocities
or by adjusting the social force parameters to give a robot
sufficient time to react, these cases can frequently be avoided.

VI. CONCLUSION

We presented a potential field based method for local coor-
dination of multiple robots. For local avoidance and naviga-
tion, social potential fields were generalized for convex and
non-convex polyhedra and adapted to fit within a physics-
based motion planning framework. Overall, the results are
promising based on our preliminary implementation. We are
able to plan for many robots, several of which are often in
tight spaces, in a relatively short amount of time.

There are several additional directions for future work
along with the items mentioned in the limitations. It would be
useful to integrate this method with a global planner to allow
it to function in larger and more complex environments. A
similar approach may be possible for holonomic vehicles as
well as for articulated robots. For a more realistic simula-
tions, sensing and communication can be considered. Better
models of discretization can help to reduce the number of
samples per robot while also preserving accuracy. Since the
approach is parallelizble, better implementations are likely
to improve performance.
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Fig. 7. Letters: The letters benchmark consists of 33 convex and
nonconvex robots in an assembly-like situation. (a) The letters start off at
random positions and orientations. (b) Repulsive and attractive forces allow
the robots to move toward their goals but to also avoid collisions with each
other. (c) The robots arrive at their final location.


