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Abstract

We propose a learning algorithm for estimating the 3-D dd&on of objects.

Orientation learning is a difficult problem because the spatorientations is

non-Euclidean, and in some cases (such as quaternion®gtesentation is am-
biguous, in that multiple representations exist for the esgohysical orientation.
Learning is further complicated by the fact that most mardenabjects exhibit
symmetry, so that there are multiple “correct” orientaiom this paper, we pro-
pose a new representation for orientations—and a classuofitey and inference
algorithms using this representation—that allows us tolesientations for sym-
metric or asymmetric objects as a function of a single imagé extensively

evaluate our algorithm for learning orientations of obgeftom six categories.

1 Introduction

We consider the problem of learning the 3-D orientation ofeots, such as a mug or a martini
glass (Fig. 1), from an image. The ability to estimate oa¢inh has many applications in vision
and robotics. For example, the task of perception (objemtgrition) is considerably easier if an
object’s orientation is known. In other applications sustaetive vision/tracking, knowing the pose
of a self-propelled object (e.g., an airplane) will alsopht estimate its 3-D direction of motion.
In robotics, estimating the pose of surrounding cars is atseful for autonomous driving, and
knowledge of the 3-D orientation of an object is necessagntble a robot to grasp it.

Unfortunately, the problem of estimating orientationsii§icLilt because the space of orientations
is non-Euclidean and non-linear. This property of orieota manifests in all methods of its repre-
sentation [11]. In Section 3, we describe a number of repitasens for orientation, the problems
associated with them, and explain why a naive attempt to lesing each of them would fare poorly.
Symmetries in the object, which cause it to appear idenficahultiple different orientations, cause
further problems; in particular, the orientation is now aguwus, in that there are multiple “correct”
orientations. E.g., the box in Fig. 1c has identical facdsictv makes it impossible to tell which
side is the front. In Section 4, we describe a representétiaraddresses this problem.

In most prior work on estimating orientation, the oriertas were assumed to lie within a small
range of angles. In these cases, the problem is significaatier because the orientations can be
safely linearized (e.g., using Euler angles) around somexifimvalue,” [19, 28] and discontinuities
in the representation and ambiguities arising from symynaédrnot have to be explicitly addressed.

In this paper, we propose a hew representation, togethki@atning and inference algorithms, that
allows us to estimate 3-D orientations as a function of fetuOur representation and algorithms
apply even in the presence of symmetries. We apply the akgotio two tasks: (i) recognizing the
pose of a new object (drawn from a known object class), anclfibosing at what orientation to
orient a robotic arm/hand in order to grasp an object. In #tet case, the test object can be drawn
from apreviously-unknownbject class.



2 Related Work

There is a large body of related work on
“circular statistics,” which deals with
the cyclic nature of such data. For
example, the Matrix-Fischer distribu-
tion [8, 13, 22, 11] is a Gaussian model
restricted to a manifold. This literature
considers a variety of representationsigure 1: Images of some objects in different orientations.
for a fixed probability distribution over

orientationgy, but not the learning problem of estimating the conditiatiatribution of an orienta-
tion y given a set of features; i.e., of estimating an orientatiopas afunctionof x. (Because of
the non-linearities and symmetries in the space of oriemtatand the discontinuities in the repre-
sentations, they cannot be directly used with most standarding algorithms.) One exception is
the work on Spherical regression [5, 9, 29]; however thisrasisks a very special case—regressing
orientationsy against other orientations So ify € [—7, 7) is an angle, then Spherical regression
can use only a single featusec [—m, ) (and similarly ify is a quarternion, them must be also).
None of this prior work considers symmetries, and neith&etibese ideas be developed forimages.

Most work on learning on such non-Euclidean manifolds hasi$ed on unsupervised learning
of manifolds that are isometric to a subset of Euclidean epaq., [24, 30]. For non-isometric
cases, algorithms such as locally smooth manifold learfihgan be applied. [34] applied semi-
supervised learning to multi-class classification. Notaf0] gives an elegant method for super-
vised learning on non-linear manifolds such as a torus,gukérnels with Laplacian eigenmaps.
However, these methods address the problem of predictidgeréte- or real-valued) targgt as a
function of featureg: that lie on a non-linear manifold, such as a sphere or a tdnusontrast, our
work addresses a different problem of predicting/regreskibelsy that lie on a non-linear manifold
(which can also be non-isometric). More recently, [16] hevedeled data lying on multiple con-
tinuous manifolds, e.g., a torus, and have applied it tcktpmople from a video sequence. Finally,
multivalued regression [1] can be used to model cases wheeautput is multi-modal; however, it
does not apply directly to the non-linearities and the amitigs in the target space.

In vision, there are a few approaches that apply when oneigenssonly 1-D orientations; for
example, [4] gives a method based on analyzing the Fouriectspmn of simple line drawings.
Multi-view object detection [31] is an approach in which etfs are recognized at a few canonical
poses. One can envision running an object detector at éiffgroses to estimate 3-D orientation;
however, this is not only a very indirect way to estimate wtétions, but it would also be directly
affected by the accuracy of the classifier, and would notyafiphovel objects and objects from
novel classes (as in our robotics application in Section. 6Ia our knowledge, work done in this
literature, e.g., [31], presents results only on objecediébn, but not on general 3-D orientation
estimation, and typically uses datasets that include viaien only from a circle around the object.

3 Representing Orientations *

Here we describe a few popular representa/_| i 4.’ <->

tions for orientations, and explain why pre-

vious methods fail to learn them when the |—| |
orientations are not clustered closely around 9" -90° 175 5
a “mean value.” (@ (b)

Even in the case of planar 2-D objects, thejg,re 2: (a) A hut has a unique orientation with
representation suffers from prob_lems. Cory = [—180°,180°). (b) A shape with180° symme-
S|d_er the line draw_lng O_f a hut in Fig. 2a’(ry. Red arrow (not part of the object) indicates an
which has a 1-D orientation that can be repsiample of orientatiofi = 90°, which is identical to
resented by € R, with 0 +360° = 6. Even ' 900 Restrictingd to lie in a half-space, such
if we restrictd e [~180°,180°), this rep- g4 o [0, 180) does not help—this mak&és= 175°
resentation still suffers from a discontinuity;, 45 — 5o very distant, even though they represent

at£180°. This makes naive learning & 1, nearly identical physical orientations.
such as with linear regression, impossible or



at best extremely difficult. For example, if in the trainitest set distribution, the ground-truth orien-
tations cluster aroungl =~ 180°, then most objects’ orientations will appear to be nearegitR0° or
—180°. This makes the learning difficult sinde(d) = 0, instead of being+-180° or —180°. (E.g.,
160° is closer to—160° than t090°.) Wrapped Normal distribution [11] addresses this problem
by modeling the circular nature @fas P(6|z, k; w) = 4 exp (—(6 — w'z — 27k)?/20?). Here,

k € I is a latent random variable. This model can be trained with[EF}.

For 3-D objects, the orientation can be described by 3 Eulgles [23]. However, learning using
this representation is difficult because not only do eachefuler angles wrap aroureB60°, but
further at specific orientations two of the angles becomesdemate. This discontinuity is called
Gimble Lock. Further, the 3 angles cannot simply be learegpdsately using the wrapped Normal
model, as they are interdependent. In prior work, such af Hi&hors learned orientations but
restricted to amallrange (betweem5°-20°) for various applications, e.g., face pose [17]. For such
small ranges of angles that avoid Gimble lock, the anglesbedmearized around a “mean value”;
however, this fails for larger ranges of angles.

A quaternion [23] § € R*,||q||2 = 1) can also be used to represent 3-D orientation. However,
quaternions suffer from the problem of anti-podal symmetrg., ¢ and —q represent the same
rotation. This means that for two identical orientationg, may end up with completely opposite
values for their quaternion representations; this makemtimpossible to learn using straightfor-
ward learning algorithm&.Rotation matrice®, which are orthogonal matriceR{ R = RR” = I)

with det(R) = 1, have a non-ambiguous representation. However, sinchea#lements are inter-
dependent due to the orthogonality restriction, learnivegr is hard. [10]

4 Symmetry Invariant Representation

Symmetries in the object, which cause it to appear identicahultiple different orientations, cause
further problems. In particular, the orientation is now aguous, in that there are multiple “correct”
orientations for each object. Consider the shape showngnd#, which exhibits80° rotational
symmetry. For any orientatioft and 6 + 180, the object appears exactly the same. Thus, any
representation of its orientation will have tvappositevalues that correspond to the same visual
appearance. This problem is exacerbated in 3-D. Most abfeand in household and office envi-
ronments exhibit some kind of symmetry. (See [12, 32] for itled description of symmetries.)

We first present our representatidn for orientation that deals with these issues. To lelfnthe
representation should satisfy several criterion. Fikgtshould benvariant to ambiguities arising
from symmetries Second, the representation shoulddoatinuousi.e., two orientations that are
physically close should be close in the representatioralfyirthe representation should baique
in that all orientations that look identical should have saene valué. Given a representation
for the orientation for a 2-D (planar), 3-D or more generalty n-D object, we will define a new
representatiod/ (), which our learning algorithm will estimate as a functiorimbge features.

In 2-D, the orientation of an object (e.g., Fig. 2) can be clatgly described by a unit 2-vector
u = [sin @, cos f] € R?, wheref is the angle of rotation. In 3-D, an orientation can be corebye
described by two unit 3-vectors. E.g., the orientation ofugrFig. 1b) can be described by a unit
vector representing the up direction of the mug, and a secpadh the direction of the handle. (The
third direction is redundant and can be obtained as a craskipt of the first two.) However, for an
object such as a martini glass that has only one distinghistdirection (pointing towards the top
of the glass; Fig 1a), only one unit 3-vector is required teatli®e its orientation.

To remove antipodal symmetry, one can consider the quatesgi= [¢., ¢y, ¢-, ¢.] lying in a half-space
gw > 0. However, this still does not solve the problem becauselairorientations will still be far in the
representation. (see Section 6 and Fig. 5).

20ur representation will actually satisfy a stronger setrieda of [14]: (i) Uniform stretch The mapping
should carry implicitly information about the distanceglie original space and scales linearly with the angle
between two hyper plangé® M (u)|| = ¢||du|| for ||u|| = constant. (ii)Polar separability || M (u)]| is constant
and carries no information about orientation; and {if)quenessM (u) has only one value for a given orien-
tation. These condition ensure that the representatinonsdistorting in that all orientations have isomorphic
mappings (manifold tangent spaces) in the representation.



In the general case of n-D objects, an orientation can be ety described by < (n — 1)
orthogonal unitn-vectors, where is the number of distinguishable directions of the objeatdin
dimensions. More formally, the object’s orientation candescribed by a matrik/ € R™*P with
UTU = I, here,U’s columns ara:; € R™. The space of all such matricésis called the Stiefel
I-manifold [10]. Forp = n—1, we can get a complete matiikby appending an orthogonal column
such thatlet(U) > 0. In 3-D, U = [uy, us, us] € R?*3 is a rotation matrix.

4.1 Representation for n-D objects

In this section, we define our representation for the gersasé of symmetries in dimensional
objects. We will describe, as examples, specialized casahé representations for 2-D and 3-D
objects in Section 4.2 and 4.3. For this general case, oueseptationV/ will be a higher order
tensor. Space constraints preclude a lengthy discussio@nsors and group theory, but interested
readers may refer to tutorial texts such as [18] and [33].

Below, we will lety € R™*! be a representation of an orientation in n-D. Some repratient
are non-ambiguous. E.g., B € R"*" is a rotational matrix RRT = RTR = I, det(R) = 1)
representing an orientation im dimensions, we can defingto be the vectorized form ok, i.e.,

X = R(:) € R X1, Alternatively, some representations can be ambiguogs, & quaternion for
3-D orientations in whicly and—q represent the same orientation. (This is called a doubleraafv
SO(3).) Therefore, fox = ¢, we also have that’ = —q represents the same orientation. In general,
for a pointy representing an orientation in n-D, there could be otheamtsqi’ that represent the same
orientation. The set of all points that represent the san@mtation asy is called thecut-lociof .

For a given orientatiory, let ¢(y) denote the set of all representatiogisthat result in the object
appearing identical tq, either because of cut-loci (where multiple valuesyoforrespond to the
same physical orientation) or because of symmetries (dontlétiple physical orientations corre-
spond to the same appearance). E.gy, i§ a quaternion and the object considered is asymmetric,
theny(x) = {x, —x}. Similarly, if x4 represents the 1-D orientatiénof a planar object that ex-
hibits 3-fold (120°) rotational symmetry, thett(xs) = {xs, X0+120, Xo+240 }- Now, we define our
representatiol/ () that allows learning even in presence of cut-loci and symieeas:

M(X) = Z{Xl,.,.XC}EPcrmutations{dz(X)} TprOd(Xla ) XC) (1)

where,Tprod(.) is the tensor (or outer) product of the vectors, ard card(i(x)). The summation
is over all permutations of cut-loci and symmetries; thiswees thai\/ () gives the same value for
all different cut-loci and symmetries gf, and still satisfies the criterion of [14] (see footnote 2).

Although Riemannian manifolds, in general, could haveloai-with an uncountable number of
points, orientations can always be represented with onlyigefnumber of points in their cut-loéi.
For example, we can represent n-D rotations as the spetimgmnal group SO(n) with no cut-loci,
and quaternions in 3-D with one point in the cut-loci. TheaglkeEuclidean group SE(n) which
jointly represents location and orientation also has ndaeit

4.2 Representation for 2-D objects

All symmetries in 2-D that have the same appearance forrdiffieorientations can be expressed
as a N-fold rotational symmetry, e.g., a hexagon has 6-fotdtional symmetry. We define our
representation ad/y(0) = [cos N6, sin N6], which has the same value for symmetric orienta-
tions. E.g.,Mn(0 + 27/N) = [cos(N6 + 360),sin(N6O + 360)] = My(6). In [26], authors
used this representation, but it can be shown that this iseaiapcase of the general form in
the present paper. Specifically, for 2-fold rotational syetryy, we havey; = [cos#,sinf] and

X2 = [cos(6 + 180),sin(f + 180)]. Now, M(x1) = —Tprod(xi,x2) — Tprod(xz,x1) =

[2 cos? 0,2 cos fsin 0; 2 cos O sin 6, 2sin? ] = Ll—i— cos 26, sin 26; sin 26, 1— cos 26]. l.e., up to an
additive constant)/y (9) is same as ouk/ ().

3For example, if we represent 1-D orientations directlyyas R, the cut-loci would be the point$ +
n2m,n = 1,2, 3.... However, the representatideos 6, sin 6] has no cut-loci.

4Similarly, for N-fold symmetry, one can see that the tensmdpct would result inV** order terms in
cos 6 andsin 0, which after summing over permutations of symmetries téaulos N andsin N6 terms.



4.3 Representation for 3-D objects

classes shown in Fig. 3. We will describe, as e
amples, our representatidd (uq, us, us) given

1. No symmetry. If the object is completely I

asymmetric, theduy, us, us} completely spec- , reint
ify the orientation of the object without ambigu '
ity. Thus, we can safely choose our representa-

i — . . Ix1
tion to beM (uy, uz, us) = [us; uz; us] € R, Figure 3: Various symmetries.

2. Plane reflection symmetrggome objects ex-

hibit plane reflection symmetry about one or more planes. rEfiection around a single plane
perpendicular tou; (Fig. 3a), we will have that; and —u; are identical, while the other di-
rectionsu, and us will be non-ambiguous. We therefore defidd € R6*! x R3*3 to be
the tuple ([uz; us], wiul). This representationhas the same value for the symmetric orien-
tationsu, and —u;. Similarly, for dual plane reflection symmetry (Fig. 3b), wefine M =
(us, [u1;us]fur;us]®) € {R3*1 x R*6}. For triple plane reflection symmetry (Fig. 3c), we
defineM = [uy;ug;us]ug;ug;us]’ € RY*2. (Only the 3x3 block diagonal elements are more
relevant in this case.)

3. Rotational symmetryThese symmetries exist when an object is symmetric aboutianeag., the
rectangular box in Fig. 1c will appear the same aftég@° rotation. For 2-fold rotational symmetry
in 3-D along the axis:;, we defineM (u1, uz, uz) = {uy, [ug;us|[ug;us)’} € {R3*1 x R6*6},
which is invariant to this symmetry.

4. Axial spherical symmetry.Consider rotationally symmetric objects such as a martiasg
(Fig. 1a) or a cylinder (Fig. 3e). We need only one veator lying along that axis, to fully de-
scribe its orientation. A martini glass has standard axiatrsetry (the two directions; and—u;
are distinct); therefore we defind (u1) = u1. A cylinder has plane reflection axial symmetay
and—u; are identical); therefore we defifé (u;) = uju?l.

5. Spherical Symmetrgpherical symmetry (Fig. 3f) is trivially learned, and wdide M = 1.

5 Learning

M gives a symmetry-invariant, continuous, and unique reprigion for orientation. In most cases,
M =y, or M = (y1,y2) where eacly; is either a vector or a rank-1 matrix. We will use a learning
algorithm to separately estimate each of the compongrds a function of image features, and
apply an inference algorithm to recover an orientation fitbia estimate.

5.1 Features

Standard image features such as in [31] would fare poorlyeming
orientation, so we designed features better suited to gie W/e start
by partitioning the image into four quadrants and four radegments
(Fig. 4), by fitting an ellipse to the edge-image of the ohjétiis gives
a total of4 x 4 = 16 regions. For each region, our features will be the
angled) € [0, 360) of the local edges.

However, the raw angles do not correlate well to the target valugs
that we need to predict. Therefore, we map our basic arfgile® the
same form as the targgt For 3-D objectsy is made of a combina- Figure 4: The feature vec-
tion of circular functions of the formsin v andcos o for asymmetrical tor for an object, showing
objects, and pairwise products: a cos a, sin® a, etc. for symmetrical the 4 quadrants, each hav-
objects. Therefore, our features will also be the corredpancircular ing four radial segments.

M would be a grade 2 element in the Clifford algebra [21]. lifteconsists of two parts: a vector iRC,
and a matrix ifR*3.



functions off, and have the same dimensioniasFor a given target angle, the edges are often
distributed around that angle, e.g., a pencitdt will have edges betweesn® and50°. Since
Elsin(z)] # sin(E|x]), to capture the distribution of edges, we also use harmafitee functions,
i.e.sin(k6). Finally, we obtain our full feature vectdf by concatenating the histogram of the fea-
tures for each of these 16 regions. Note that each indivifibadlire has the dimension as the target
y, and so the overall feature vectairis a concatenation of many such features. S6 & R™, then

X e R™¥F;if Y € R™*™ thenX € R™*™** s a tensor.

5.2 Probabilistic Model

We estimaté\/ as a function of the image features. Depending on the typgnofreetry, M could be

a vector, matrix, tensor or their combination; therefore, will use the corresponding/appropriate
form of the Gaussian distribution to model it. Fre R™ (the vector part) and” € R™*"™ (the
matrix part)® we have:

P(Y|X; W, K) = 20K Y~ exp [ LTr(K (Y — XW)T(Y — XW))] @)

Here, X are the features of the imagB; are the parameters of the model, afid " is the shared
covariance matrix. Note that this is a deficient model [3jcsiit allows positive probability even
for invalid configurations. More formally,”y = 1 for the vector part, and” = wu” is symmetric
positive definite and of rank 1 for the matrix part. Choosiygnmetric features allows us keep
our estimate of\/ symmetric, but this model allows™ to take values where raK) # 1. We
learn the parametei$” and K of the Gaussian model by maximizing the conditional loglitkeod
log [, P(M;|X;; W, K) using the training set data.

Inference: Given an image with feature’s and a learned model with parametérsandi, we now
describe an inference procedure for computing the MAP edéraf an object’s orientation under the
model. First, consider the case whegre R™*! is the vector part of\/. Sincey”’y = 1, our MAP
estimate foy is given byarg max,.,r,—; log P(y|X; W, K) = argmax,.,r,—; TrKy" XW. The
closed form solution of this ig = XW/|| X W||5.

Next, we consider the case where = wu” is the matrix part ofA/. Note that the conditions
Y € R™*™ is positive definite, symmetric and of rank 1 are sufficienetsure that” is of the
formY = wu”. For a new test image with featurds the MAP estimate fo¥” is:

arg m};n —Tr(KYXW)
s.t. Tr(Y)=1,Y > 0,Rank(Y) =1 (3)

The optimization problem in Eq. 3 is non-convex. We solvepip@ximately by taking a semi-
definite relaxation [6], thus dropping the rank constrainbbtain the convex optimization problem
in Eq. 3. Finally,u is obtained by taking the eigenvector corresponding todsgkigenvalue of".
To get the full rotation matrix, we first form the rotation miatR by rearranging the inferred and
then project? into the orthogonal subspace Bs= R(RT R)~1/2.7

6 Experiments

We trained our supervised learning algorithm using symthetages of objects, and tested it on the
tasks of inferring 3-D orientation from single images offeient real objects from the object class.

To apply our supervised learning algorithm, we requiredteled training set, i.e., a set of images
labeled with the 3-D orientation of the object. Since, attileg real data is cumbersome and manual
labeling is prone to errors, we chose to learn from synthadita generated using computer graph-
ics that is automatically labeled with the correct orieittas. In detail, we generated 9400 labeled
examples comprising objects from six object classes, waitldom lighting conditions, camera posi-
tion, object orientation, etc. We quantitatively evaluhitge algorithm on real data. For this, we built

SFor the general case, we would use the tensor form of the Gausmdel. [2]

“In our experimentsY was almost always close to being rank 1, aidalmost always close to being
orthogonal. For the general case of other symmetries, Vit similar steps, we would first drop the rank
constraint, infer the higher order tensgr and then perform a rank-one approximation to the tensbér.13]



a custom setup to collect ground-truth labeled data usiagrtarkers while capturing the images.
The algorithm was used to predict the 3-D orientation froesthimages (with the markers cropped
out).

1zo

Definition of Error: We report errors in rotation -2 ™ P
angle—the angle by which the predicted orientatiog ., 7
must be rotated to get to the actual orientation. IF .. =t
higher dimensions, however, this error can be quitg - i
non-intuitive. E.g., for an asymmetric object in 38 ~ s
D, the mean error given by an algorithm predictingg *° s
random orientations would b20° (not90°). Pres- =

T

ence of symmetries make this measure even mage ot .. . .. |
non-intuitive. Therefore, we define a more informas Range of angles

tive error metric, “Fraction-error”, to be the fraction

of orientations (sampled uniformly from all orien-F. 5 Test set bl f
tations) that are better than the prediction. (It is o.gdure > Test set error (blue) vs. range o

for exactly correct, 0.5 for random, and 1.0formaxa—m9|es' Asa the rfange of anfgleas chor:f3|dered
imally incorrect predictions.) is increased, performance of the half-space

guaternion method decreases rapidly. Error
of a baseline that predicts the mean quater-
nion is shown in green.

6.1 Results on Objects

We provide extensive evaluation of our algorithm on a testceenprising real images of objects,

from 6 classes: (i) Long cylindrical objects: pen, hex-drjvspoon, etc., (ii) Wine glasses: mar-
tini glasses, goblet shaped glass, etc., (iii) Mugs: difersizes/shapes, (iv) Tea cups: different
shapes/sizes, (v) Boxes: white board erasers, woodendletk, (vi) Staplers: different examples.

We used 10-20 images of each of the 3-5 objects from eachtatigss. (Some examples of the
objects tested on are shown in Fig. 6.) In addition, we alsbaer algorithm on about 400 synthetic
images for each object class. We perform comparisons ofdflening algorithms:

(a) Wrapped Normal (1-D)Angles learned using the Wrapped Normal distribution.

(b) Half-space quaterniond earn quaternions, restricted to a half-space> 0.

(c) No featuresLearning our representation using our method, but witlamytimage features. This
effectively predicts the “mean” orientation, and theref@ a baseline for comparison.

(d) Rotation matricesHere, we learn the rotation matrices directly by usingdinesgression, with-
out considering symmetries in image features and in thecbbje

(e) Our model with naive inferencén this model, we show the results by directly takirig= X W,
i.e., without using the SDP inference method proposed.

(f) Our full model Using our full algorithm.

We first show that the error increases significantly when taming and test sets contain a large
range of orientations, and not only a small range of oriémtatclustered around some “mean value.”
Fig. 5 shows the 3-D rotation angle error as a function of tl&imum angle away from the mean
value, using half-space quaternion method. Table 1 shoatsaithen we consider the full space of
3-D orientations, approaches that use the most straigiefol representations of orientation, such
as the rotation matrices, do not perform well. Table 1 prestre rotation angle error and fraction
error for the different algorithms on a variety of objects.e\\¢port results on learning both 1-D
orientation (for axially symmetric objects, where the tésko predictu; projected into the image
plane) and 3-D orientation. In all cases, our algorithm ifiggmtly outperforms simpler methods.

When the axis of rotation is in the image plane, our algorittannot distinguish whether the com-
pression (e.g., change in length of a pen) is due to rotatiotue to the physical object being
smaller. This is one of the major sources of error in our athar. Indeed, the errors in estimating
the orientation projected into the image plane (correspunio a rotation around the axis normal to
the image plane) are usually quite low (e3y2° for long cylindrical objects).

Our algorithm appears to generalize very well. After beirainted on synthetic images (from a

known object class), it is able to predict orientations ofegts belonging to new objects from the

same class. For example, after being trained on pencilsgdigted well on a knife; and after being

trained on martini glasses, it predicted well on wine glasse well. Some object instances were
quite different in shape than the synthetic examples tchare e.g., the white tea cup in Fig. 6.



Mugs Wine Glasses Long objects

Boxes Staplers

Cups

Figure 6: Typical examples of predicted orientations (sbilies) for some real test objects, and their
ground-truth orientations (dashed). (Best viewed in cplor

Table 1: Average absolute rotation error (fraction errorpredicting the orientation for different
objects. Training on synthetic images of objects, and ptaxdh on different test images.

TEST ONSYNTHETIC OBJECTS

TESTED ON MUGS WINE LONG TEA BOXES STAPLERS RoBoOTIC
GLASS OBJECTS CuPs ARM
SYMMETRY 1-REFLECT AXIAL AXIAL, 1-REF | 1-REFLECT | 3-REFLECT | 1-REFLECT 3-REFLECT
WRAPPED NORMAL (1-D) 24.1 (.25) 7.5° (.08)
OUR ALGORITHM (1-D) - 4.5°(.05) 2.6° (.03) - - - -
ROTATION MATRICES (3-D) | 74.3° (.74) | 116.9 (.54) 68.8 (.65) 71.6° (.69) | 69.9 (.67) | 70.2° (.69) 66.2° (.64)
NO FEATURES (3-D) 48.7° (.45) | 88.0° (.49) 51.7° (.44) | 55.0° ((59) | 44.4° (.42) | 46.5° (.45) || 46.4° (.45)
NAIVE INFERENCE (3-D) 42.3 (.45) | 42.2° (.20) 18.1°(.20) 39.8° (.37) | 24.5° (.24) | 31.2 (.29) || 38.0° (.35)
OUR ALGORITHM (3-D) 18.4° (.17) | 27.3 (11) 11.% (.04) 21.4 (.20) | 12.8° (\11) | 22.2 (.23) || 22.2° (.20)
TEST ONREAL OBJECTS
WRAPPED NORMAL (1-D) 28.9 (.29) 12.8° (.14)
OUR ALGORITHM (1-D) - 6.5° (.07) 3.2° (.04) - - - -
ROTATION MATRICES (3-D) | 66.F (.62) | 118.7 (.55) 66.0° (.62) 67.2 ((62) | 71.7(70) | 64.2 (.59) 58.0° (.51)
NO FEATURES (3-D) 49.4° (.45) 91° (.51) 54.1° ((46) | 50.0° (.48) | 54.0° (.59) | 47.7° (.46) || 48.0° (.45)
OUR ALGORITHM (3-D) 26.8° (.24) | 24.0° (.10) 16.7° (.06) | 29.3 (.28) | 13.1° (.14) | 26.6° (.24) || 26.0°(.23)

6.2 Robotic Applications

We used this algorithm in the problem of grasping novel adisjaesing robotic arms [25, 26].
Specifically, we are given an image of an object, which can peegiously-unseen object, from
a previously-unknown object class. Our task is then to ch@sorientation for the hand of our
robot arm so as to enable the robot to correctly grasp thecobf@r example, given a picture of a
long pencil lying on a table, we should choose an orientationhich the robot'’s two fingers are
perpendicular to the pencil’s main axis, rather than pat#di it. Typically 30° accuracy is needed
to successfully grasp an object, which our algorithm alnadstys attains (Table 1, last column).

7 Conclusion

We presented an algorithm for learning 3-D orientation géots from a single image. Orientation
learning is a difficult problem because the space of ori@niatis non-Euclidean, and in some cases
(such as quaternions) the representation is ambiguousatmiultiple representations exist for the
same physical orientation. We presented a symmetry invigantinuous, unique representation to
address these problems, together with efficient learnimbiafierence algorithms using this repre-
sentation. We evaluated our algorithm on the task of estimgdhe 3-D orientation of new objects
from six different object categories.
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