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Abstract

We propose a learning algorithm for estimating the 3-D orientation of objects.
Orientation learning is a difficult problem because the space of orientations is
non-Euclidean, and in some cases (such as quaternions) the representation is am-
biguous, in that multiple representations exist for the same physical orientation.
Learning is further complicated by the fact that most man-made objects exhibit
symmetry, so that there are multiple “correct” orientations. In this paper, we pro-
pose a new representation for orientations—and a class of learning and inference
algorithms using this representation—that allows us to learn orientations for sym-
metric or asymmetric objects as a function of a single image.We extensively
evaluate our algorithm for learning orientations of objects from six categories.

1 Introduction

We consider the problem of learning the 3-D orientation of objects, such as a mug or a martini
glass (Fig. 1), from an image. The ability to estimate orientation has many applications in vision
and robotics. For example, the task of perception (object recognition) is considerably easier if an
object’s orientation is known. In other applications such as active vision/tracking, knowing the pose
of a self-propelled object (e.g., an airplane) will also help to estimate its 3-D direction of motion.
In robotics, estimating the pose of surrounding cars is alsouseful for autonomous driving, and
knowledge of the 3-D orientation of an object is necessary toenable a robot to grasp it.

Unfortunately, the problem of estimating orientations is difficult because the space of orientations
is non-Euclidean and non-linear. This property of orientations manifests in all methods of its repre-
sentation [11]. In Section 3, we describe a number of representations for orientation, the problems
associated with them, and explain why a naive attempt to learn using each of them would fare poorly.
Symmetries in the object, which cause it to appear identicalfor multiple different orientations, cause
further problems; in particular, the orientation is now ambiguous, in that there are multiple “correct”
orientations. E.g., the box in Fig. 1c has identical faces, which makes it impossible to tell which
side is the front. In Section 4, we describe a representationthat addresses this problem.

In most prior work on estimating orientation, the orientations were assumed to lie within a small
range of angles. In these cases, the problem is significantlyeasier because the orientations can be
safely linearized (e.g., using Euler angles) around some “mean value,” [19, 28] and discontinuities
in the representation and ambiguities arising from symmetry do not have to be explicitly addressed.

In this paper, we propose a new representation, together with learning and inference algorithms, that
allows us to estimate 3-D orientations as a function of features. Our representation and algorithms
apply even in the presence of symmetries. We apply the algorithm to two tasks: (i) recognizing the
pose of a new object (drawn from a known object class), and (ii) choosing at what orientation to
orient a robotic arm/hand in order to grasp an object. In the latter case, the test object can be drawn
from apreviously-unknownobject class.
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2 Related Work

(a) (b) (c)

Figure 1: Images of some objects in different orientations.

There is a large body of related work on
“circular statistics,” which deals with
the cyclic nature of such data. For
example, the Matrix-Fischer distribu-
tion [8, 13, 22, 11] is a Gaussian model
restricted to a manifold. This literature
considers a variety of representations
for a fixed probability distribution over
orientationsy, but not the learning problem of estimating the conditionaldistribution of an orienta-
tion y given a set of featuresx; i.e., of estimating an orientationy as afunctionof x. (Because of
the non-linearities and symmetries in the space of orientations and the discontinuities in the repre-
sentations, they cannot be directly used with most standardlearning algorithms.) One exception is
the work on Spherical regression [5, 9, 29]; however this addresses a very special case—regressing
orientationsy against other orientationsx. So if y ∈ [−π, π) is an angle, then Spherical regression
can use only a single featurex ∈ [−π, π) (and similarly ify is a quarternion, thenx must be also).
None of this prior work considers symmetries, and neither have these ideas be developed for images.

Most work on learning on such non-Euclidean manifolds has focused on unsupervised learning
of manifolds that are isometric to a subset of Euclidean space, e.g., [24, 30]. For non-isometric
cases, algorithms such as locally smooth manifold learning[7] can be applied. [34] applied semi-
supervised learning to multi-class classification. Notably, [20] gives an elegant method for super-
vised learning on non-linear manifolds such as a torus, using kernels with Laplacian eigenmaps.
However, these methods address the problem of predicting a (discrete- or real-valued) targety, as a
function of featuresx that lie on a non-linear manifold, such as a sphere or a torus.In contrast, our
work addresses a different problem of predicting/regressing labelsy that lie on a non-linear manifold
(which can also be non-isometric). More recently, [16] havemodeled data lying on multiple con-
tinuous manifolds, e.g., a torus, and have applied it to track people from a video sequence. Finally,
multivalued regression [1] can be used to model cases when the output is multi-modal; however, it
does not apply directly to the non-linearities and the ambiguities in the target space.

In vision, there are a few approaches that apply when one considers only 1-D orientations; for
example, [4] gives a method based on analyzing the Fourier spectrum of simple line drawings.
Multi-view object detection [31] is an approach in which objects are recognized at a few canonical
poses. One can envision running an object detector at different poses to estimate 3-D orientation;
however, this is not only a very indirect way to estimate orientations, but it would also be directly
affected by the accuracy of the classifier, and would not apply to novel objects and objects from
novel classes (as in our robotics application in Section 6.2). To our knowledge, work done in this
literature, e.g., [31], presents results only on object detection, but not on general 3-D orientation
estimation, and typically uses datasets that include viewstaken only from a circle around the object.

3 Representing Orientations

(a) (b)

Figure 2: (a) A hut has a unique orientation with
θ ∈ [−180o, 180o). (b) A shape with180o symme-
try. Red arrow (not part of the object) indicates an
example of orientationθ = 90o, which is identical to
θ = −90o. Restrictingθ to lie in a half-space, such
asθ ∈ [0, 180) does not help—this makesθ = 175◦

andθ = 5◦ very distant, even though they represent
two nearly identical physical orientations.

Here we describe a few popular representa-
tions for orientations, and explain why pre-
vious methods fail to learn them when the
orientations are not clustered closely around
a “mean value.”

Even in the case of planar 2-D objects, the
representation suffers from problems. Con-
sider the line drawing of a hut in Fig. 2a,
which has a 1-D orientation that can be rep-
resented byθ ∈ R, with θ+ 360◦ = θ. Even
if we restrict θ ∈ [−180◦, 180◦), this rep-
resentation still suffers from a discontinuity
at ±180◦. This makes naive learning ofθ,
such as with linear regression, impossible or
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at best extremely difficult. For example, if in the training/test set distribution, the ground-truth orien-
tations cluster aroundθ ≈ 180◦, then most objects’ orientations will appear to be near either180◦ or
−180◦. This makes the learning difficult sinceE(θ) = 0, instead of being+180◦ or −180◦. (E.g.,
160◦ is closer to−160◦ than to90◦.) Wrapped Normal distribution [11] addresses this problem
by modeling the circular nature ofθ asP (θ|x, k;w) = 1

Z exp
(

−(θ − wTx− 2πk)2/2σ2
)

. Here,
k ∈ I is a latent random variable. This model can be trained with EM[27].

For 3-D objects, the orientation can be described by 3 Euler angles [23]. However, learning using
this representation is difficult because not only do each of the Euler angles wrap around±360◦, but
further at specific orientations two of the angles become degenerate. This discontinuity is called
Gimble Lock. Further, the 3 angles cannot simply be learned separately using the wrapped Normal
model, as they are interdependent. In prior work, such as [19], authors learned orientations but
restricted to asmallrange (between15◦-20◦) for various applications, e.g., face pose [17]. For such
small ranges of angles that avoid Gimble lock, the angles canbe linearized around a “mean value”;
however, this fails for larger ranges of angles.

A quaternion [23] (q ∈ R
4, ||q||2 = 1) can also be used to represent 3-D orientation. However,

quaternions suffer from the problem of anti-podal symmetry. I.e., q and−q represent the same
rotation. This means that for two identical orientations, we may end up with completely opposite
values for their quaternion representations; this makes them impossible to learn using straightfor-
ward learning algorithms.1 Rotation matricesR, which are orthogonal matrices (RTR = RRT = I)
with det(R) = 1, have a non-ambiguous representation. However, since all the elements are inter-
dependent due to the orthogonality restriction, learning them is hard. [10]

4 Symmetry Invariant Representation

Symmetries in the object, which cause it to appear identicalfor multiple different orientations, cause
further problems. In particular, the orientation is now ambiguous, in that there are multiple “correct”
orientations for each object. Consider the shape shown in Fig. 2b, which exhibits180◦ rotational
symmetry. For any orientationθ and θ + 180, the object appears exactly the same. Thus, any
representation of its orientation will have twooppositevalues that correspond to the same visual
appearance. This problem is exacerbated in 3-D. Most objects found in household and office envi-
ronments exhibit some kind of symmetry. (See [12, 32] for a detailed description of symmetries.)

We first present our representationM for orientation that deals with these issues. To learnM , the
representation should satisfy several criterion. First,M should beinvariant to ambiguities arising
from symmetries. Second, the representation should becontinuous, i.e., two orientations that are
physically close should be close in the representation. Finally, the representation should beunique,
in that all orientations that look identical should have thesame value.2 Given a representationu
for the orientation for a 2-D (planar), 3-D or more generallyan n-D object, we will define a new
representationM(u), which our learning algorithm will estimate as a function ofimage features.

In 2-D, the orientation of an object (e.g., Fig. 2) can be completely described by a unit 2-vector
u = [sin θ, cos θ] ∈ R

2, whereθ is the angle of rotation. In 3-D, an orientation can be completely
described by two unit 3-vectors. E.g., the orientation of a mug (Fig. 1b) can be described by a unit
vector representing the up direction of the mug, and a secondone in the direction of the handle. (The
third direction is redundant and can be obtained as a cross product of the first two.) However, for an
object such as a martini glass that has only one distinguishable direction (pointing towards the top
of the glass; Fig 1a), only one unit 3-vector is required to describe its orientation.

1To remove antipodal symmetry, one can consider the quaternionsq = [qx, qy , qz, qw] lying in a half-space
qw > 0. However, this still does not solve the problem because similar orientations will still be far in the
representation. (see Section 6 and Fig. 5).

2Our representation will actually satisfy a stronger set of criteria of [14]: (i) Uniform stretch, The mapping
should carry implicitly information about the distances inthe original space and scales linearly with the angle
between two hyper planes||δM(u)|| = c||δu|| for ||u|| = constant. (ii)Polar separability: ||M(u)|| is constant
and carries no information about orientation; and (iii)Uniqueness: M(u) has only one value for a given orien-
tation. These condition ensure that the representation isnon-distorting, in that all orientations have isomorphic
mappings (manifold tangent spaces) in the representation.
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In the general case of n-D objects, an orientation can be completely described byp ≤ (n − 1)
orthogonal unitn-vectors, wherep is the number of distinguishable directions of the object inn-
dimensions. More formally, the object’s orientation can bedescribed by a matrixU ∈ R

n×p with
UTU = I; here,U ’s columns areui ∈ R

n. The space of all such matricesU is called the Stiefel
I-manifold [10]. Forp = n−1, we can get a complete matrix̃U by appending an orthogonal column
such thatdet(U) > 0. In 3-D, Ũ = [u1, u2, u3] ∈ R

3×3 is a rotation matrix.

4.1 Representation for n-D objects

In this section, we define our representation for the generalcase of symmetries inn dimensional
objects. We will describe, as examples, specialized cases for the representations for 2-D and 3-D
objects in Section 4.2 and 4.3. For this general case, our representationM will be a higher order
tensor. Space constraints preclude a lengthy discussion ontensors and group theory, but interested
readers may refer to tutorial texts such as [18] and [33].

Below, we will letχ ∈ R
m×1 be a representation of an orientation in n-D. Some representations

are non-ambiguous. E.g., ifR ∈ R
n×n is a rotational matrix (RRT = RTR = I, det(R) = 1)

representing an orientation inn dimensions, we can defineχ to be the vectorized form ofR, i.e.,
χ = R(:) ∈ R

n2×1. Alternatively, some representations can be ambiguous, e.g., a quaternion for
3-D orientations in whichq and−q represent the same orientation. (This is called a double cover of
SO(3).) Therefore, forχ = q, we also have thatχ′ = −q represents the same orientation. In general,
for a pointχ representing an orientation in n-D, there could be other pointsχ′ that represent the same
orientation. The set of all points that represent the same orientation asχ is called thecut-lociof χ.

For a given orientationχ, let ψ(χ) denote the set of all representationsχ′ that result in the object
appearing identical toχ, either because of cut-loci (where multiple values ofχ correspond to the
same physical orientation) or because of symmetries (so that multiple physical orientations corre-
spond to the same appearance). E.g., ifχ is a quaternion and the object considered is asymmetric,
thenψ(χ) = {χ,−χ}. Similarly, if χθ represents the 1-D orientationθ of a planar object that ex-
hibits 3-fold (120◦) rotational symmetry, thenψ(χθ) = {χθ, χθ+120, χθ+240}. Now, we define our
representationM(χ) that allows learning even in presence of cut-loci and symmetries as:

M(χ) = −
∑

{χ1,...χc}∈Permutations{ψ(χ)} Tprod(χ1, ..., χc) (1)

where,Tprod(.) is the tensor (or outer) product of the vectors, andc = card(ψ(χ)). The summation
is over all permutations of cut-loci and symmetries; this ensures thatM(χ) gives the same value for
all different cut-loci and symmetries ofχ, and still satisfies the criterion of [14] (see footnote 2).

Although Riemannian manifolds, in general, could have cut-loci with an uncountable number of
points, orientations can always be represented with only a finite number of points in their cut-loci.3

For example, we can represent n-D rotations as the special orthogonal group SO(n) with no cut-loci,
and quaternions in 3-D with one point in the cut-loci. The special Euclidean group SE(n) which
jointly represents location and orientation also has no cut-loci.

4.2 Representation for 2-D objects

All symmetries in 2-D that have the same appearance for different orientations can be expressed
as a N-fold rotational symmetry, e.g., a hexagon has 6-fold rotational symmetry. We define our
representation asMN(θ) = [cosNθ, sinNθ], which has the same value for symmetric orienta-
tions. E.g.,MN(θ + 2π/N) = [cos(Nθ + 360), sin(Nθ + 360)] = MN(θ). In [26], authors
used this representation, but it can be shown that this is a special case of the general form in
the present paper. Specifically, for 2-fold rotational symmetry, we haveχ1 = [cos θ, sin θ] and
χ2 = [cos(θ + 180), sin(θ + 180)]. Now, M(χ1) = −Tprod(χ1, χ2) − Tprod(χ2, χ1) =
[2 cos2 θ, 2 cos θ sin θ; 2 cos θ sin θ, 2 sin2 θ] = [1+ cos 2θ, sin 2θ; sin 2θ, 1− cos 2θ]. I.e., up to an
additive constant,MN (θ) is same as ourM(χ).4

3For example, if we represent 1-D orientations directly asθ ∈ R, the cut-loci would be the pointsθ ±
n2π, n = 1, 2, 3.... However, the representation[cos θ, sin θ] has no cut-loci.

4Similarly, for N-fold symmetry, one can see that the tensor product would result inN th order terms in
cos θ andsin θ, which after summing over permutations of symmetries result in cos Nθ andsin Nθ terms.
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4.3 Representation for 3-D objects

Figure 3: Various symmetries.

Most objects belong to one of the symmetry
classes shown in Fig. 3. We will describe, as ex-
amples, our representationM(u1, u2, u3) given
in Section 4.1, specialized to each of these cases.

1. No symmetry. If the object is completely
asymmetric, then{u1, u2, u3} completely spec-
ify the orientation of the object without ambigu-
ity. Thus, we can safely choose our representa-
tion to beM(u1, u2, u3) = [u1;u2;u3] ∈ R

9×1.

2. Plane reflection symmetry.Some objects ex-
hibit plane reflection symmetry about one or more planes. Forreflection around a single plane
perpendicular tou1 (Fig. 3a), we will have thatu1 and−u1 are identical, while the other di-
rectionsu2 and u3 will be non-ambiguous. We therefore defineM ∈ R

6×1 × R
3×3 to be

the tuple([u2;u3], u1u
T
1 ). This representation5 has the same value for the symmetric orien-

tationsu1 and−u1. Similarly, for dual plane reflection symmetry (Fig. 3b), wedefineM =
(u3, [u1;u2][u1;u2]

T ) ∈ {R
3×1 × R

6×6}. For triple plane reflection symmetry (Fig. 3c), we
defineM = [u1;u2;u3][u1;u2;u3]

T ∈ R
9×9. (Only the 3x3 block diagonal elements are more

relevant in this case.)

3. Rotational symmetry.These symmetries exist when an object is symmetric about an axis, e.g., the
rectangular box in Fig. 1c will appear the same after a180◦ rotation. For 2-fold rotational symmetry
in 3-D along the axisu1, we defineM(u1, u2, u3) = {u1, [u2;u3][u2;u3]

T } ∈ {R
3×1 × R

6×6},
which is invariant to this symmetry.

4. Axial spherical symmetry.Consider rotationally symmetric objects such as a martini glass
(Fig. 1a) or a cylinder (Fig. 3e). We need only one vectoru1, lying along that axis, to fully de-
scribe its orientation. A martini glass has standard axial symmetry (the two directionsu1 and−u1

are distinct); therefore we defineM(u1) = u1. A cylinder has plane reflection axial symmetry (u1

and−u1 are identical); therefore we defineM(u1) = u1u
T
1 .

5. Spherical Symmetry.Spherical symmetry (Fig. 3f) is trivially learned, and we defineM = 1.

5 Learning

M gives a symmetry-invariant, continuous, and unique representation for orientation. In most cases,
M = y1 orM = (y1, y2) where eachyi is either a vector or a rank-1 matrix. We will use a learning
algorithm to separately estimate each of the componentsyi as a function of image featuresxi, and
apply an inference algorithm to recover an orientation fromthis estimate.

5.1 Features

Figure 4: The feature vec-
tor for an object, showing
the 4 quadrants, each hav-
ing four radial segments.

Standard image features such as in [31] would fare poorly forlearning
orientation, so we designed features better suited to the task. We start
by partitioning the image into four quadrants and four radial segments
(Fig. 4), by fitting an ellipse to the edge-image of the object. This gives
a total of4 ∗ 4 = 16 regions. For each region, our features will be the
anglesθ ∈ [0, 360) of the local edges.

However, the raw anglesθ do not correlate well to the target valuesy
that we need to predict. Therefore, we map our basic anglesθ into the
same form as the targety. For 3-D objects,y is made of a combina-
tion of circular functions of the formsinα andcosα for asymmetrical
objects, and pairwise productssinα cosα, sin2 α, etc. for symmetrical
objects. Therefore, our features will also be the corresponding circular

5M would be a grade 2 element in the Clifford algebra [21]. I.e.,it consists of two parts: a vector inR6,
and a matrix inR3×3.
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functions ofθ, and have the same dimension asy. For a given target angle, the edges are often
distributed around that angle, e.g., a pencil at400 will have edges between300 and500. Since
E[sin(x)] 6= sin(E[x]), to capture the distribution of edges, we also use harmonicsof the functions,
i.e. sin(kθ). Finally, we obtain our full feature vectorX by concatenating the histogram of the fea-
tures for each of these 16 regions. Note that each individualfeature has the dimension as the target
y, and so the overall feature vectorX is a concatenation of many such features. So ifY ∈ R

m, then
X ∈ R

m×k; if Y ∈ R
m×m, thenX ∈ R

m×m×k is a tensor.

5.2 Probabilistic Model

We estimateM as a function of the image features. Depending on the type of symmetry,M could be
a vector, matrix, tensor or their combination; therefore, we will use the corresponding/appropriate
form of the Gaussian distribution to model it. ForY ∈ R

m (the vector part) andY ∈ R
m×m (the

matrix part),6 we have:

P (Y |X ;W,K) = |2πK−1|−n/2 exp
[

− 1
2Tr(K(Y −XW )T (Y −XW ))

]

(2)

Here,X are the features of the image,W are the parameters of the model, andK−1 is the shared
covariance matrix. Note that this is a deficient model [3], since it allows positive probability even
for invalid configurations. More formally,yT y = 1 for the vector part, andY = uuT is symmetric
positive definite and of rank 1 for the matrix part. Choosing symmetric features allows us keep
our estimate ofM symmetric, but this model allowsY to take values where rank(Y ) 6= 1. We
learn the parametersW andK of the Gaussian model by maximizing the conditional log likelihood
log

∏

i P (Mi|Xi;W,K) using the training set data.

Inference: Given an image with featuresX and a learned model with parametersK andW , we now
describe an inference procedure for computing the MAP estimate of an object’s orientation under the
model. First, consider the case wherey ∈ R

m×1 is the vector part ofM . SinceyT y = 1, our MAP
estimate fory is given byarg maxy:yT y=1 logP (y|X ;W,K) = arg maxy:yT y=1 TrKy

TXW . The
closed form solution of this isy = XW/||XW ||2.

Next, we consider the case whereY = uuT is the matrix part ofM . Note that the conditions
Y ∈ R

m×m is positive definite, symmetric and of rank 1 are sufficient toensure thatY is of the
form Y = uuT . For a new test image with featuresX , the MAP estimate forY is:

argmin
Y

−Tr(KYXW )

s.t. T r(Y ) = 1, Y ≥ 0,Rank(Y ) = 1 (3)

The optimization problem in Eq. 3 is non-convex. We solve it approximately by taking a semi-
definite relaxation [6], thus dropping the rank constraint to obtain the convex optimization problem
in Eq. 3. Finally,u is obtained by taking the eigenvector corresponding to highest eigenvalue ofY .
To get the full rotation matrix, we first form the rotation matrix R̂ by rearranging the inferredu and
then projectR̂ into the orthogonal subspace asR = R̂(R̂T R̂)−1/2.7

6 Experiments

We trained our supervised learning algorithm using synthetic images of objects, and tested it on the
tasks of inferring 3-D orientation from single images of different real objects from the object class.

To apply our supervised learning algorithm, we required a labeled training set, i.e., a set of images
labeled with the 3-D orientation of the object. Since, collecting real data is cumbersome and manual
labeling is prone to errors, we chose to learn from syntheticdata generated using computer graph-
ics that is automatically labeled with the correct orientations. In detail, we generated 9400 labeled
examples comprising objects from six object classes, with random lighting conditions, camera posi-
tion, object orientation, etc. We quantitatively evaluated the algorithm on real data. For this, we built

6For the general case, we would use the tensor form of the Gaussian model. [2]
7In our experiments,Y was almost always close to being rank 1, andR̂ almost always close to being

orthogonal. For the general case of other symmetries, following similar steps, we would first drop the rank
constraint, infer the higher order tensorY , and then perform a rank-one approximation to the tensor. [35, 15]
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a custom setup to collect ground-truth labeled data using the markers while capturing the images.
The algorithm was used to predict the 3-D orientation from these images (with the markers cropped
out).

Figure 5: Test set error (blue) vs. range of
angles. As the range of angles considered
is increased, performance of the half-space
quaternion method decreases rapidly. Error
of a baseline that predicts the mean quater-
nion is shown in green.

Definition of Error: We report errors in rotation
angle—the angle by which the predicted orientation
must be rotated to get to the actual orientation. In
higher dimensions, however, this error can be quite
non-intuitive. E.g., for an asymmetric object in 3-
D, the mean error given by an algorithm predicting
random orientations would be1200 (not900). Pres-
ence of symmetries make this measure even more
non-intuitive. Therefore, we define a more informa-
tive error metric, “Fraction-error”, to be the fraction
of orientations (sampled uniformly from all orien-
tations) that are better than the prediction. (It is 0.0
for exactly correct, 0.5 for random, and 1.0 for max-
imally incorrect predictions.)

6.1 Results on Objects

We provide extensive evaluation of our algorithm on a test set comprising real images of objects,
from 6 classes: (i) Long cylindrical objects: pen, hex-driver, spoon, etc., (ii) Wine glasses: mar-
tini glasses, goblet shaped glass, etc., (iii) Mugs: different sizes/shapes, (iv) Tea cups: different
shapes/sizes, (v) Boxes: white board erasers, wooden blocks, etc., (vi) Staplers: different examples.

We used 10-20 images of each of the 3-5 objects from each object class. (Some examples of the
objects tested on are shown in Fig. 6.) In addition, we also test our algorithm on about 400 synthetic
images for each object class. We perform comparisons of the following algorithms:
(a)Wrapped Normal (1-D): Angles learned using the Wrapped Normal distribution.
(b) Half-space quaternions: Learn quaternions, restricted to a half-spaceq1 ≥ 0.
(c) No features: Learning our representation using our method, but withoutany image features. This
effectively predicts the “mean” orientation, and therefore is a baseline for comparison.
(d) Rotation matrices: Here, we learn the rotation matrices directly by using linear regression, with-
out considering symmetries in image features and in the object.
(e)Our model with naive inference: In this model, we show the results by directly takingY = XW ,
i.e., without using the SDP inference method proposed.
(f) Our full model: Using our full algorithm.

We first show that the error increases significantly when the training and test sets contain a large
range of orientations, and not only a small range of orientations clustered around some “mean value.”
Fig. 5 shows the 3-D rotation angle error as a function of the maximum angle away from the mean
value, using half-space quaternion method. Table 1 shows that when we consider the full space of
3-D orientations, approaches that use the most straightforward representations of orientation, such
as the rotation matrices, do not perform well. Table 1 presents the rotation angle error and fraction
error for the different algorithms on a variety of objects. We report results on learning both 1-D
orientation (for axially symmetric objects, where the taskis to predictu1 projected into the image
plane) and 3-D orientation. In all cases, our algorithm significantly outperforms simpler methods.

When the axis of rotation is in the image plane, our algorithmcannot distinguish whether the com-
pression (e.g., change in length of a pen) is due to rotation or due to the physical object being
smaller. This is one of the major sources of error in our algorithm. Indeed, the errors in estimating
the orientation projected into the image plane (corresponding to a rotation around the axis normal to
the image plane) are usually quite low (e.g.,3.2◦ for long cylindrical objects).

Our algorithm appears to generalize very well. After being trained on synthetic images (from a
known object class), it is able to predict orientations of objects belonging to new objects from the
same class. For example, after being trained on pencils, it predicted well on a knife; and after being
trained on martini glasses, it predicted well on wine glasses as well. Some object instances were
quite different in shape than the synthetic examples trained on, e.g., the white tea cup in Fig. 6.
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Mugs Wine Glasses Long objects Cups Boxes Staplers

Figure 6: Typical examples of predicted orientations (solid lines) for some real test objects, and their
ground-truth orientations (dashed). (Best viewed in color.)

Table 1: Average absolute rotation error (fraction error) in predicting the orientation for different
objects. Training on synthetic images of objects, and prediction on different test images.

TEST ON SYNTHETIC OBJECTS

TESTED ON MUGS WINE LONG TEA BOXES STAPLERS ROBOTIC

GLASS OBJECTS CUPS ARM

SYMMETRY 1-REFLECT AXIAL AXIAL , 1-REF 1-REFLECT 3-REFLECT 1-REFLECT 3-REFLECT

WRAPPED NORMAL (1-D) - 24.1 (.25) 7.5◦ (.08) - - - -
OUR ALGORITHM (1-D) - 4.5◦ (.05) 2.6◦ (.03) - - - -
ROTATION MATRICES (3-D) 74.3◦ (.74) 116.9◦ (.54) 68.8◦ (.65) 71.6◦ (.69) 69.9◦ (.67) 70.2◦ (.69) 66.2◦ (.64)
NO FEATURES (3-D) 48.7◦ (.45) 88.0◦ (.49) 51.7◦ (.44) 55.0◦ (.59) 44.4◦ (.42) 46.5◦ (.45) 46.4◦ (.45)
NAIVE INFERENCE (3-D) 42.3◦ (.45) 42.2◦ (.20) 18.1◦ (.20) 39.8◦ (.37) 24.5◦ (.24) 31.2◦ (.29) 38.0◦ (.35)
OUR ALGORITHM (3-D) 18.4◦ (.17) 27.3◦ (.11) 11.9◦ (.04) 21.4◦ (.20) 12.8◦ (.11) 22.3◦ (.23) 22.2◦ (.20)

TEST ON REAL OBJECTS

WRAPPED NORMAL (1-D) - 28.9 (.29) 12.8◦ (.14) - - - -
OUR ALGORITHM (1-D) - 6.5◦ (.07) 3.2◦ (.04) - - - -
ROTATION MATRICES (3-D) 66.9◦ (.62) 118.7◦ (.55) 66.0◦ (.62) 67.2◦ (.62) 71.7◦ (.70) 64.2◦ (.59) 58.0◦ (.51)
NO FEATURES (3-D) 49.4◦ (.45) 91◦ (.51) 54.1◦ (.46) 50.0◦ (.48) 54.0◦ (.59) 47.7◦ (.46) 48.0◦ (.45)
OUR ALGORITHM (3-D) 26.8◦ (.24) 24.0◦ (.10) 16.7◦ (.06) 29.3◦ (.28) 13.1◦ (.14) 26.6◦ (.24) 26.0◦ (.23)

6.2 Robotic Applications

We used this algorithm in the problem of grasping novel objects using robotic arms [25, 26].
Specifically, we are given an image of an object, which can be apreviously-unseen object, from
a previously-unknown object class. Our task is then to choose an orientation for the hand of our
robot arm so as to enable the robot to correctly grasp the object. For example, given a picture of a
long pencil lying on a table, we should choose an orientationin which the robot’s two fingers are
perpendicular to the pencil’s main axis, rather than parallel to it. Typically30◦ accuracy is needed
to successfully grasp an object, which our algorithm almostalways attains (Table 1, last column).

7 Conclusion

We presented an algorithm for learning 3-D orientation of objects from a single image. Orientation
learning is a difficult problem because the space of orientations is non-Euclidean, and in some cases
(such as quaternions) the representation is ambiguous, in that multiple representations exist for the
same physical orientation. We presented a symmetry invariant, continuous, unique representation to
address these problems, together with efficient learning and inference algorithms using this repre-
sentation. We evaluated our algorithm on the task of estimating the 3-D orientation of new objects
from six different object categories.
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