
Onboard Contextual Classification of 3-D Point Clouds with Learned
High-order Markov Random Fields

Daniel Munoz, Nicolas Vandapel, and Martial Hebert
The Robotics Institute

Carnegie Mellon University
{dmunoz,vandapel,hebert}@ri.cmu.edu

Abstract— Contextual reasoning through graphical models
such as Markov Random Fields often show superior perfor-
mance against local classifiers in many domains. Unfortunately,
this performance increase is often at the cost of time consuming,
memory intensive learning and slow inference at testing time.
Structured prediction for 3-D point cloud classification is one
example of such an application. In this paper we present
two contributions. First we show how efficient learning of
a random field with higher-order cliques can be achieved
using subgradient optimization. Second, we present a context
approximation using random fields with high-order cliques
designed to make this model usable online, onboard a mobile
vehicle for environment modeling. We obtained results with the
mobile vehicle on a variety of terrains, at 1/3 Hz for a map 25
× 50 meters and a vehicle speed of 1-2 m/s.

I. INTRODUCTION

Accurate perception of environments is critical for
autonomous ground vehicles. An improved understand-
ing/classification of the world is beneficial for many applica-
tions such as autonomous navigation and environment mod-
eling. However, there exists a trade-off between processing
time and the quality of the classification. In this paper, we
address both these challenges for the task of contextual 3-D
point cloud classification onboard of a moving vehicle. An
example classification result from our onboard experiments
is presented in Figure 1; the different colors represent inter-
esting labels such as vegetation (green), large (red) and small
(blue) tree trunks, and ground (orange).

A common classification approach for this problem is to
learn a classifier that assigns a label to each point, inde-
pendently of its neighbors’ assignments. This approach is
computationally fast [1] and can produce good results when
the extracted features are discriminative. However, when the
extracted features are noisy, this approach can produce noisy
classifications where points’ labels are not locally consistent.
Local consistency can be achieved by considering the local
context around each point when performing classification.
The label of the points are then determined jointly, not
independently. The Markov Random Field framework is a
popular choice because it models the spatial interactions
present in the scene. A Conditional Random Field (CRF)
is a popular discriminative model to learn such interactions
from training data. In this paper, we are interested in a
CRF variant called an Associative Markov Network (AMN).
The authors in [2], [3] show that modeling the interactions

Fig. 1. Example onboard terrain classification result.

with AMNs outperform standard Support Vector Machine
(SVM) algorithms for the application of 3-D point cloud
classification.

While the benefits of modeling the interactions are ap-
parent, they come at a cost. Due to combinatorial issues,
these interactions are typically considered at most between
pairs of points at a time, that is, a pairwise model is used.
Thus, in order to model context, for each point it is necessary
to consider the interactions with many neighbors during
classification. Because of this interdependency, classification
is slower than local independent classifiers such as SVMs.

In [4], the authors present a new method that very effi-
ciently models the interactions of a group of points instead of
normally considering the many linked pairs of points within
that same group, that is, it models high-order interactions.
The parameters for this high-order contextual model are de-
termined through cross-validation, a time-consuming task for
high-dimensional parameters. The first contribution of this
paper is to show how to efficiently learn high-dimensional
model parameters from very large training datasets using a
recently proposed optimization technique [5]. The result of
this formulation directly translates into efficiently learning
a high-order AMN. Our second contribution analyzes the
feasibility and presents a context approximation method
to perform contextual classification onboard of a moving
vehicle.

This paper is structured into six sections. In the next,
various notations are introduced and the background of the

original pairwise AMN formulation is reviewed. In Section
III, we present our first contribution: how to efficiently learn
the model parameters for high-order AMNs. In Section IV,
we propose and analyze the performance of our context
approximation in the off-board, batch scenario. Section V
presents our second contribution where we utilize a high-
order AMN and perform classification onboard of a moving
robot with our proposed context approximation.

II. PRELIMINARIES

A. Problem

Our classification task can be formalized as follows. Given
a set of N random variables Y = {Y1, . . . ,YN}, where each
variable takes a value Yi ∈ {l1, . . . , lK}, find the assignment
of values of y = {y1, . . . ,yN} to Y that maximizes some
score function. In the context of 3-D point classification,
each random variable represents a 3-D point and its value
corresponds to one of K labels; in our experiments we
classify {wires, pole/tree trunks, load bearing surfaces, fa-
cades, vegetation/scattered points} from data. Formulating
the classification task as a supervised learning problem, we
want to learn a discriminative model that conditions the joint
distribution of labels on the data x that we can extract from
the scene Pw(y|x), where w are the model parameters. The
classification procedure is then broken into two steps: (1)
learning the model parameters given labeled data (x, ŷ) and
then (2) inferring the best assignments of a novel scene given
its features.

B. Conditional Random Fields

In this section we give a brief overview of the CRF model
in general and then proceed in more details about our model
in the next section. A CRF is a popular MRF variant used in
computer vision that models a conditional distribution P(y|x)
[6]. The distribution is defined by the dependencies of the
random variables represented in an undirected graph (V,E)
with edges E = {(i j)}|(i < j) where each vertex represents
a random variable and the edges represent a dependency
between two variables. Through the Hammersley-Clifford
Theorem [7], the probability distribution is defined over the
sets of cliques C in the graph as

Pw(y|x) =
1
Z ∏

c∈C
φc(yc), (1)

where yc = {yi}i∈c, φc(·) is a clique potential that is implic-
itly a function of the data x and model parameters w. The
potential measures the affinity of the assignment yc to the
variables of the clique, and Z is the normalizing partition
function defined to be Z = ∑y′∏c∈C φc(y′c); note that the
computation of Z is exponential.

Because CRFs model the joint distribution, performing
inference on a graph with arbitrary clique interactions is
NP-hard in general due to the exponential output space of
possible solutions. To accomodate this combinatorial issue,
most random fields use a pairwise model where only the po-
tentials around each node i and each edge (i j) are considered.
Still, in general, inference on arbitrary pairwise potentials on

graphs with cylic interactions is also NP-hard [8]. Common
approximation inference techniques include graph-cuts [9],
[8] and belief propagation (BP) and its variants [10], [11].
We refer to [12], [13] for thorough recent surveys.

Learning the model parameters in CRFs is traditionally
done by maximizing the conditional likelihood of Equation
1, with regularization on the model parameters. It can be
shown that computing this gradient involves computing the
marginal probabilities at each iteration to define the partition
function; these marginals are often approximated with the
beliefs from BP [14]. It is important to note that this approach
does not extend in general to high-order interactions as
BP computation is exponential in the size of the largest
clique [15]. In our model, we will have hundreds of cliques
containing 30 to 60 nodes.

C. Pairwise Associative Markov Networks
In our final model, we use an Associative Markov Network

(AMN) as originally described by Taskar et al. in [16]. In the
following we describe the pairwise model using the notation
from [16]. First, we define x = {xi,xij} to be the extracted
features from the scene where xi ∈Rdn and xij ∈Rde are the
features that describe node i and the relationship between
nodes i and j, respectively and x≥ 0. In our application, xi
are statistics of the local distribution of points around point
i and xij measures how well the features from i and j agree.
The AMN model uses log-linear potentials to represent the
dependence of the potentials on the extracted features. That
is, logφi(lk) = wk

n ·xi where yi = lk (the label value assigned
to node i) and wk

n ∈Rdn are the weights used when a node is
assigned lk. The potential over an edge models an associa-
tive/Pott’s behavior that favors the two linked nodes taking
on the same labels and penalizes otherwise: logφi j(lk, lk) =
wk

e · xij, where wk
e ∈ Rde are the weights used when linked

nodes are both assigned lk, and ∀lk 6= lo, logφi j(lk, lo) = 0. As
will be discussed in the next section, enforcing non-negative
edge potentials enables efficient inference. To achieve this,
the edge weight vectors are constrained by wk

e ≥ 0. Finally,
changing the representation of an assignment y with a vector
of K ·N indicator variables where y = {yk

i ,k, i|yk
i = I(yi = lk)},

the log of the joint-conditional probability is defined as
logPw(y|x) =

N

∑
i=1

K

∑
k=1

(wk
n ·xi)yk

i + ∑
(i j)∈E

K

∑
k=1

(wk
e ·xi j)yk

i yk
j− logZw(x), (2)

where Zw(x) = ∑y′∏
N
i=1 φi(y′i)∏i j∈E φi j(y′i,y

′
j).

To simplify notation, we define a K(dn + de) length
row vector w = {wn,we} with wn = {w1

n, . . . ,wK
n } and

we = {w1
e , . . . ,wK

e }. Also we redefine y to be a K(N + |E|)
column vector y = {yn,ye}T with yn = {. . . ,y1

i , . . . ,y
K
i , . . .}

and ye = {. . . ,y1
i j, . . . ,y

K
i j, . . .} where yk

i j = yk
i ∧ yk

j. Finally,
we construct X to be a K(dn +de)×K(N + |E|) matrix such
that logPw(y|x) = wXy− logZw(x). This matrix contains the
features repeated multiple times in the columns and padded
with zeros appropriately.

In order to solve the inference task y∗ = argmaxy Pw(y|x),
the authors in [16] formulate a linear program (LP) over a

non-integral (and constrained) version of y and setting wXy
as the objective function. Finding the optimal parameters w is
formulated as a max-margin learning problem. Given labeled
data (x, ŷ), the goal is to find the weights that maximize the
margin of confidence in Pw(ŷ|x) versus Pw(y|x) ∀y 6= ŷ.
This learning problem is formulated as the following convex
program:

min
w,ξ

λ

2 ‖w‖
2 +ξ

s.t wXŷ+ξ ≥max
y

wXy+L (y, ŷ),
(3)

where ξ is a slack variable that represents the gap in the
total energy between the optimal and achieved solutions and
L (y, ŷ) is a loss function that acts as a margin term for struc-
tured output spaces. As in [16] and [2], we use the Hamming
distance between the true and achieved assignments for our
loss function. In [16], the authors show how to substitute the
dual of the inference LP to bound the non-linear constraint
which then results in a valid quadratic program (QP) and
can then be solved by optimization software. Note that one
important property of this formulation is that estimating the
intractable partition function Z has been successfully omitted
from the derivation.

In the next section, the model will be extended to effi-
ciently learn higher order interactions beyond the pairwise
case.

III. LEARNING HIGH-ORDER ASSOCIATIVE
MARKOV NETWORKS

A. Alternative Optimization Approaches

In this section we will show how to extend the AMN
model to efficiently learn high-order interactions. In contrast
to learning with a QP solver, the technique uses a gradient-
based method from [5] that requires performing inference
at each step. Here we review alternative algorithms for
inference and learning that we use to learn the high-order
AMN model.

Inference Instead of using an LP for inference, the authors
of [16] mention that inference on the pairwise model can also
be performed through graph-cut inference, i.e. finding the st-
mincut of a specially constructed graph. However, note that
the original QP learning must still rely on an LP formulation
of inference. We briefly review the graph-cut approach as it is
essential for incorporating the high-order model. Performing
inference on our random field can then be thought of as
minimizing its energy, that is, the negative of the clique
potentials:

E(y) =
N

∑
i=1

Ei(yi)+ ∑
(i j)∈E

Ei j(yi,y j), (4)

with Ei(yi) =− logφi(yi) and Ei j(yi,y j) =− logφi j(yi,y j). In
[8], the authors state that pairwise submodular energy func-
tions of binary variables (K = 2) are graph-representable,
that is, a directed graph can be constructed such that the st-
mincut is the function’s minimum value and the vertices left
connected to the source and terminal define the respective

binary variable values. Note that a function of one binary
variable is always submodular, a second-order function of
binary variables is submodular iff Ei j(0,0) + Ei j(1,1) ≤
Ei j(0,1) + Ei j(1,0), and the sum of two submodular func-
tions is submodular. If K = 2, it is clear that the pairwise
AMN energy is submodular and thus can be minimized by
finding the st-mincut; we refer to [8] for how to construct
the graph. If K > 2, the function is not submodular but can
be approximated up to a factor of 2 with the α-expansion
algorithm; we refer to [9] for more details. This formulation
is practically appealing as it does not require optimization
software and is memory-efficient for large random fields.

Learning In [5], the authors use the subgradient method
to optimize objective

min
w

λ‖w‖2

2
+max

y
(wXy+L (y, ŷ))−wXŷ, (5)

which is the unconstrained version of Equation 3. Since
Equation 5 is convex in w, a solution can be achieved through
subgradient descent. The key to compute the subgradient of
Equation 5 is to use the property: if f (a,b) is differentiable
in a, then ∇a f (a,b∗) is a subgradient of the convex function
maxb f (a,b) for b∗ ∈ argmaxb f (a,b). Therefore, a subgra-
dient gw of Equation 5 is

gw = λw+Xy∗−Xŷ. (6)

Solving the loss-augmented inference problem y∗ =
maxy(wXy + L (y, ŷ)) can still be solved with graph-cuts
as long as the loss function L (y, ŷ) does not affect sub-
modularity. To ensure this, the Hamming loss function is
typically chosen as it decomposes over the node potentials,
which does not affect submodularity. Starting at time t = 0
with w0 = 0, the solution is then achieved through descent
until convergence, or T iterations, using the update rule:

wt+1←PW [wt −αgwt], (7)

where PW projects w onto a convex set W formed by any
specific convex constraints on w; for AMNs, this projection
enforces any negative we to become 0. A common step-size
is α = γ√

t , for some positive γ and current iteration t.

B. Pn Potts Model
In order to model high-order interactions, we need to be

able to efficiently solve the model. Kohli et al. recently
proposed a class of energy functions that can be efficiently
minimized, called the Pn Pott’s model [4]. This model
extends the general idea of the Pott’s model with cliques
of arbitrary order n. That is, the model is associative and
favors all variables in the clique taking on the same label
and penalizes otherwise:

Ec(yc) =

{
λ k

c if ∀i ∈ c,yi = lk
λmax otherwise,

(8)

where λmax ≥ λ k
c ,∀lk ∈ {l1, . . . , lK}. The authors show how

to construct a graph such that its st-mincut represents the
minimized energy for K = 2 (the energy is submodular), and
for K > 2 minimizes the optimal move for the α-expansion
algorithm. Hence this potential is graph-representable.

C. Learning The New Model

In the AMN model, we would then like to incorporate the
high-order information with the pairwise model, that is our
energy function is the sum of Equations 4 and 8:

E(y) =
N

∑
i=1

Ei(yi)+ ∑
(i j)∈E

Ei j(yi,y j)+ ∑
c∈S

Ec(yc), (9)

where S is the set of high-order cliques we would like
to consider; we will discuss their construction in the next
section. We can minimize (perform inference on) Equation
9 through the Additivity Theorem [8]: minimizing the sum
of two graph-representable functions is the same as finding
the st-mincut of the two merged graph representations.

Modeling the high-order energy terms in the AMN log-
linear model, we define the clique potentials ∀c∈ S,Ec(yc) =
− logφc(yc) where

logφc(yc) =

{
wk

c ·xc if ∀i ∈ c,yi = lk
0 otherwise,

(10)

and wk
c are the weights used when all the variables in

clique c obtain value lk and xc ∈ Rdc are the features that
describe clique c. Now, we define y = {yn,ye,yc}T where
yc = {. . . ,y1

c , . . . ,y
K
c , . . .} is a |S| ·K indicator vector with

yk
c = ∏i∈c yk

i . In addition, we define a K · dc weight vector
wc = {w1

c , . . . ,wK
c } and w = {wn,we,wc}. As before, adjust

X such that wXy =

N

∑
i=1

K

∑
k=1

(wk
n ·xi)yk

i + ∑
(i j)∈E

K

∑
k=1

(wk
e ·xi j)yk

i j + ∑
c∈S

K

∑
k=1

(wk
c ·xc)yk

c.

(11)
Thus, in contrast to cross-validation for parameter selection
[4], we can now learn models with high-order potentials that
are log-linear in w using the subgradient method and graph-
cut inference as done before. Note that to satisfy the Pn Pott’s
model (submodularity constraints), we must have λ k

c =−wc ·
xc ≤ λmax = 0. As done with the edge weights, we project
negative high-order clique weights to 0 at each iteration.

D. Discussion

We note that the high-order version of the model was
originally formulated in [16]. However, the difference in
this work is a feasibility issue. As stated above, because
the learning step was formulated as QP, an optimization
solver such as CPLEX must be used. The authors in [5] state
that a training set of approximately 30,000 points neared
the upper bound of what could be handled by the solver
due to memory constraints. Memory constraints with the
subgradient method only require efficient inference such as
graph-cuts. In our experiments in the next two sections, we
will be using training sets with an increase of size by 30%
and 64%, respectively. An overview of the learning algorithm
is presented in Algorithm 1

Algorithm 1 Learning algorithm overview
Inputs: Cliques C, ground truth labeling ŷ, regularization
term λ , step-size αt , number of iterations T
Compute features for cliques in C: X = {{xi},{xij},{xc}}
w← 0
for T iterations do

y∗← graphcut inference(X,w) (Eq. 9)
w← subgradient update(X, ŷ,y∗,λ ,αt) (Eq. 7)

end for
return w

IV. EXPERIMENTAL RESULTS

In this section we first describe how our random fields are
constructed and the features used in our experiments. We
then propose and analyze the context approximation method
which we use in our onboard experiments described in the
next section.

A. Clique Construction

For our edge potentials, we model local, spatial interac-
tions by iterating over the nodes (3-D points) and linking
each node to its closest b-nearest neighbors (b-NN). In
Section IV-D, we evaluate graphs using 3-NN and 5-NN.

In images, the lattice structure of the domain allows for a
natural definition of high order cliques; however, an analogy
with 3-D point clouds is unclear due to varying point density
and lack of an intrinsic data structure. Drawing inspiration
from [17], we define a clique in a 3-D point cloud as a
set of locally similar points resulting from clustering over
the nodes’ features and locations. We use simple k-means
clustering where a ratio kratio = 0.0263 of clusters versus
nodes with the training data was found experimentally to
capture the same local geometric structure. During testing
ktest = kratio ·Ntest. An example of the clustering on test data
is illustrated in Figure 2.

Fig. 2. Clusters on a scene to be used as the high-order cliques.

B. Features

We implemented three geometric features commonly used
in spectral analysis of point clouds [18]. We define λ2 ≥
λ1 ≥ λ0 to be the eigenvalues of the scatter matrix M
defined over a local neighborhood Np around point p.
These features capture the {point, surface, linear}-”ness” of
the local geometry: {σp = λ0,σs = λ1− λ0,σl = λ2− λ1},
respectively. We refer to these as the spectral features. Next,

we estimate the local tangent ~vt and normal ~vn vectors for
each point by using the principal and smallest eigenvectors
of M, respectively. We then compute the cosine and sine of
the angles formed between the directions of ~vt and ~vn against
the vertical and horizontal plane, resulting in four values. We
estimate a confidence in the features by scaling the values
based on the strength of the extracted directions: {~vt ,~vn} by
{σl ,σs}/max(σl ,σp,σs), respectively. We will refer to these
scaled values as the directional features.

In our experiments, the spectral features are defined using
a neighborhood of points within a radius of 0.6 m; the
concatenation of the spectral and directional features define
the node features xi. We define an affinity feature between
two scalars values f1 and f2 as 1/(1 + | f1− f2|). Then, the
edge features xi j are defined to be the concatenation of the
two nodes’ spectral features and the affinities between the
directional features. For the high-order clique features xc, we
computed the same types of features as for the nodes except
that the support volume to calculate the scatter matrix is the
locations of the nodes that constitute the clique/segment. All
of our feature vectors also contain a bias feature of 1.0.

C. Implementation details

We used publicly available implementations of k-means
clustering [19] and maxflow-mincut [20] performing infer-
ence. With the k-means library, we used all the default
parameters for Lloyd’s algorithm except reduced the number
of stages in half in order to reduce computation time. During
testing, we do not create nodes or cliques if their features
cannot be computed; this will happen if the support volume
neighborhood contains less than four points. For α-expansion
inference during the field test, at each time step we initialize
the labelings from the previous iteration as the majority of
the nodes are not deleted from the random field.

D. Context Approximation Analysis

In order to perform onboard classification with the AMN
model, we need to be able to efficiently 1) construct the
necessary cliques in the graph and 2) perform inference.
We will now empirically analyze the computational costs
of these two tasks for our problem. From our previous work
[3], we found that while the pairwise model significantly
performs better than SVMs, the large amount of time taken
for inference makes the approach unattractive for onboard
processing. The expensive inference time can mainly be
attributed to the cyclic and long range dependencies resulting
from a highly linked random field. Such random fields are
needed in order to propagate information in the pairwise
model.

Because AMN potentials enforce the nodes in a clique to
agree with the same label, it may not be necessary to have
a random field with complicated pairwise dependencies if
we can model a node’s surrounding context in a different
manner. Instead, we propose an approximation to achieve
contextual information that tries to enforce local regions to
keep the same label while utilizing node-level information.
Instead of creating a random field with many dependencies,

we construct a random field with disjoint high-order cliques
with the goal that the cliques themselves provide sufficient
context. This formulation models context beyond the point-
wise level, but does not introduce long range dependencies.
This is a counter-intuitive approximation as we have effec-
tively separated the cliques from each other and are now
dealing with a seemingly harder problem of modeling high-
order interactions instead of simpler pairwise interactions.
However, since there are no long-range dependencies, the
constructed directed graph used for graph-cut inference is
simpler and, as the following will show, optimizing high-
order potentials is efficient and still maintains contextual
classification. Furthermore, note that this is not the same as
performing clique-wise classification as the node potentials
are also used.

We trained three models: using nodes and high-order
cliques resulting from clustering (HOC), using nodes and
edges constructed with 3-NN (3-NN), and using nodes
and edges constructed with 5-NN (5-NN). Our training set
consisted of 39,188 data points with 5 labels: {vegetation,
wire, pole/trunk, load bearing, and facade}. The training
parameters for HOC were found to be step size γ = 0.1 and
regularization term λ = 0.1. The training parameters for both
3-NN and 5-NN were T = 700, γ = 0.007, and λ = 0.1.
We performed quantitative evaluation on a testing set of 1.2
million labeled points; note that this is separate data from
the field test experiments in Section V. The classification
performances are given in Table I, where rows are the ground
truth labels and columns are the predicted labels. The 5-NN
model performs the best overall with better or about equal
precision and recall rates for four of the five classes. The
behavior of more true-positives with HOC on the physically
smaller pole/trunk and wire classes can be attributed to the
smoothing effect that pairwise models commonly exhibit [3].
Although most accurate, the timing information in Table II
illustrates that 5-NN is not practically feasible in an onboard
setting. With our context approximation (HOC), we observe
comparable classification with most efficient computation.

HOC 3-NN 5-NN
Classification 3.643 16.123 35.277

Clique construction 11.055 5.843 9.036
Total 14.698 21.966 44.313

TABLE II
AVERAGE COMPUTATION TIMINGS (S) PER 100,000 POINTS FOR A

DATASET OF 1.2 MILLION POINTS.

V. FIELD TESTS

This section presents results from the context approximate
HOC model tested onboard the Demo-III XUV. The task
considered is environment modeling and scene interpretation,
that is, we are interested in autonomously creating accurate,
detailed representations of unknown environments. Such a
representation is potentially useful for other applications such
as autonomous navigation.

Confusion Matrix with High-order Cliques Only (HOC). Overall classification rate: 0.871.
vegetation wire pole/trunk load bearing facade Recall

vegetation 198690 7396 7469 562 11810 0.879
wire 113 1293 12 1 71 0.868

pole/trunk 1840 111 4350 8 435 0.645
load bearing 8665 89265 2388 806039 17430 0.872

facade 4284 3057 3410 3 56084 0.839
Precision 0.930 0.013 0.247 0.999 0.653

Confusion Matrix with Pairwise model (3-NN). Overall classification rate: 0.884.
vegetation wire pole/trunk load bearing facade Recall

vegetation 211234 4011 6168 29 4485 0.935
wire 176 1242 44 0 28 0.834

pole/trunk 3120 96 3196 21 311 0.474
load bearing 10274 56751 23085 807086 26591 0.874

facade 2662 1814 2650 0 59712 0.893
Precision 0.929 0.019 0.091 1.000 0.655

Confusion Matrix with Pairwise model (5-NN). Overall classification rate: 0.889.
vegetation wire pole/trunk load bearing facade Recall

vegetation 209007 4760 6385 127 5648 0.925
wire 120 1286 84 0 0 0.863

pole/trunk 2945 589 2861 67 282 0.424
load bearing 2931 78873 8126 812278 21579 0.879

facade 1018 1231 1510 0 63079 0.944
Precision 0.968 0.015 0.151 1.000 0.696

TABLE I
CONFUSION MATRIX WITH HIGH-ORDER CLIQUES ONLY (HOC), PAIRWISE MODEL (3-NN), AND PAIRWISE MODEL (5-NN)

The three main challenges we faced in using a random
field onboard of a mobile robot for on-line data processing
are: 1) maintaining a coherent graph structure, 2) avoiding
data accumulation as more laser data are collected and the
vehicle is moving, and 3) efficient feature computations. We
address those problems by leveraging on previous work for
efficient data accumulation and features computation, and we
develop an insertion-deletion scheme for the random field.

First the laser data is accumulated into a dense 3-D
scrolling map discretized into ten centimeters edge voxels.
At data insertion, the spectral features sufficient statistics
are stored and the features are computed efficiently for the
new or updated voxels following [1]. Figure 3 illustrates the
following process. The newly inserted points are clustered.
The resulting clusters are treated as the high-order cliques
and are added to the accumulated random field. As the
vehicle moves, nodes and cliques outside an area of interest
are deleted. The cliques’ associated nodes are deleted when
its centroid location is outside the area of interest. By
construction we ensure node assignment to a unique clique1.
An illustration of the evolution of the number of nodes and
cliques within the accumulated random field is presented in
Figure 5. The results were produced on the trail illustrated
in Figure 6-center.

Code integration was done on an off-the-shelf computer
with a 3 GHz CPU and 2 GB of memory. The Demo-III
eXperimental Unmanned Vehicle (XUV) [22] used for field
testing is illustrated in Figure 4. The vehicle is equipped

1Since the time of submission, we have performed additional field-test
experiments where we investigate the efficiency of non-disjoint cliques (by
using overlapping segmentations and linking nodes between adjacent cliques
as they are inserted) and compare with the pairwise model [21].

with state of the art pose estimation and 3-D laser sensing.
Data from a subsection of the environment was previously
collected and hand labeled; the training set consisted of
49,110 points with the same types of labels. A HOC model

Fig. 3. Illustration of the insertion and deletion procedure for nodes and
cliques. Top: vehicle starting position with some cliques within the area of
interest, represented in red. Bottom: the vehicle moved some distance, the
area of interest (in red) overlaps completely and partially with some cliques;
the cliques to delete are shaded in orange; the cliques to add are shaded in
green; deletion and addition of cliques are performed only if the centroid
is within the area of interest.

was trained with parameters step size γ = 0.001 and regular-
ization term λ = 0.1.

We tested the code onboard the vehicle over a variety
of terrains including trails surrounded by dense vegetation
(Figure 6-center), a forest with large tree trunks, understory
vegetation and canopy (Figure 6-right), and also a mock-
up urban terrain with paved roads, utility poles, grass, and
buildings (Figure 6-left). The code was tested over almost 10
km. Illustration of the representative terrains, classification
results and computation times are presented in Figure 6. The
computation times include timings for node feature computa-
tion (nodes), cliques construction and features computation
(cliques), insertion (merge) and deletion (delete) of nodes
and cliques as the vehicle is moving, and the classification
time (classification). We were able to obtain classification
results at least every three seconds in the most stringent
conditions tested: using a large area of interest (25×50 m), in
a highly cluttered environment, and with large pan-tilt laser
turret motion (±10deg×± 20deg). The vehicle speed was
between one and two meters per second.

Fig. 4. Demo-III eXperimental Unmanned Vehicle (XUV)

VI. CONCLUSION

In this paper we presented a contribution to the problem
of 3-D point cloud classification onboard a mobile vehicle
using a conditional random field for scene interpretation
and environment modeling. Our first contribution showed
how higher-order interactions can be efficiently learned using
the subgradient method. The second contribution analyzed,
implemented, and tested a context approximation method for
classifying streaming data from a 3-D laser range finder.
Experiments onboard a mobile robot were conducted in
several types of environments (urban, forest, trail) to support
the claims.

VII. ACKNOWLEDGMENTS

Prepared through collaborative participation in the
Robotics consortium sponsored by the U.S Army Research
Laboratory under the Collaborative Technology Alliance
Program, Cooperative Agreement DAAD19-01-209912. The
authors would like to thank General Dynamics Robotic
Systems for its support.

Fig. 5. Evolution of the number of nodes and cliques deleted (top) and
present in the accumulated random field (bottom) while driving on a trail.
As expected, the number of nodes and cliques increases first as laser data
is accumulated, then levels off while the vehicle is moving as nodes and
cliques are inserted but also deleted. More and more nodes are deleted
because the surrounding of the trail is becoming increasingly cluttered with
vegetation.

REFERENCES

[1] J.-F. Lalonde, N. Vandapel, and M. Hebert, “Data structures for
efficient dynamic processing in 3-d,” The International Journal of
Robotics Research, vol. 26, no. 8, pp. 777–796, August 2007.

[2] D. Anguelov, B. Taskar, V. Chatalbashev, D. Koller, D. Gupta,
G. Heitz, and A. Ng, “Discriminative learning of markov random
fields for segmentation of 3-d scan data,” in IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, 2005.

[3] D. Munoz, N. Vandapel, and M. Hebert, “Directional associative
markov network for 3-d point cloud classification,” in Fourth In-
ternational Symposium on 3D Data Processing, Visualization and
Transmission, 2008.

[4] P. Kohli, M. Kumar, and P. Torr, “P3 and beyond: Solving energies
with higher order cliques,” in IEEE International Conference on
Computer Vision and Pattern Recognition, 2007.

[5] N. Ratliff, J. Bagnell, and M. Zinkevich, “Online subgradient methods
for structured prediction,” in Eleventh International Conference on
Artificial Intelligence and Statistics, 2007.

[6] J. Lafferty, A. McCallum, and F. Pereira, “Conditional random fields:
Probabilistic models for segmenting and labeling sequence data,” in
International Conference on Machine Learning, 2001.

[7] S. Li, Markov Random Field Modeling in Image Analysis. Springer-
Verlag Telos, 2001.

[8] V. Kolmogorov and R. Zabih, “What energy functions can be mini-
mized via graph cuts?” PAMI, 2004.

[9] Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate energy
minimization via graph cuts,” PAMI, 2001.

[10] J. Yedidia, W. Freeman, and Y. Weiss, “Generalized belief propaga-
tion,” in NIPS, 2000.

[11] V. Kolmogorov, “Convergent tree-reweighted message passing for
energy minimization,” PAMI, 2006.

Urban terrain Trail Dense forest

Fig. 6. Onboard data processing results for an urban environment (left column), a trail (center column), and a dense forest (right column). From top
to bottom: a representative image of part of the terrain, classification results for the complete scene, a close up view, and the timings. The urban terrain
covers an area of 215 × 165 m and the vehicle drove over 1.7 km, the trail is 360 m in length, and the vehicle path is the forest is 93 m long. The
processing area covers an area 50 meters wide and 25 meters deep in front of the vehicle. The vehicle operates at speeds between one and two meters per
second. Color code: foliage/grass (green), large tree trunks/facade (dark red), small tree trunks (blue), ground (orange).

[12] N. Komodakis, P. Torr, V. Kolmogorov, and Y. Boykov, “Discrete
optimization methods in computer vision,” Tutorial at International
Conference on Computer Vision (ICCV), October 14-15, 2007.

[13] R. Szeliski, R. Zabih, D. Scharstein, O. Veksler, V. Kolmogorov,
A. Agarwala, M. Tappena, and C. Rother, “A comparative study of
energy minimization methods for markov random fields,” PAMI, 2007.

[14] C. Sutton and A. McCallum, Introduction to Statistical Relational
Learning, L. Getoor and B. Taskar, Eds. MIT press, 2006.

[15] C. Bishop, Pattern Recognition and Machine Learning. Springer,
2006.

[16] B. Taskar, V. Chatalbashev, and D. Koller, “Learning associative
markov networks,” in ICML, 2004.

[17] A. Willis, J. Speicher, and D.Cooper, “Surface sculpting with stochas-
tic deformable 3d surfaces,” in ICPR, 2004.

[18] G. Medioni, M.-S. Lee, and C.-K. Tang, A Computational Framework
for Segmentation and Grouping. Elsevier, 2000.

[19] T. Kanungo, D. Mount, N. Netanyahu, C. Piatko, R. Silverman, and
A. Wu, “An efficient k-means clustering algorithm: Analysis and
implementation,” PAMI, 2002.

[20] Y. Boykov and V. Kolmogorov, “An experimental comparison of min-
cut/max- flow algorithms for energy minimization in vision,” PAMI,
2004.

[21] D. Munoz, N. Vandapel, and M. Hebert, Onboard 3-D Point Cloud
Classification with Associative Markov Networks. manuscript in
preparation, 2009.

[22] J. A. Bornstein and C. Shoemaker, “Army ground robotics research
program,” Proceedings of the SPIE - The International Society for
Optical Engineering, vol. 5083, no. 1, pp. 303 – 310, 2003.

