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Abstract— In this paper, we discuss a methodology to build a 

system for a robot playmate that extracts and sequences 

low-level play primitives during a robot-child interaction 

scenario. The motivation is to provide a robot with basic 

knowledge of how to manipulate toys in an equivalent manner 

as a human does - as a first step in engaging children in 

cooperative play. Our approach involves the extraction of play 

primitives based on observation of motion gradient vectors 

computed from the image sequence. Hidden Markov Models 

(HMMs) are then used to recognize 14 different play primitives 

during play. Experimental results from a data set of 100 play 

scenarios including child subjects demonstrate 86.88% 

accuracy recognizing and sequencing the play primitives. 

I. INTRODUCTION 

HY do children need playmates? Interactive play in 

childhood is closely linked to children’s social, 

physical, and cognitive development [1]. However, due to 

many social factors, children are often left alone, spending 

hours of time watching television, playing video games, and 

computers, which threatens to undermine the process of 

play, with grim implications for the intellectual and 

emotional health of children [2, 3]. 

Simple toys, such as those depicted in Fig. 1, can 

accelerate a child’s imagination as they build their own 

scenes, knock them down, and start over. Along with the 

toys, playmates are also an important source for building 

collaboration and cooperation, controlling impulses, 

reducing aggression, and having better overall emotional and 

social adjustments [4, 5]. Children with development delays 

can benefit from a robotic toy, which can yield better 

attention [6, 7]. Robots also have shown the potential in 

assisting physically challenged children [8], and in engaging 

children in imitation base play [9]. Although robots are 

shown to be of use in these various children-robot 

interaction scenarios, robots, in these venues, are positioned 

more as tools rather than partners or playmates. Long-term 

interaction and the effectiveness of robot usage in interactive 

play therefore has not reached its full potential.  

The effect of playing has shown to have a lasting effect 

due to the dynamic nature of interacting with the world [10]. 

With respect to playing with others, a shared interest arises 

between playmates to make the play continuously 

entertaining, thus engaging the mind, and creating 
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opportunities for extended play over longer durations. Based 

on this theory, in order to transition robots from toys to 

playmates the first challenge to be addressed is enabling the 

robot to become an effective playmate. We believe that by 

observing others play, the robot can effectively learn 

acceptable play behaviors. This type of research is closely 

aligned with research focused on learning manipulation 

tasks. Unfortunately, most research that addresses learning 

manipulation tasks from human-robot interaction tries to 

address the problem associated with general learning 

[11-15]. In addition, gesture recognition, another component 

of understanding play behavior, is often done by means of 

colored gloves [16] or data gloves as described in [17]. 

In contrast, the intent of the approach proposed within is 

the use of dynamic pattern recognition methods, using only 

visual information without further aids. There are many 

earlier gesture recognition works that use vision-based 

pattern recognition technique. Yamato et al. [18] uses 

discrete Hidden Markov Models (HMMs) to recognize 

image sequences of six different tennis strokes among three 

subjects. Starner et al. [19] describe an extensible system 

which uses one color camera to track hands in real time and 

interprets American sign language (ASL). They use HMMs 

to recognize a full sentence and demonstrate the feasibility 

of recognizing a series of complicated gesture. Darrell and 

Pentland [20] uses dynamic time warping to match the 

interpolated responses of several learned image templates. 

The work of Calinon et al. [13] considered learning 

trajectories and constraints from demonstrations for robotic 

tasks. Their approach aims at extracting the relevant 

characteristics of the gesture that needs to be reproduced. 

Motion data is encoded using a mixture of 

Gaussian/Bernoulli distributions (GMM/BMM) which 

provides a measure of the spatio-temporal correlations 

across the different modalities. Among the various pattern 

recognition techniques that exist, we have chosen HMMs 

due to their reliability and simplicity in modeling sequential 

patterns, as shown in these related research efforts.  

Our previous work has shown that through observation, a 

robot can successfully sequence low-level motion behaviors 

into a proper order to form a similar play action [21]. This 

work extends on that concept by developing a library of play 

actions based on low-level motion behaviors, such that a 

general methodology can be established for extracting play 

primitives without a-priori knowledge. In Section II, we 

describe further the concept of play primitives. Section III 

presents the detailed approach for play primitive recognition 

using Hidden Markov Models. Preliminary training and 

experimental results are presented in Section IV and Section 

V provides concluding remarks. 
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II. CHILD PLAY PRIMITIVES 

Baranek et al. describe in their work a subset of toy 

manipulation that can be used towards screening a child’s 

developmental stage [22]. The list contains the behaviors 

shown in the first five levels of object play: grasp, rub, 

shake, bang, mouth, roll, pull apart, stack, scoop, pour, cover, 

and join. Based on this list, we conduct a research study with  

public sources from the web to identify the kinds of basic 

motions that form these manipulations when children 

interact with various types of toys. With regards to a robotic 

playmate, these basic motions are what we further define as 

play primitives.  

Video sequences of children playing with various toys 

were gathered from 25 video sources from YouTube. Play 

scenarios in these data set consisted of building blocks, 

stacking cups, inserting blocks into bins, hammering tables, 

and etc. (Fig. 1). The videos consisted of 32,676 valid 

frames, where only frames that contained an image of a child 

actually interacting with a toy were classified as valid. The 

play primitive identified in each valid frame was then 

determined and used to calculate the ratio of primitives 

initiated by the child.  

Observations made during this study are as depicted in Fig. 

2. As can be seen, many of the play scenarios begin with 

picking up a toy in an upward direction. Younger children 

tend to shake and drop the toy more frequently. Older 

Children, over three years old, are more accurate in 

manipulating the toy in specific directions. The seven most 

distinct primitives (94.21%) found from our study are 

renditions of the behaviors in Baranek et al.’s list, and thus 

provide strength to the defined play primitives in this paper. 

For instance, the Stack behavior from the list is a sequence 

of the basic motions (or primitives) of moving 

up-left/right-down, and the Roll behavior can be a repeated 

sequence of the basic motion of horizontal shaking.  Bang is 

another repeated behavior of the vertical shaking primitive. 

Other primitives that were observed less frequently are 

spinning, pressing, and hugging. In addition to these 

primitives, three kinds of final resting state of the 

manipulated toy were observed: insert (44%), stack (32%), 

and drop (24%). The disappearing of the play object 

characterizes the inserting action while stacking and 

dropping are distinguished by whether the toy rests on top of 

another toy. 

The play primitives we implement throughout the rest of 

this paper are based on the statistics we learned from this 

study. Fig. 3 shows the final fourteen play primitives used in 

our database.  

 

III. TECHNICAL APPROACH 

To endow a robot with the ability to learn acceptable play 

behavior, we use a three-step process consisting of 1) 

Preprocessing, 2) Motion Gradient Extraction, and 3) Play 

Primitive Recognition and Learning. Starting with the  

 
Fig. 1.  Examples of toys children interact in their everyday play. 

 

 

 
Fig. 2. Percentage of each play primitives observed through child play 

with toys. 

 

 

 

original image sequence of a play scenario, the  

preprocessing detects and tracks the toys in a scene. The 

motion gradient extraction calculates a vector for each frame 

that includes direction and size information. Hidden Markov 

Models (HMMs) [23] are then used to recognize and classify 

play primitives, represented by the vector sequence 

computed by the motion gradient extraction unit. The output 

of the system is the sequence of the primitives (Fig. 4). 

 

A. Preprocessing 

When play is initiated, the system first observes the entire 

play scenario. Since the main focus of this research is to 

understand how a child interacts with toys, we track toys in 

the image scene versus the child’s body parts.  And since 

most children’s toys use saturated colors to keep visual 

attention, color is used as the key parameter for toy 

detection. As described in the previous work [21], histogram 

back-projection and filtering techniques are used for the 
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Fig. 3.  The fourteen most frequently repeated gestures are defined as Play 

Primitives. (a)Up (b)Down (c)Left (d)Right (e)Up-Left (f)Up-Right 

(g)Down-Left (h)Down-Right (i)Vertical-shaking (j)Horizontal-shaking 

(k)Circular-shaking(clockwise) (l)Circular-shaking(counter-clockwise) 

(m)Insert (n)Stack/Drop 

 

 

 

detection process. Back-projection is a way of representing  

how likely each pixel fits the distribution of pixels in a 

histogram model [24, 25]. The calibration step is utilized in 

order to cope with variously changing illumination 

conditions, which involves redefining the histograms. Once 

computed, it is used to assign a probability value to each 

image pixel in subsequent video frames. As a new frame 

arrives, the hue and saturation value for each pixel is 

determined. From that, each color histogram is used to 

assign a probability to the pixel. In the case of our toy 

hue-saturation histogram model, if C is the color of the pixel 

and T is the probability that a pixel is a toy, then this 

probability map gives us p(C|T), the probability of drawing 

that color if the pixel actually is a toy. Combining with the 

total probability of encountering a toy-colored object in a 

scene p(T) and the total probability of encountering the 

range of toy colors p(C), we can compute p(T|C) according 

to Bayes’ theorem, 
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This process allows us to identify, with high probability, all 

toy objects within an image scene. Among the multiple toys 

detected from this process, we label the first one upon which  

 
 
Fig. 4.  Structure of the overall system. Preprocessed images are passed on 

to the Motion Gradient Extraction module where each frame is converted 

into a 4-dimensional motion vector. In the Play Primitive Recognition unit, 

the motion vectors are quantized into observation symbols and the best 

HMM that describes the observation sequence is selected. 

 

 

an action is taken as the play object. This toy is then 

tracked and recorded until it comes to a complete stop. Fig. 5 

depicts the preprocessing step. 

 

B. Motion Gradient Extraction 

From the preprocessed image, normalized motion 

gradients !!"#"!$## are extracted using two adjacent frames 

imaged during the play sequence. The gradients are 

calculated using the following formula,  
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where !!"#
"!$#

#  is the mean pixel value of the region 

!"!#"$#  which represents the region of the detected object 
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Fig. 5.  Preprocessing of the play scene. (Top) Initial play scene, H-S 

histogram color map, H-S histogram probability map, and the toys detected. 

(Bottom) The play object is being tracked. 

 

 

 

in the i-th frame. !
"
 is the number of pixels in region 

!"!#"$# . 

These features indicate the direction of movement of the 

play object. The identified sequences of directional features 

are the key characteristics used as input into the HMM for 

play primitive recognition and learning, as discussed in 

Section III. C. 

Another useful feature used in play primitive recognition 

is the ratio of object spread, which can be calculated from 

the change in object size defined as,  
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Here, !!! "#
"!! $#

# is a ratio of the variance between the i-th 

and (i-1)-th frames. The size information can be used to 

distinguish between the play object’s final resting state: 

insert or stack/drop. As the study discussed in Section II 

shows, since these three states are dominant in child play, 

we make the assumption that the toy, with high probability, 

will be inserted, stacked, or dropped during a play scenario. 

The inserted state is defined by disappearing of the object 

after a downward primitive action towards another toy. The 

stacked and dropped condition are recognized by the same 

HMM, but distinguished afterwards by whether the play 

object is on top of another toy or not. 

From the four features introduced above, a 4-dimensional 

motion vector, 
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is derived for every frame resulting in a vector sequence 
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C. Play Primitives Recognition and Learning 

In this research, Hidden Markov Models (HMMs) are used 

to recognize and sequence the fourteen play primitives 

shown in Fig. 3. HMMs have advantages in modeling 

sequential patterns such as speech. Our approach models a 

behavior as a sequence of play primitives. In effect, we 

model a play behavior with temporally sequenced play 

primitives, which is analogous to the representation of a 

word using a sequence of phonemes in speech recognition. It 

is therefore understandable why these techniques developed 

for speech recognition would perform well in our approach. 

The motion vectors !
!
"!

#
"!

$
%%% are converted into discrete 

observation symbols !
!
"!

#
"!

$
%%%  before input into the 

HMMs.  

 

1. Hidden Markov Models (HMMs) 

 

The HMMs are doubly stochastic processes, which are 

an extension of discrete Markov chains, which cannot be 

directly observed. The special case of a discrete HMM is 

represented by three matrices, ! ! !!"""" # . The matrix 

! ! !"#$" specifies the state transition probability from 

state i to j. ! ! !" #$"  represents the probability of 

generating symbol k from state j, and ! indicates the 

initial state probability distribution matrix.  

There are three basic problems that must be solved for 

the real application of the HMM [23]: evaluation, 

decoding, and training (optimizing). The solutions to each 

of these problems are found using variations on the 

Forward- Backward algorithm, the Viterbi algorithm, and 

the Baum-Welch algorithm.  

In this paper, fourteen different HMMs were trained, 

one for each play primitive. The Left-right model, also 

known as the Bakis HMM, is used to model the 

non-cyclical motions such as the first eight primitives and 

the two final state primitives. The repeated gestures such 

as the four shaking primitives are modeled using the 

cyclic HMM as shown in Fig. 6.  

 

2. Vector Quantization 

 

The extracted motion gradient features are quantized 

into discrete symbols to apply to the HMMs. Taking into 

account the important characteristics of the play 

primitives, the feature space is divided into 18 clusters. 

The first classification process uses the directional 

information !!""!## , which is quantized into eight 

regions using the minimum least squared error (Fig. 7 

Top). The size ratio !!! ""!! # #  is a crucial data in 

distinguishing the final resting state primitives, therefore 

forms another category. A steady motion and a 

disappearance of the toy are defined as independent codes. 

Final 18 codes are depicted in Fig. 7.  

The simple structure of this codebook enhances the 

versatility in recognizing newly introduced primitives, 
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which could be added later on with different kinds of toys. 

 

3. Play Primitive Recognition 

 

The recognition result of each observation sequence is 

the HMM with the highest probability !"#$!%
!
!

&"'# ( !
!
)* 

which is computed by the Viterbi algorithm. However, the 

result with a probability under some threshold is discarded 

as an unknown. Final primitives recognized with 

sufficient probability are sequenced to form a complete 

play action. 

IV. TRAINING AND EXPERIMENTAL RESULTS 

In order to train the HMMs, we collected 20 play 

scenarios from three adult researchers. To verify the system, 

30 scenarios were gathered from three adult subjects and 70 

scenarios from three child subjects. Three different cameras 

were used in three different environments in order to verify 

the system’s capability of tracking play primitives in low 

and high resolution images, and adaptability to illumination 

changes. (Fig. 8) 

The scenarios consisted of inserting, stacking, rolling, 

hammering, shaking, and dropping with various speeds, 

some with simple trajectories and others having longer 

interaction with the toy. Play scenarios ranged from 2 to 30 

seconds.   

Using the HMM structure stated in Section III, we 

collected 5 to 15 play primitive data sets (Fig. 3) for each 

primitive extracted from the 20 training play scenarios. The 

vector sequence !  received from the motion gradient 

extraction module was quantized into a sequence of discrete 

observation symbols !  based on the customized VQ 

codebook. The data for each play primitive was 

simultaneously used as inputs to the Baum-Welch algorithm, 

which ran until it converged. Experiments show that it took 

an average of 4 iterations to achieve over 95% convergence. 

The 30 test scenarios were conducted with three adult 

subjects in a same environment as the training data set, but 

different from the ones used to train the HMMs. Three child 

subjects each performed 20~25 scenarios, and were video 

taped at their homes. Scenarios varied in contents from a 

very simple pick up and insert operation to the one shown in 

Fig. 9. Test scenarios were conducted to examine the 

capability of the system in recognizing the play primitives 

and correctly sequencing them together. The average frame 

rate of the overall algorithm was 21.6 fps. Fig. 10 shows the 

recognition rate of each play primitives, and Fig. 11 is the 

confusion matrix. The average play primitive recognition 

rate for adults was 94.51% while sequencing was performed 

with 100% accuracy based on the play primitives that were 

recognized. The average play primitive recognition rate for 

child subjects was 83.61%, resulting in 86.88% overall 

performance. The lower rate is due to children becoming too 

excited and manipulating the toy outside the camera frame, 

operating two kinds of toys at once, and objects being  

  

 
(a) 

 

 
(b) 

 
Fig. 6.  (a) Left-Right HMM used to model sequential primitives and  

(b) Cyclic HMM used to model repeated shaking primitives 

 

 

 
 

Symbol Direction 
Size 

ratio 
Symbol Direction 

Size 

ratio 

1 0! > 0.83 10 0! < 0.83 

2 45! > 0.83 11 45! < 0.83 

3 90! > 0.83 12 90! < 0.83 

4 135! > 0.83 13 135! < 0.83 

5 180! > 0.83 14 180! < 0.83 

6 225! > 0.83 15 225! < 0.83 

7 270! > 0.83 16 270! < 0.83 

8 315! > 0.83 17 315! < 0.83 

9 Steady 18 Out-of-sight 

 

Fig. 7.  VQ Codebook. (Top) 8 directional regions (Bottom) Classification 

of each observation symbols 

 

unidentified under severe light condition. The average 

recognition rate for the sequential play primitives using 

left-right model was 88.85% while repeated shaking 

primitives using a cyclic model resulted in 81.95% success 

rate. Even the difficult primitives such as the circular  
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Subjects 
Test 

Environment 
Resolution 

Frame 

rate 

Number of test  

scenarios  

3 Adults Lab 320x240 30fps 30 (10 each) 

Child #1 Home 640x480 30fps 28 

Child #2 Home 320x240 30fps 22 

Child #3 Home 720x480 30fps 20 

 

Fig. 8.  Subjects in various illumination conditions, and different camera 

resolutions. (Top Left) Adult subject in controlled lab environment. 

(Others) Child subjects in their natural home environment. 

 

shaking motions were recognized with 78.48%, which is a 

satisfying result.  

The training and experiment result show that most of the 

behaviors during a play can be understood by sequencing 

low-level play primitives. This fact is very encouraging in a 

sense that when applied to a robot playmate, the robot can 

observe and take turns with children while engaging in a 

daily basis and therapeutic play. 

V. CONCLUSIONS AND FUTURE WORK 

This work presents the basic therapeutic concept of child 

play: engaging and interacting. Some articles emphasize that 

everyday of childhood should be a day of play [26-28]. In a 

therapeutic aspect, this paper presents a promising 

recognition system for a robot playmate that has huge 

potential in engaging a child in play using various types of 

toys.  

The play primitive based behavior recognition system 

presented in this paper has several advantages. First, unlike 

most earlier works on gesture recognition which tries to 

recognize a specific motion in whole, such as recognizing 

"hello," "good-bye," and "rotate" [29], this system 

decomposes a large play behavior motion data to a 

temporally-sequenced play primitives which can be modeled 

with first order Markov process. Second, this allows us to 

extend the recognition rate to any play behavior, especially 

when dealing with unpredictable children. Finally, the 

recognition can be implemented in real-time using any 

 

 
(a) 

 

 
(b) 

 
Fig. 9.  Example test scenario. (a) 26th, 66th, 110th, 129th, 186th, and 214th 

frame of the scenario (b) Trajectory of the play object. Sequence was 

correctly identified as <UP-LEFT-DOWNLEFT-DOWN-STACK-UP 

-UPLEFT-LEFT-DOWNLEFT-DOWN-DROP> 

 

low-resolution single camera. The real-time aspect has the 

potential for interactively learning new play primitives while 

in play. 

We have first addressed here the most frequently observed 

play actions while a child is interacting with toys, and based 

on the study defined the fourteen play primitives 

implemented through out the research. The recognition of 

play primitives was modeled using Hidden Markov Models 

(HMMs) approach. The preprocessing step identifies toys in 

a play scene by back-projecting the 2-dimensional 

hue-saturation histogram to the input frame, and tracks the 

object in action. The calibration step is added to refine the 

histograms in order to adapt to changing illumination 

conditions. The Motion Gradient Extraction module extracts 

the four-dimensional motion vector that contains the 

directional and size information. The motion vector 

sequence is then converted into discrete observation 

symbols, which is used towards training HMMs and 

recognizing the play primitive. We have shown that the 

proper combination of these features can yield satisfying 

recognition rate.  

Further work will be conducted with the robot platform 

that is focused on taking turns with its child partner. Based 

on the observation and prediction of a child interacting with 

a toy, the robot will choose its behavior and action. 
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Fig. 10.  Individual recognition rate for each Play Primitive. Average rate for adult subjects is 94.51 %,  

child subjects 83.61%, and overall 86.88% 
 

 

 

 
Fig. 11.  Overall Play Primitive confusion matrix. Unidentified includes insufficient likelihood,  

children manipulating toys out of view, and etc.  
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