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A new large projection operator for the redundancy framework

Mohammed Marey & Frangois Chaumette

Abstract— In this paper, we propose a new projection becomes of full rank and no redundancy space is left for
operator for the redundancy framework based on a task projecting any constraint. This is a limitation of the ciass
function defined as the norm of the usual error. This projection gradient projection method. That is why a proper selection
operator allows performing secondary tasks even when the main Lo . . .
task is full rank. To ensure the convergence of the system, of the projection op_erator is required to provide se(?ondary
a switching strategy is then defined to switch from the new Motions of the manipulator that respect the constraints and
projection operator to the classical one before the norm of keep the projected vector from being distorted as much as
the total error reaches zero. An adaptive gain is also defined possible [4],[7]. A nonlinear projection operator has been

to slow down the convergence of the main task. It allows recently proposed in [2]. We will see that the method we
the secondary tasks to be active for longer. The experimental L -

results obtained show the agreement with the analytical study Pfopos‘? leads to significant |mprovements.. .

and demonstrate the effectiveness of the proposed projectio N this paper, we propose a new projection operator.

operator with respect to the classical one. Instead of considering all thé components of the main
Index Terms— Robot redundancy, secondary task, projection taske, only the norm|le| of this task is used. Considering
operator, visual servoing. the norm of the errors allows the corresponding projection
operator to enlarge the permitted motions, at least when
the errors are still large. As we will see, using this new
Redundancy allows robot systems to increase their levgtojection operator leads to a less constrained probleoesin
of manipulability and flexibility. There are several typesthe new main taskle|| is of rank one at maximum. Our
of redundancy for a robot manipulator: redundancy witi@nalytical studies show that this operator has to switch to
respect to the end effector when the manipulator has motiee classical projection operator when the norm of the total
DOFs than those required to place its end effector at @rror approaches zero. A switching strategy for the prigjact
given position and orientation within the task space, andperator has thus been developed. Finally, an adaptive gain
redundancy with respect to the task when the number ¢ also proposed to slow down the convergence of the main
independent parameters required by a task is less thtask. It allows the secondary tasks to be active for longer,
the DOFs of the robot manipulator [5],[4],[13],[3]. Severawhich may be useful in practice when the secondary tasks
works have been done on the utilization of redundancy tbave really to be taken into account (for obstacles or joint
consider different sorts of constraints. This is usuallyelo limits avoidance for instance).
by combining secondary tasks that express these constraint This paper is organized as follow: in Section II, the new
with the main task [1],[6].[2].[7].[12].[9]. projection operator is developed and discussed. In Section
In [1], a global objective function that realizes a com-ll, different test cases with respect to varying numberaskt
promise between the main task and secondary tasks is ugginponents and robot DOFs are presented and analytically
by exploiting the robot redundant DOFs with respect tstudied ase nears zero. In Section IV, a switching strategy
the main task. This approach was used to avoid kinematig given to solve the problems exhibited in Sections Il and
singularities and joint limits in a target tracking systemlll. Finally, a description of the implementation of the new
However, important perturbations can be produced by therojection operator followed by experimental results isul
obtained motions, which are generally not compatible witiservoing are given in Section VI.
the regulation to zero of the. main task. Also, the globa}l task II. THE NEW PROJECTION OPERATOR |
can fail when the same joints are used for the avoidance X ) _ )
and for achieving the main task. Another classical approach -6t € € R be the main task function where k is the
uses the gradient projection method [10]. This is done b umber of its components. The classical approach that tries
projecting any vector representing the desired motion iff €NSure an exponential decrease of all componenis of
the space of the secondary task onto the null space of tfds to the following control scheme [10]:
Jac?bianbm; thet rtr;]ain task to modif;; :Ee beh_avitor l?f _T_r;]g q = Go+Peg (1)
system, but not the convergence of the main task. This _ + +
rryllethod requires that the mgin task does not constrain all = Meet(ln—Jo'Jo)g 2)
the robot DOFs. Indeed, in that case, the main task Jacobiatiere g is the robot joint velocity sent as inputs of the
low level robot controllerJ, € R¥*™ is the task Jacobian
Mohammed Marey and Francois Chaumette are with INRIA, Centrgefined such thae = Jeq, n is the number of robot
Rennes-Bretagne Atlantique, IRISA, Campus de Beaulieup#3Rennes- . .
cedex, France. E-maifi st nane. Nane@ri sa. f r DOFs, J} is the Moore-Penrose pseudoinverse Jf, g
Mohammed Marey is granted by the Egyptian Government. represents the motion induced by the secondary task, and
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P. = (I, — J}J.) is a projection operator on the null Using control scheme outpdf. given by (10) , a singular
space ofJ, so thatg is realized at best under the constraintonfiguration is obtained it € Ker(J'). That is clear

that it does not perturb the regulation ef to 0. This

projection operator may be too much constraining: it has naof the classical control schemgg

component available when the errerconstrains all then
DOFs of the system, and only — r (wherer is the rank
of J¢) in the general case.

from (5) directly. This case corresponds to a local minima
= —)JZe (see (1) and
(2)), sinceKer(J!) = Ker(JZ). Another singularity occurs
whene — 0 if the denominatore’J.J! e has a conver-
gence rate to zero faster than that of the nominator. If the
denominator and the nominator have the same convergence

The main original idea of this paper is to define the maimate to zero wher — 0, thenlime .o §¢| is indeterminate
task function as; = ||e||. We can then deduce the analyticaland the system will not be stable nor robust with respect to

form of the new projection operatd® ., and the articular

any perturbation. Of course, we obtain the same results by

velocity ¢ - Since the error norm and the error vector arstudying the stability analysis of the control scheme (L6}.

linked by |le]|? = eTe, we have2|le||le| = 2e'é, from
which we obtain:

. : 1 )
i=lle| = e'e ®3)
llell
Sinceeé = J.q, we obtain by injecting: in (3) :
1 T
nN=y-, € Jeq (4)
llell
from which we deduce
1
el = 7o ©' Je ©)
el

Note thatJ e € R'*" is at most of rank 1. For ak such
that ||e|| # 0, we then obtain
+ el T

lel = oT3 3T Je©

(6)

If we wanty to have an exponential decrease, fie= —\n,

then the least square soluti@f)e of Jjc| Gjej = —A 7 is
given by:
dje| = —A llell I} 7
and the general control law will be:
. N . N
4= qje|| + dje = el + P8 (8)

where P = (I, — J|\e|\+JHeH) is a projection operator

on the null space off || andg is any vector that can be

designed to try to realize secondary tasks.
Using (5) and (6), we directly get:

1

T.,T
PHe” = In — m Je ee Je

9)

Since J|¢ is at most of full rank 1, we note thdP
is at least of rankn — 1, which will thus not filter a lot

us consider the candidate Lyapunov functiott) = 2. By
taking the derivative o/ (¢) and injecting (4) in the result
we obtain:

- lell
Vi) = 2nn=27—
lell

2e'J.q when e#£0

e'Joq

11)

Consideringe # 0 and injecting (10) in (11), we get:
—2)el®
elJ.Jle
—2)\|le[|> whenJle #0 (12)

We haveV(t) < 0 as soon ag # 0 ande ¢ Ker(J]),

thus ensuring the local asymptotic stability of the system a
in the classical case [8], but when= 0. Let us note that

the same results are obtained considering other main task
functions such ag = +/[[7][, 7 = ||n]|*, and even; = |le||”
whatever the value of. We will see how to deal with these
problems of singularity and stability in Section V-A.

V(t) e'JJle

I11. ANALYTICAL STUDY OF P”e”

This section presents an analytical analysis of the pro-
jection operatorP || given by (9). On one hand, we can
note that, ae — 0, the value ofP | is unstable since the
denominator tends to zero. On the other hand, we would like
that P tends toP. whene — 0. Indeed, where — 0,
no perturbation has to be introduced by the secondary tasks
on each component of to preserve its convergence and
stability. In the following, we illustrate this point by two
examples.

A. Case when k=2 and n=2

If we consider a system with two DOFs and a task with
two components: = (z,y) thenJ, € R**2, By assuming

the secondary task. That is the main idea of this work thatJ, is of full rank and is given by:

especially if we remember that, in the classical approach,

the rank of P, is equal ton — r. As soon asr > 1,

supplementary directions of motions are thus available to

achieve the secondary tasks. That is particularly true wheve get:

Je is of full rank n, in which caséP. = 0 and no secondary

task at all can be considered in that usual case.
Let us now considery . After injecting (6) in (7) we

obtain:

Jle

e = —Ae (10)

b
Je- [fj d} (13)
2
see’so =1y ] (14
and
e'JJle=A%4 B? (15)

where A = (ax + cy) and B = (bx + dy).



By injecting (14) and (15) in (9) and assuming for simplic- IV. SWITCHING BASED PROJECTION OPERATOR

ity that = = y then taking the limit ag — 0 for P [1, 1]

we get:

As discussed before, the new projection operdqy —+
P, ase — 0. To ensure tha?|; — P., a switching

) (a+ c)? strategy is designed. It consists in defining a convex com-
ehﬂ%PHeH[la =1~ (a+c)2+ (b+d)?2 #0  (18) pination P, between the classical and the new projection
i operator such that:
while we have _ _
Py = X(le|]) Pyey+ (1= X(|le P. 24
P.—1,_J-'J,—0 @) A= Alllell) Pjey+( (lell)) (24)
o where the proposed formula for the switching function
which implies: Xle]) : R — [0,1] is defined by:
eliL%P”eH 7é P, (18) 1 if e; < HeH
by — A(lelD=A i
Similarly, the same result can be obtained for a higher DOFs Alllell) = . v :I ﬁi||§<|‘2” se (25)
0

system when the number of features is equal to the number

of the robot DOFs and the task Jacobian is of full rank.

B. Case when k=2 and n=3

where e; and ey are two threshold values that define the
starting and the ending conditions for the switching period
Ale) : R — R is a continuous monotonically increasing

If a system of three DOFs is considered with the samginction, such thah; = A(e;) ~ 1 and\g = A(eg) ~ 0. The

taske = (z,y), then the task Jacobiah € R**3 is given
by:
_ (@ a2 asg
Je = [bl ba b3:| (19)
then we get:
X2 XYy XZ
Jlee'J.= |XY Y? YZ (20)
XZ YZ Z?
and
e JJle=a® A4+ 20y C+14° B (21)

where X = a1z + by, Y = agx + bay, Z = azx +
A= Z?:1 azz’ B = E?:1 b?, C= Z?:1 a;bi.
Injecting (20) and (21) in (9) we get:

b3y,

_Xx? XY Xz
D D D
P = Xy _y? Yz (22)
lell D D D
Xz YZ 1_ 22
D D D

where D = e J.J! e. By considering again the particular =

caser = y and taking the limit ofP | whene — 0, then
multiply the first column of the result by, we get:

Je lim P||e|\ [1, 1..3]
e—0

-

where Dy = 32 (a2 + azb; + b2), X

ang

Dy

agXoYo a3X0Z0
+ =5 705,

0Zo

lal
b1X5 | baXoYo | b3X
bl - Do + Do + D

0

ar + b1, Y

0

(23)

sigmoid functionA(t) = m shows early exponential
growth from zero for negative, which slows to linear
growth of slope 1/4 neat = 0, then approaches one with
an exponentially decaying gap for positivg14]. A good
selection for the function(||e||) is then the sigmoid function
given as:

1
1 4 exp(—121el=co 4 ¢)

e1—ep

where values ofe; and e; have to be selected such that
the system does not converge too fast during the interval
[eo, e1]. This allows the switching to be performed smoothly
during a sufficient number of iterations. Figure (1) showes th
shape of the switching functio(||e||) wheneg = 0.1 and

e1 = (0.3,0.5,0.7,0.9).

Alllell) =

(26)

llel

Fig. 1. Switching functiom(|le]|).

as + by, Z = as + bs. This results shows that once again
lime .o P || # Pe since we have of coursé.P. = 0.

| : . . V. MAIN TASK FUNCTION
The previous study directs us to the following conclusion:

as soon as the system nears its goal (that is vhen0) we
have to switchP | to the classical projection operatb..

A. Possible control schemes
As discussed before in Section I, stability problem and

This switching ensures the convergence of the system, sinsiagularity appear whee — 0 if the control scheme¢

it allows solving the instability problem oP,; ase — 0
due to the singularity off | whene = 0.

defined in (10) is used as output of the main task. These
problems can be avoided by performing a switching from



ge| to the classicatje given in (2) by defining as control VI. EXPERIMENTAL RESULTS

scheme: Results presented in this section have been obtained after
ar=A(llel) aye + (1 —A(ell) de (27)  applying the proposed methods in visual servoing on a six
_ o . i DOFs robot. In visual servoing [11], the task function is
where)(]le||) is given by (25)_f0r Wh_|cha0 is selected such yefined bye = s — s* wheres ands* € R* are two
that as long agle|| > eo, the singularity effect ofyc| does \ectors representing the current and the desired selected
not appear. Applying this switching strategy ensures et t ;g 5| features. The task Jacobidp — L.MJ, whereL,
main task will avoid the singularity situation when— 0 s the interaction matrix that relatésto the instantaneous
since camera velocity by $ = Lgv, J4 is the robot Jacobian and
lim ¢y = lim §e =0 (28) M is the matrix that relates to the variation of the camera
e—0 e posep by v = Mp. An object composed of four points
In order to avoid the indetermination problem when th@orming a square is considered with the Cartesian coorefinat
denominator ofqe| is equal to zero (that is whea <  of the four points in the image defining the visual features
Ker(JJ), a direct switching without a transition interval ysed in the visual servoing system. This means that we have
from ¢ t0 4. can be employed by setting = ¢, where 5 system of six DOFs and eight visual features with a full
problem occurs. Finally, the classical control scheigeean  translational vector expressed in meter arisl the rotational
also be used directly with the new projection operd® yector expressed in degree. Three different experimens ha
instead ofqe or qx. In that case, the control scheme will yeen implemented to validate and investigate the efficieficy
be: o the new projection operator. In all cases, the desired camer
q=4e+Pyg (29) pose is (0, 0, 0.5, 0, 0, 0), which means that the camera has

Starting the task with the classical control scheme ensurf be at 0.5 m in front of the square so that it appears as a
an exponential decreasing of each error component, whi€gntered square in the image.

may be useful in practice as will be seen in Section VI. A. Case 1: Control schemes ¢jq; and ¢
o . e €

B. Adaptive gain 5(le||) In this case, we study the behavior @fi,; and the
Usually, the gain\ involved in the classical control schemeeffect of the adaptive gaif(||le||) with the classical control
de = —MJJe is tuned so that the convergence rate of thechemeq.. The initial camera pose is 1=(-0.1,0.1,1.0,0,0,0)
main task is as fast as possible while preserving the gtabiliand no secondary task is added to the main task. Applying
of the system. This leads to increas@se decreases (using ||, the initial movement consists of translations along x-
for instance)(||e||) = A min + K exp(B]|e||) where \min, K  axis and y-axis combined with a small rotation around y-
and B are constant scalar values). However, having a fasixis till iteration number 80, as depicted in Fig. 2(a). Then
convergence rate for the main task may not be adequatethe translational movement along z-axis starts to increase

our case. Indeed, sind@ . switches toP. whene — 0, Also, Fig. 2(a) shows that as soon gs| nears zero, the
this switch may occur too early to have enough time to takeontrol low ¢ is completely unstable, as explained in
the secondary tasks into account. This is especially the caSection 1l. As expected, the norm of the total error is
when the secondary tasks are critical (such as obstacles angbonentially decreasing but during the instability dudht®
joints limits avoidance for example). That is why it may beperturbations it induces. If the switching & is performed
useful to slow down the convergence of the main task. Favhen |le|| — 0, that is using (27), the system converges as
that, the norm of the total error is used in the control schem&n be seen in Fig. 2(b). As shown in Fig. 2(c), applying the
and we propose to use= )\, |le|| where ), is a constant. classical control schemg,, each error component converges
However, as soon age| — 0, the convergence rate of the exponentially to zero, as well as the norm of the error. BGgtti
main task becomes too small. To avoid this problem, wthe gain\ = \g|/e||, the convergence rate is extremely slow,
define a gain functiord(||e||) which returns the norm of the as depicted in Fig. 2(d). Finally, using the adaptive gain
total error as long aP, = P and switches automatically function 3(||e||) with the classical control law ensures the
to 1 as soon as the norm of the error reaches a specifiednvergence of the system as shown in Fig. 2(e).

threshold value. The scheme of the adaptive gain functiolg Case 2: Secondary task g = (0.1, 0, 0, 0, 0, 0)

B(|le]]) can be deduced and written as:
_ _ Now, we use the new projection operator and apply a
Bllell) = 1= Adlell) + llef Allle]l) (30) " simple secondary task consisting of a translation of 10 cm/s
with the same switching conditions used to switch fiBrp,,  along x-axis. Let us first recall that using. would not
to P. used forj3(|le||). SettingA = X\o3(||e||), the control allow any secondary task to be achieved. As expected, using
scheme (29) becomes: the projection operatoP | during all the servo does not
. produces a satisfactory behavior (see Fig. 3(a)). Indeades
4= f(lell) I'e +Pr g (31) secondary motions are produced while the main task tries
Using this control scheme increases the time during whidihe robot to reach the desired pose, where it has then to
the secondary tasks will be active thanks to the usBQf.  be motionless. This explains the oscillating behavior @ th
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Fig. 2. Results for case 1. Comparison between the differemitral schemes Line 1:image points trajectories, line 2: imamat error, line 3: norm of
the total error, line 4: translational camera velocity (cewis) rotational camera velocity (deg/s).

velocity components of the global task. In Fig 3(b), the VII. CONCLUSION AND FUTURE WORK
projection operatorP, is used and the system switches
automatically to the classical projection operator. T Hisves

the secondary task to be taken into account at the beginniﬂ N
of the servo and ensures the convergence of the system to or. A swnchmg sf[rategy has been proposgd to ensure
desired position. Fig. 3(c) shows the results obtained WheI at t_he new prqjectlon operator smoothly switches to the
the switching gain functior(|le|]) is used. It is clear that classical projection operator as soon as the error nears

the secondary task is considered during a longer number o0 An adaptl\{e gain has aIsp been develqped SO tha.t the
iterations, which may be useful in practice secondary task is effective during a long period by slowing
' ' down the convergence rate of the main task. That may be

useful when the secondary tasks are extremely important and
C. Case 3: Secondary task g = (-0.02,0.04,0.02, 4,4,4) hav_e _really tp be considered (WhiCh is the case for instance
for joints limits and obstacle avoidance).

In this case, a more general secondary task is These theoretical developments have been implemented
used with non-zero value in all its componentg, = and validated experimentally on a six DOFs robot arm. The
(—0.02,0.04,0.02,4,4,4). Using the new projection oper- main interest of the new projection operator is that it is
ator P, with the classical control scheme, most of thealways at least of rank (n-1). Hence it can be used even
secondary task components are projected successfully offtdhe main task is of full rank. This property enlarges the
the main task, see Fig.3(d). At each iteration, the maiapplicability of the redundancy framework. As future warks
task tries keeping the exponential decreasing of each ernoe plan to apply the new projection operator to classical
component while the projection operator tries to keep theonstraints such as joint limits avoidance, obstacle aruid,
exponential decreasing of the norm of the total error, whichcclusion avoidance and also to ensure the visibility of the
leads to a nice behavior for the system. Then, thanks to tiésual features.
switching strategy to the classical projection operatbe t
system converges to the desired pose. When the switching REFERENCES
gain functions(||e||) is used (see Fig. 3(e)), the number of . _ _ _ _ _

; . . . . él] B. Nelson z_;\nd P. Khosla, Strat§g|es fo_r increasing t_he'l‘tlng region
iterations where the secondary task is considered inease” .t an eye-in-hand system by singularity and joint limits aice”,
significantly. Int. Journal of Robotics Research, 14(3):255-269, June 1995.

In this paper we have proposed a new large projection
erator by defining the main task as the norm of the total
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Fig. 3. Results for case 2 are in (a), (b) and (c) and for case(@)iand (f). Line 1: image points trajectories, line 2: imagéperror, line 3: norm of

the total error, lines (4), (5) and (6): camera velocity comga in cm/s and deg/s of the general, main and secondary esbeactively.
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