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Abstract— This paper presents an EKF-based approach to
the problem of robot formation pose tracking in SLAM when
a previously built feature-based stochastic map of a navigation
area is available. We show how a direct implementation of
the EKF algorithm leads to inconsistency in the estimated
localization. We justify the origin of the anomalous behaviour
of the filter in the time-correlated nature of the measurement
noise sequence. A novel solution based on the measurement
differencing technique is proposed to drive the solution of the
EKF towards consistency. Both simulation and real experiments
with a 3-robot triangular-shaped formation are reported.

I. INTRODUCTION

Nowadays a big part of the robotics community is focused

on the Simultaneous Localization and Mapping (SLAM)

problem. We know how to build maps more and more

accurately, efficiently and without requiring a big computa-

tional effort. A variety of representations for mapping indoor

environments have been proposed throughout recent years

including feature-based maps, grid-based maps and fuzzy

maps.

The use of previously built maps to localize individual

vehicles has been reported in [9] and [7] from a feature-based

perspective, in [15] by using grid-based maps and [16] by

combining grid-based and topological maps. Regarding to

multi-robot cooperative localization, the works in [6] and

[10] divided the team of robots into two groups: while

one group moved, the other group remained stationary and

acted as landmark. This strategy is useful in the absence

of landmarks or in uncharted environments but the robots

must maintain visual contact which constraints the robot

displacements. Additionally in [14] inter-robot position mea-

surements are used within an EKF framework to improve the

estimates of the group and in [13] a distributed algorithm is

proposed to localize a team of vehicles. However, and to the

best of our knowledge, any reported work has considered the

use of feature-based stochastic maps for solving the robot

formation localization problem.

Additionally, and from a state estimation perspective, con-

sistency issues are of paramount importance to assure conver-

gence of the solution provided by the estimation algorithm.

In [5] the consistency of multi-robot cooperative localization

was investigated from an observability perspective. Also, the

effect of using repeated measurements on the consistency

of the algorithm has been reported in [8] by taking into
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account the correlations between consecutive relative-state

measurements, and in [1] by keeping track of the origins of

measurements and preventing them from being used more

than once.

In the work reported in this paper, aligned with the general

objectives of the European project URUS [18], we turn

our attention towards using a previously built feature-based

stochastic map to localize a team of autonomous vehicles

while they navigate coordinately. We propose an algorithm to

localize a team of robots within a stochastic map where each

robot cooperates to obtain a more accurate and consistent

position while navigating and avoiding obstacles.

Our contributions are two-fold. First, the work emphasizes

the inherent difficulties of using stochastic maps to localize a

robot formation due to the existence of time-correlated mea-

surement sequences. Whenever these statistical dependencies

are not properly considered we show that the algorithms lead

to inconsistent estimation of the robot formation localiza-

tion. Second, we originally formulate the problem of robot

formation localization in SLAM within the EKF framework

by using the measurement differencing technique [4], [2],

[11] which allows the elimination of colored measurement

sequences within the update step of the filtering algorithm.

This article is organized as follows: section II defines

the probabilistic representation of the robot formation and

presents the EKF formulation of the robot formation localiza-

tion by assuming white noise measurement sequences. Sim-

ulation results illustrates the inconsistency of the approach.

Then, section III proposes a modified EKF algorithm based

on measurement differencing which correctly interprets the

inherent time-correlated nature of the measurement sequence

and it provides a consistent solution for the estimated robot

formation localization. Section IV reports both simulation

experiments within a rapid prototyping environment and real

experiments with a 3-robot triangular-shaped formation of

Pioneer 3-AT vehicles. Finally, section V summarizes the

work and proposes future research directions.

II. EKF-BASED LOCALIZATION OF THE ROBOT

FORMATION

Let a robot formation be composed of r+1 heterogeneous

vehicles {R0, R1, ..., Rr}, where R0 is the robot leader and

Rj , j = {1, ..., r} are the robot slaves. A certain geometric

shape, e.g. equilateral triangle, regular pentagon, etc, is

imposed to the team depending on the number of vehicles

and the task commanded to the formation.
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From a probabilistic view-point, the location of the robot

formation can be represented by a discrete-time state vector

xR formed by the location of the robot leader R0 with

respect to (wrt) a base reference frame B and the location

of each robot slave Rj wrt the robot leader R0, and by its

associated covariance matrix PR which stores the statistical

dependencies between those estimated locations. Following

the Gaussinity assumption, xR ∼ N (x̂R,PR) with,

x̂R =











x̂B
R0

x̂R0

R1

...

x̂R0

Rr











;PR =







PR0
· · · PR0Rr
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PRrR0
· · · PRr






(1)

This leader-centric representation reduces the volume of

uncertainty, i.e. the determinant of the covariance matrix

PR, in comparison with an absolute representation wrt the

base frame B of each robot location vector and, therefore,

linearization errors due to large uncertainty values are min-

imized.

From a Bayesian view-point the pose of the robot for-

mation is given by the recursively estimated conditional

probability density function p(xRk
|yE0:k

,yM) where yE0:k

represent the set of sensor readings gathered by the sensors

mounted on the robots from environmental features from

time step 0 up to time step k, and yM represents the

stochastic map of the previously mapped navigation area.

In the sequel, the EKF algorithm [2] is used as the core

estimation technique.

A. EKF Prediction Step

The EKF-prediction step propagates the state of the robot

formation from time step k−1 to time step k by using dead-

reckoning measurements:

xRk
≃ Fk−1xRk−1

+ vk−1 (2)

where the block-diagonal matrix Fk−1 represents the ja-

cobian matrix of the linearized motion equations of the

robot team and vk−1 represents a zero-mean white noise

sequence with a block-diagonal covariance matrix Qk−1. Eq.

(2) provides estimates for the state vector x̂Rk|k−1
and its

associated covariance matrix PRk|k−1
.

B. EKF Update Step

At time step k, robust data association provides the algo-

rithm with a set of jointly consistent pairs (Ek,Fk) formed by

sensor observations and map features respectively. Due to the

inherent nonlinearities, a linearized measurement equation is

used within the EKF-update step:

zk ≃ HkxRk
+ Gkyk (3)

where Hk and Gk = (GEk
GFk

) are the Jacobian matrices

of the linearized measurement equations with respect to the

state vector xRk
and with respect to the matched sensor

observations yk respectively, with:

yk =

(

yEk

yFk

)

∼ N

((

ŷEk

ŷFk

)

,

(

PEk
0

0 PFk

))

(4)

and yFk
⊂ yM a subset of map features from the a priori

stochastic map.

The classical EKF update equations provide estimates for

the state vector x̂Rk|k
and its associated covariance matrix

PRk|k
using the filter gain given by:

Kk = PRk|k−1
HT

k (HkPRk|k−1
HT

k + Rk)−1 (5)

with,

Rk = GEk
PEk

GT
Ek

+ GFk
PFk

GT
Fk

(6)

The estimated state vector and its associated covariance

matrix are given by,

x̂Rk|k
= x̂Rk|k−1

+ Kk(zk − ẑk)

PRk|k
= (I − KkHk)PRk|k−1

(7)

C. Simulation Results: Inconsistency

A simulation experiment was conducted to analyze the

consistency of a direct implementation of the EKF algorithm

based on the aforementioned problem formulation. A 3-robot

formation was commanded to navigate through a 200-m

loop-trajectory within a previously mapped (2D point-based

stochastic map) navigation area. Each vehicle was equipped

with a range-bearing sensor capable of observing the avail-

able environmental features. As a measure of consistency [2]

a statistical test based on the Normalized Estimation Error

Squared (NEES) was used,

NEES = (xRk
− x̂Rk

)T P−1

R
(xRk

− x̂Rk
) ≤ χ2

r,1−α (8)

where χ2

r,1−α is a threshold obtained from the χ2 distribution

with r = dim(xRk
) degrees of freedom, and α the desired

significance level (usually 0.05).
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Fig. 1. Inconsistency of the estimated robot formation localization with
a direct implementation of the EKF algorithm. The consistency ratio
NEES/χ2

r,1−α
should be less than one. The average of 10 Monte Carlo

runs is depicted.

Figure 1 plots the consistency ratio (NEES/χ2

r,1−α) for

the sequence of time steps of the experiment illustrating a

problem of inconsistency in the estimated solution of this

direct implementation of the EKF algorithm. In the following

section we take a closer view of the results and a modified

EKF formulation is proposed to drive the robot formation

estimated localization towards consistency.
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III. MEASUREMENT-DIFFERENCING EKF-BASED

LOCALIZATION OF THE ROBOT FORMATION

A close view of the robot formation localization problem

within an a priori stochastic map, supported by the simula-

tion results obtained in the previous section, suggest a re-

formulation of the EKF algorithm taking into account the

statistical dependencies between the observations yFk−1
and

yFk
(both subsets of yM) used within the EKF update step

in two consecutive time steps k − 1 and k.

Given the set of matched map features of two consecutive

time instants yFk−1
and yFk

, their statistical dependencies

are expressed by a linear transformation,

yFk
= FCk

yFk−1
+ wωk

(9)

where FCk
is row-selection matrix and wωk

is a white

noise measurement sequence with covariance matrix Pwωk
.

Equation (9) defines a colored measurement noise sequence,

which together with eqs. (2) and (3) completely reformulates

the problem at hand.

The first approach reported in the literature which consid-

ers the existence of a colored measurement noise sequence

within the EKF framework dates back to the works of

Bryson et al. [4] where the state vector was augmented with

the colored error terms. Later work pointed out relevant

numerical problems of this approach mainly due to null-

uncertainty observations and ill-conditioned transition ma-

trices. Current practical approaches [2], [11] concern the so-

called measurement differencing technique, which provides

an efficient and mathematically sound method to remove

the time-correlated portion of the measurement errors. We

extend previous work by others in the field of filtering theory

by formulating the robot formation localization problem in

SLAM as a measurement differencing based EKF algorithm

to whiten the originally colored measurement noise sequence

defined in eq. (9).

A. Whitening the Measurement Equation

Let rk represent the measurement considered within the

EKF-update step at time k, derived from the real measure-

ments zk−1 and zk obtained at two consecutive time instants

as,

rk , zk − Λkzk−1 (10)

where matrix Λk is chosen such that {rk, 0 ≤ k < ∞}
approaches a discrete-time white-noise driven stochastic pro-

cess [2], [11].

Following the derivation of the appendix measurement rk

can be rewritten as,

rk ≃ H∗

kxRk
+ wk (11)

where,

H∗

k = Hk − ΛkHk−1F
−1

k−1
(12)

and the white noise sequence wk, with covariance matrix

Pwk
, is given by,

wk = GEk
yEk

− ΛkGEk−1
yEk−1

+ GFk
wωk

+ ΛkHk−1F
−1

k−1
vk−1 (13)

Matrix Λk is computed (see appendix) such that the time-

correlated components of the measurement rk are removed,

Λk ≃ GFk
FCk

GT
Fk−1

(GFk−1
GT

Fk−1
)−1 (14)

Note that previous works [2], [11], under the linearity

assumption both in the motion and measurement equations,

reported that Λk = FCk
, being a particular case of the

more general result provided in this paper. In our case, the

existence of matrix Λk has been verified for the cases of

2D-point and 2D-segment based stochastic maps.

Finally, eq. (13) introduce a cross-correlation term be-

tween wk and vk−1, namely,

Ck = E[vk−1w
T
k ] = Qk−1(ΛkHk−1F

−1

k−1
)T (15)

which is introduced in the EKF algorithm following [3] using

the filter gain,

Kk = (PRk|k−1
H∗T

k + Ck) ·

(H∗
kPRk|k−1

H∗T
k + Pwk

+ H∗
kCk + CT

k H∗T
k )−1

(16)

and the update of the estimated covariance matrix given by,

PRk|k
= PRk|k−1

− Kk(H∗
kPRk|k−1

H∗T
k + Pwk

+H∗
kCk + CT

k H∗T
k )KT

k (17)

The computational cost of the modified EKF algorithm

does not appreciably increase over the direct implementation

because the dimensions of the matrices involved are the

same.
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Fig. 2. Improvement in the consistency of the estimated robot formation
localization with a measurement-differencing based EKF algorithm. The
average of 10 Monte Carlo runs is depicted.

Figure 2 plots the consistency ratio (NEES/χ2

r,1−α) for

the sequence of time steps of the experiment for the im-

plementation of the measurement differencing algorithm

proposed in this section. In this case, the modified EKF algo-

rithm provides a consistent solution for the robot formation

estimated localization.
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IV. EXPERIMENTAL RESULTS

The measurement differencing EKF-based localization al-

gorithm has been tested both in the multi-robot simulation

platform Player/Stage [12] and in real experiments with a

3-robot Pioneer 3-AT team in a triangular-shaped formation

scheme.

A. Experiments in Player/Stage
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Fig. 3. Consistency of the estimated robot formation localization with a
measurement-differencing based EKF algorithm in the Player/Stage exper-
iments. The average of 10 Monte Carlo runs is depicted.

A first set of experiments have been conducted within the

rapid prototyping tool Player/Stage [12] which allows code

development and testing in similar conditions as to those

subsequently faced in the real scenario but constraint to the

information provided by simulated motion control and data

acquisition.

The formation was commanded a 100-m loop trajectory

within a previously available segment-based stochastic map.

Thanks to the availability of ground-truth, the consistency

of the proposed algorithm in this quasi-real scenario was

verified as the consistency ratio plot of fig. (3) highlights.

Also, in figs. 4 the frontal, lateral and angular errors for

each robot in the formation are displayed together with

their associated 2-σ uncertainty bounds. In all the cases the

estimated errors are within the computed bounds.

B. Experiments with the Pioneer 3-AT Robots

Real experiments have been conducted by using a 3-robot

triangular-shaped formation of Pioneer 3-AT vehicles. Fig.

(5) depicts the initial localization of the vehicles within

an indoor environment. The formation was commanded to

reach a distant goal location (about 40-m from the starting

location) while avoiding obstacles and adapting its shape to

the environment. The robot leader plans a safe path to the

goal destination and the robot slaves follow the leader while

maintaining the desired formation topology. Communication

among the vehicles of the formation is provided by a real-

time wireless multihop protocol implemented in a centralized

mode where robot slaves sent both the sensors observations

and the commanded velocities to the robot leader. The robot
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Fig. 4. Experimental results obtained in the Player/Stage setting. Frontal,
lateral and angular errors for each vehicle in the 3-robot triangular-shaped
formation and their associated 2-σ uncertainty bounds are shown: Robot
leader (top) and robot slaves (middle and bottom)

leader executes the localization algorithm and it commu-

nicates the estimated poses to each robot slave ([17] and

reference therein).

Initially, a segment-based stochastic map of the navigation

area (fig. 5, middle) is obtained by using the information

provided by the 2-D laser scanned mounted in one of the

vehicle (in our case, and without lose of generality, the

robot leader) which previously had explored the environment.

Then, the global localization of the vehicles (fig. 5, bottom)

is computed by the algorithms reported in [7].

Figure (6) shows the estimated localization of each of the

vehicles of the formation at four different time steps along

the planned trajectory towards the goal destination. Even

though ground-truth was not available during the execution
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Fig. 5. Initial setting of the robot formation in a real experiment: 3-
robot triangular-shaped formation (top), segment-based stochastic map of
the navigation area (middle), and EIF-based initial localization of the robot
formation within the map(bottom, with location uncertainty magnified x5).

of the real experiments, the figure highlights the compatibil-

ity between the previously available stochastic map and the

segmented sensor readings plotted wrt the estimated vehicles

localization.

V. CONCLUSIONS

The work described in this paper concerned the utiliza-

tion of feature-based stochastic maps for robot formation

localization. From the Bayesian perspective, the classical

EKF algorithm was initially formulated by considering the

motion models of each vehicle within the formation and

the environmental observations gathered by the exteroceptive

sensors mounted on the vehicles. The inconsistency of the

direct implementation of the EKF prediction and update

equations for the problem at hand is reported. A closer view

to the algorithm hypotheses is conducted suggesting the time-

correlated nature of the sequence of measurements consid-

ered in the previous, direct implementation. A solution, based

on the measurement differencing technique, already reported

in the filtering literature is adapted to the robot forma-

tion localization problem in SLAM and its implementation

shows how the modified EKF estimation is driven towards

consistency. Simulated and real experiments with a 3-robot

triangular-shaped formation are reported to demonstrate the

applicability of the adoptive filtering approach.

Future work moves towards decentralized schemes, both

in terms of localization and control of the members of

the formation. An intense cooperation among localization,

planning, obstacle avoidance and SLAM is also being in-

vestigated. Finally, more general nonlinear, non-Gaussian

Bayesian approaches are being analyzed within the general

framework of robot formations.
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APPENDIX

Let rk be expressed as,

rk , zk − Λkzk−1

Substituting the observations zk and zk−1 by their linearized

expressions given by eq. (3),

rk ≃ HkxRk
+ Gkyk

−Λk(Hk−1xRk−1
+ Gk−1yk−1)

Considering the form of the observations given by eq. (4)

we have,

rk ≃ HkxRk
+ GEk

yEk
+ GFk

yFk

−Λk(Hk−1xRk−1
+ GEk−1

yEk−1
+ GFk−1

yFk−1
)

Rearranging the system equation given by eq. (2) following

the approach described in [11] to avoid time-latency leads

to,

xRk−1
≃ F−1

k−1
xRk

− F−1

k−1
vk−1

therefore,

rk ≃ (Hk − ΛkHk−1F
−1

k−1
)xRk

+ ΛkHk−1F
−1

k−1
vk−1

+GEk
yEk

− ΛkGEk−1
yEk−1

+GFk
yFk

− ΛkGFk−1
yFk−1

Substituting the linear relation between yFk
and yFk−1

given

by eq. (9) results in,

rk ≃ (Hk − ΛkHk−1F
−1

k−1
)xRk

+ ΛkHk−1F
−1

k−1
vk−1

+GEk
yEk

− ΛkGEk−1
yEk−1

+ GFk
wωk

+(GFk
FCk

− ΛkGFk−1
)yFk−1

which can finally be expressed as,

rk ≃ H∗
kxRk

+ wk

with,

H∗

k = Hk − ΛkHk−1F
−1

k−1
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and,

wk = GEk
yEk

− ΛkGEk−1
yEk−1

+ GFk
wωk

+ ΛkHk−1F
−1

k−1
vk−1

and, matrix Λk is computed such that the time-correlated

components from the evolution of the measurement rk are

removed, thus is,

GFk
FCk

− ΛkGFk−1
≃ 0

thus,

Λk ≃ GFk
FCk

GT
Fk−1

(GFk−1
GT

Fk−1
)−1
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