
Learning to Navigate Through Crowded Environments

Peter Henry1, Christian Vollmer1,2, Brian Ferris1, and Dieter Fox1

1University of Washington, Department of Computer Science & Engineering, Seattle, WA
2Neuroinformatics and Cognitive Robotics Lab, Ilmenau University of Technology, Germany

Abstract— The goal of this research is to enable mobile
robots to navigate through crowded environments such as
indoor shopping malls, airports, or downtown side walks.
The key research question addressed in this paper is how
to learn planners that generate human-like motion behavior.
Our approach uses inverse reinforcement learning (IRL) to
learn human-like navigation behavior based on example paths.
Since robots have only limited sensing, we extend existing IRL
methods to the case of partially observable environments. We
demonstrate the capabilities of our approach using a realistic
crowd flow simulator in which we modeled multiple scenarios
in crowded environments. We show that our planner learned to
guide the robot along the flow of people when the environment
is crowded, and along the shortest path if no people are around.

I. INTRODUCTION

The goal of this research is to enable mobile robots
to navigate through crowded environments such as indoor
shopping malls, airports, or downtown side walks. Consider a
person trying to get to a certain store in a shopping mall. The
initially planned path to that store is based on the person’s
apriori knowledge about the layout of the mall and the
expected crowd motion patterns in different areas of the mall.
As the person moves with the flow through the mall, typically
tending to move on the right, she updates her estimates
of the people density and flow based on her observations.
Using these updated estimates, she continuously re-assesses
the appropriateness of the planned path and decides to follow
a different route if necessary. She also continuously trades
off crowd following behavior with the desire to reach the
target, moving against the crowd flow if necessary.

Ideally, we would like robots navigating through such
environments to move along paths similar to those of the
people. By moving with the flow of the people, for instance,
a robot could navigate more efficiently. An additional benefit
of such imitative behavior would be better predictability of
robot motion, thereby enabling more natural and socially
acceptable interactions between people and robots [12].
While existing robot control systems deployed in crowded
environments such as museums or railway stations have the
capability to plan paths, update world models on the fly, and
re-plan based on new information, these planning techniques
solely aim at reaching a goal as efficiently as possible [3],
[15], [18], [19].

The key research question addressed in this paper is how
one can learn planners that generate human-like motion
behavior. Our approach to this problem is to learn a motion
planner from example traces of people moving through

such environments. We use these example traces to learn
how people trade-off different factors such as “desire to
move with the flow”, “avoidance of high-density areas”,
“preference for walking on the right/left side”, and “desire
to reach the goal quickly”. Our learning technique is based
on the following model: First, people plan paths through an
environment that are optimal w.r.t. a cost function, even if
they are not doing so explicitly or even consciously. Second,
this cost function is a weighted combination of various
environmental factors, including factors that change over
time and are only partially observable (e.g., crowd density).
Third, a person continuously updates the values of these
factors based on local perceptions and, fourth, updates the
path to the goal if necessary.

To learn a path planner from example traces, we build
on inverse reinforcement learning (IRL), a novel framework
for learning from demonstrations [14]. IRL has been applied
successfully to different problems, including learning to
decide lane changing in a simulated highway scenario [2],
learning to navigate a vehicle through a parking lot [1]
and learning to plan routes through a street network [22].
However, these approaches assume that an agent has full
access to all factors that influence its decision making. In
our case, unfortunately, neither a person nor a robot have
complete knowledge of the density and flow of people in the
environment. Instead, these values must be estimated on the
fly. In this paper, we show how to perform such an estimation
using Gaussian processes [16] and we extend maximum
entropy inverse reinforcement learning [22] to handle this
more difficult scenario.

We evaluate our approach using the crowd motion simu-
lator developed by Treuille and colleagues [20] (see Fig. 1).
This simulator has been shown to generate realistic motion
patterns based on parameterizable path cost functions. This
simulator enables us to perform controlled experiments that
are realistic enough to be transferable to real world scenarios.
The experiments demonstrate that our approach is able to
successfully learn navigation paths from demonstrations.

This paper is organized as follows. After discussing related
work, we present our approach to learning navigation behav-
ior from demonstrations. Then, in Section IV, we describe
how Gaussian process regression can be used to estimate
dynamic environmental features. Experimental results are
presented in Section V, followed by a discussion.



II. RELATED WORK

Over the last decade, several mobile robots have been
deployed successfully in crowded environments such as
museums [3] railway stations [15], and exhibits [18], [19].
Typically, these systems solved the problem of navigating
through crowded environments by computing the shortest
path to the next goal and then following this path using a
local collision avoidance system [3]. None of these systems
attempt to make the robot move human-like or follow the
natural flow of people through the environment. In contrast,
our goal is to enable scenarios in which mobile robots are
not the focus of attention but become every day devices that
move through environments with only little special attention.

More recently, Kirby and colleagues [7] performed studies
to evaluate different navigation strategies for a robot moving
along with a single person. They found that people clearly
preferred moving with a robot that shows more human-
like navigation behavior. Mueller et. al. [13] developed a
technique that aims at efficiently navigating through crowded
spaces by following people. Their approach continuously
tracks people in the robot’s vicinity and chooses to follow
people that move in the direction of the goal. While such
a technique might result in more efficient navigation, the
approach relies on manually tuned heuristics and has no
explicit criterion for generating human-like behavior.

The graphics community has developed path planning
techniques for efficiently generating naturally looking anima-
tions of densely crowded scenes [20], [21], [10], [11]. While
these techniques result in very natural motion patterns, they
require manual parameter tuning and are not readily appli-
cable to robot path planning. In some cases [20], [21] this is
due to the fact that the planning techniques assume global
knowledge about properties such as the motion direction
and density of all people. Other work [10], [11] is focused
on mimicking group crowd behavior by matching into a
database of observed examples to generate plausible overall
animations. In contrast to these techniques, our approach
takes limited sensing into account and learns the parameters
underlying the planning technique. In this paper, we rely on
a crowd simulator [20] to generate scenarios that allow us
to evaluate our approach.

Over the last years, several researchers have developed
techniques for learning Markov Decision Process (MDP)
models by observing human experts performing a task. The
key idea underlying this family of techniques, which includes
inverse reinforcement learning [14], [22], maximum margin
planning [17], and apprenticeship learning [2], [1], is to learn
a reward (or cost) function that best explains the expert
decisions. Reward functions are represented by log-linear
functions of features describing a task environment. While
these techniques have been shown to work extremely well in
several applications, they assume that all feature values are
known and static during each demonstrated planning cycle.
In contrast, our scenario requires learning from example
paths that are the result of a (simulated) person updating
feature value estimates and re-planning on the fly.

Fig. 1. An overview of the test environment and crowd simulator.

Gaussian processes (GPs) have been applied successfully
by the spatial statistics community [4] and, more recently,
by the robotics [5] community to model environmental
properties. Here, we show how GPs can be used to estimate
models of the density and flow of people in a crowded
environment.

III. INVERSE REINFORCEMENT LEARNING WITH
PARTIALLY OBSERVABLE FEATURES

In order for a robot to learn how to navigate a crowded
space as humans do, we employ techniques based on
maximum entropy inverse reinforcement learning (MaxEnt
IRL) [22]. As in [23], we assume that a path, or trace,
τ through states si and actions ai,j has a cost that is a
linear combination of real-valued features fτ =

∑
ai,j∈τ fai,j

observed along the path. In our context, states si correspond
to discrete positions in the environment, actions ai,j are
transitions between positions si and sj , and vectors of real-
valued features for each action model information such as
the density of people in the state reached through that action.
The cost of a path τ is parameterized by feature weights θ:

cost(τ) = θ · fτ =
∑
ai,j∈τ

θ · fai,j (1)

The original MaxEnt IRL model assumes that the agent
has full knowledge of the features in the action space, and
that these features remain constant for the duration of the
path. For a fixed start and end state, this results in a maximum
entropy distribution over paths parameterized by θ.

P (τ |θ) = 1

Z(θ)
e−θ·fτ =

1

Z(θ)
e
∑
ai,j∈τ

−θ·fai,j (2)

Observe that increasing the linear combination of weights
and features causes the probability to decrease exponentially.

To match observed behavior, IRL learns cost weights for
the features such that the resulting planned paths are similar
to the provided example paths. To achieve this, it is necessary
and sufficient for the expected feature counts of the robot to
match the observed feature counts of the humans when the
cost is linear in those features [2].

We wish to find the parameters that maximize the likeli-
hood of the observed traces T :

θ∗ = argmax
θ

∑
τ∈T

logP (τ |θ) (3)



It can be shown that the gradient for a single path is the
difference between observed and expected feature counts [2].
We denote by f̃ the observed feature counts, which are simply
the sum of features for all actions taken on an example
trace τ . The expected feature counts can be obtained by
multiplying the probability of each action by the features
for that action, summed over all actions. Let Dai,j be the
expected frequency of action ai,j , conditioned on θ, for all
paths τm between the start and goal state. Then the gradient
can be expressed as follows.

∇F = f̃−
∑
ai,j

Dai,j fai,j (4)

Using online exponentiated gradient descent, the weights θ
are updated using the following formula.

θn+1 = θne
−γ∇F (5)

Performing these updates over all paths while gradually
reducing γ causes the weights to converge to θ∗. This is
the weight update technique used in [22] and a comparison
of exponentiated gradient descent with other techniques can
be found in [8]. Unfortunately, the number of paths is expo-
nential in the number of states. A tractable forward/backward
algorithm is given in [23], similar to forward/backward infer-
ence algorithms for Hidden Markov Models and Conditional
Random Fields [9]. This algorithm is given in Table I.

Forward/Backward Algorithm:

Input: start and goal states sstart and sgoal

∀si : Z′si ← 0

For N iterations (backward):
1: Z′sgoal ← Z′sgoal + 1

2: ∀ai,j : Z′ai,j ← e
(−θ·fai,j )Z′sj

3: ∀si : Z′si ←
∑
j Z
′
ai,j

∀si : Zsi ← 0

For N iterations (forward):
1: Zsstart ← Zsstart + 1

2: ∀ai,j : Zai,j ← Zsie
(−θ·fai,j )

3: ∀sj : Zsj ←
∑
i Zai,j

Result: probability mass Z′s and Zs for all states s.

TABLE I

After executing the forward/backward algorithm, we now
possess values Zsi and Z ′si for every state, where Zsi is
the accumulated probability mass of all paths from sstart to
si, and Z ′si is the probability mass of all paths from si to
sgoal. We can utilize these probabilities to compute Dai,j ,
which is the expected number of times action ai,j will be
executed over all paths from sstart to sgoal subject to the
current weights θ:

Dai,j =
Zsie

(−θ·fai,j )Z ′sj
Z ′sstart

(6)

Intuitively, this computes the expectation for action ai,j by
multiplying the probability of all paths from sstart to si, then

multiplying by the unnormalized probability e(−θ·fai,j ) of
taking action ai,j , and finally multiplying by the probability
of all paths from sj to sgoal. The result is normalized by
dividing by the mass of all paths from sstart to sgoal,
which is Z ′sstart (or equivalently Zsgoal ). More details of
the MaxEnt IRL formulation can be found in [22], [23].

A. Partially observable, dynamic features

Our scenario differs from the original MaxEnt IRL ap-
proach in two significant ways. First, the features that will
allow a robot to move with people are as dynamic as the peo-
ple themselves. The density and velocity of crowds change
over time, both between traces and during the execution
of a single trace. During training, however, we only have
the final demonstrated traces, and not intermediate plans
that were formulated but not executed. For instance, the
event of changing a planned path based on an unforeseen
blockage is not labeled as such in the training data. The
second distinguishing aspect of our scenario is that the robot
has no global knowledge of dynamic features.

In order to extend the MaxEnt IRL framework to this
scenario, we assume that a person updates his estimate of
the environment features at every time step and performs
re-planning every H ≥ 1 time steps. These assumptions
allow us to compute the gradients of the example paths
using a slightly modified training procedure. In a nutshell,
we update for each time step the dynamic features within a
small window around the person’s current location, thereby
simulating limited perceptual range (dynamic features out-
side this window are set to prior estimates). Each update
gives us the information available to the person at that point
in time. By assuming that the person plans a path based on
this information and sticks to this path for the next H time
steps, the gradient can be computed based on the difference
between observed and expected feature over the next H steps
only, instead of the complete path. However, since this update
occurs at every time step, we need to compute this H-step
difference for every time step in the path.

Specifically, we define the dynamic features for path τ
and action ai,j at time t to be ftτ and ftai,j , respectively. The
probability of a path depends on the cost of the path, which is
obtained by adding the weighted features of the partial paths
from each time horizon. Letting at represent the action of τ
at timestep t, the probability of a path τ is now given as:

P (τ |θ) = 1

Z(θ)
e
∑
t

∑
0≤h<H −θ·f

t

at+h (7)

Because the features are dynamic, we compute a gradient
at every timestep of an example path and only H timesteps
into the future, as compared with (4) in the original IRL
formulation, which computes a single gradient for the entire
path. Our local gradient at timestep t is defined as:

∇F t = f̃t −
∑

ai,j∈H
Dt
ai,j f

t
ai,j (8)

where all terms are now indexed by the timestep t. In
particular, f̃t is the observed features for the portion of the



example trace between timesteps t and t+H , and Dt
ai,j is

the expectation of ai,j between t and t+H conditioned on
the current weights θ. We only compute expected features for
actions reachable from the current location within H steps,
hence the restricted summation in (8). However, note that we
must perform the full forward/backward algorithm in Table I
to compute even this subset of action expectation values. The
gradient∇F t is used to update the weights as in equation (5),
but now the weights θ are updated t times for each training
path. A summary of our learning algorithm can be found in
Table II.

Learning Algorithm:

For all training paths τ :
For all timesteps t in path τ :
1: Update estimates of locally observable features
2: Compute Zs and Z′s for all states using the algorithm in Table I

3: For actions ai,j ∈ H compute Dtai,j with equation (6)

4: Compute the gradient ∇F t with equation (8)
5: Update the weights θ with equation (5)

TABLE II

B. Features and representation

In our current implementation, we use a grid represen-
tation of a two dimensional space. Additionally, our states
include a discrete approximation of orientation at 45 degree
intervals. Actions describe valid motion between these grid
cell states. We found it most natural to express features (and
hence costs) as corresponding to actions. Thus, features of
the grid cells are represented as features on all actions leading
into that grid cell’s states. Our features were chosen such that
they could be extracted from real robot sensors such as laser
range finders and cameras.

We conjecture that humans optimize the cost of paths
based on density and velocity of other nearby people (dy-
namic flow features), balanced against the distance traveled.
For density features, we divide the real-valued density into
four bins. Each action will have a value of 1 in exactly one
of these bins, and zero in the others. This technique allows
the learned weights to form a discrete approximation of a
non-linear cost function over density. To represent velocity
features, the average direction and magnitude of velocities
for people in nearby cells are measured. As each state
represents both a position and orientation, we use relative
velocity features, again discretized into four bins evenly
dividing the range of direction difference between 0 and
180 degrees. Each of these directional bins can have various
magnitudes, which we represent with three bins per direction.
In other words, relative direction and velocity magnitude
form a “cross-product” feature for each action consisting of
12 bins total. We want to learn how humans balance these
dynamic features against distance traveled, so each action,
or transition between grid cells, has a static feature for the
distance between the cells.

Fig. 2. Gaussian process mean model of pedestrian density over our
simulated environment shown in Fig. 1.

For training data, we extract demonstration traces from
the crowd simulator, where the traces consist of grid cells,
directions, and local observations of dynamic flow features.
These traces were collected from a simulation of normal
pedestrian traffic. It is worth noting that similar example
traces could be collected from real world pedestrians, using
either hand labeling or automatic extraction. These simula-
tions also provide our mean density and velocity models,
which we can use as initial estimates of dynamic feature
values in unobserved areas of the grid for both training and
planning.

We found that our training procedure along with these
features generated intuitively appealing results for weight
values. For instance, low cost weights were learned for
relative flow features moving in the same direction as the
agent, and much higher costs were obtained for flow features
moving in other directions.

IV. GAUSSIAN PROCESSES FOR ENVIRONMENTAL
FEATURE ESTIMATION

Even under the best of circumstances, a robot will only
be able to observe a small portion of the surrounding envi-
ronment. We wish to integrate a robot’s local observations
of density and flow direction in a sound way with priors
over the entire environment to produce a joint distribution
of expected environment state. We perform this integration
using Gaussian processes (GP) [16], a non-parametric model
that estimates Gaussian distributions over functions based on
training data.

Specifically, our environment is defined as a two-
dimensional coordinate plane over which the robot travels.
We wish to model features of density and direction of flow
for traffic in this environment. To do so, we consider (α, β),
where α is the (x, y) position in the coordinate plane and β
is a vector of three values representing traffic density, traffic
flow in the x component of the coordinate plane, and traffic
flow in the y component of the coordinate plane, respectively.

Given a set of features {(α1, β1) · · · (αn, βn)}, we learn
GPs that map from input locations, α, to density and flow
directions, β. A separate GP models each of the three
components of β. For each Gaussian process, we use a



standard Gaussian kernel, whose parameters are trained by
minimizing the log-likelihood of a GP over a training set. We
can then evaluate the GP over the entire environment and the
model will produce estimates of mean and variance, nicely
integrating areas of dense and sparse data coverage. One such
mean model of traffic density over our test environment can
be seen in Fig. 2.

To update this model based on new feature val-
ues, we proceed as follows. Given a set of ob-
servations {(α1, β1) · · · (αn, βn)} at time t, we evalu-
ate the mean model at locations {α1 · · ·αn} and sub-
tract the predicted mean from the actual observations
to produce a set of deviation-from-the-prior observations
{
(
α1, β1

)
· · ·
(
αn, βn

)
}. We construct a new GP with these

updated observations, again using a basic Gaussian kernel,
and evaluate the GP over the surrounding environment to get
a smooth estimate of the observed deviation from the mean
model prior. We add these estimated deviations to the mean
model prior to get the updated feature model. The resulting
technique correctly blends the new feature observations with
the prior model. Note that a simple addition of the new
observations to the prior GP would not result in a correct
estimate, since such an approach would not consider that
the new observations provide far more information about the
current situation than the (outdated) prior model.

V. EXPERIMENTAL RESULTS

Our primary goal is to generate robot paths similar to
those of humans in crowded environments. We use the crowd
motion simulator of [20] to obtain training data. So-called
“swarms” of people were given starting locations and goal
regions instigating natural crowd flows through a simulated
3D space. The density and velocity features are extracted
from this simulator, then smoothed and discretized to fit our
particular grid-based model. We argue that equivalent local
features are available with real world robotic sensors, such as
laser scanners and cameras. Additionally, as our framework
is quite general, novel features could be incorporated as well.

We also use this same crowd simulator to provide a testbed
for our planner. In order for our results to be realistic and
transferable to real robots, the planner and path following
systems are written as node processes in the Robot Operating
System (ROS) by Willow Garage [6]. We wrote a wrapper
for the crowd motion simulator in ROS to facilitate testing.
The robot is represented in the crowd simulator as a single
person, which allows the simulated crowds to react naturally
to the presence and motion of the robot.

The path planner uses cost weights learned previously
through IRL to define cost weights for all actions in the
map. Given best estimates for dynamic features, the linear
combination of weights and features gives a real valued cost
to each edge. The planner then uses A* search to compute the
best route to the goal for the current dynamic features. When
new sensor information is available, the dynamic features are
updated and a new planned path is generated from the current
location.

Fig. 3. A view of the robot’s path (black), a human path (orange/dark
gray), and the shortest path (green/light gray). There are two crowd flows,
each moving along the right side of the walkway. Note that the robot moves
with the flow on the right side and then crosses the oncoming crowd flow
in a manner similar to the human path at the end of its journey.

Shortest Path Learned Path
Mean Distance 1.4 0.9
Maximum Distance 3.3 2.3

TABLE III

As a quantitative evaluation we selected various start and
goal points in the lane formation scenario shown in Fig. 4.
We consider the path taken by the crowd simulator from start
to goal as the ground truth path. We then compare this path
to the path generated by our approach (Learned path). As
a baseline, we also compare the shortest Euclidean distance
path (Shortest path) to the ground truth. To compare two
paths, we compute for each position on the path the shortest
distance to any position on the other path. From this we can
compute the mean distance and maximum distance for a pair
of paths. The results, averaged over six runs, are shown in
Table III. From these results we conclude that our learned
cost function provides a more natural path through crowded
scenarios than a simple Euclidean distance based planner.

Fig. 3 shows an example of the path followed by our
robot (black), the path of a human from the crowd simulator
(orange/dark gray), and the simple shortest path (green/light
gray). As can be seen, the path generated with our system
matches nicely with the path of the simulated human. The
reason this occurs is that our robot senses the crowd flow
on the right side of the walkway and has learned low cost
weights for walking with flows. Contrast this with the clearly
disruptive and inefficient simple shortest path, which moves
against the flow of the crowd.

One of the properties of the original global crowd simula-
tor is lane formation. In the lane formation scenario shown in
Fig. 4, there are three crowd flows, with the top and bottom
flow moving right, and the middle flow moving left (against
the robot’s desired direction of travel). In the upper panel in



Fig. 4. The robot plans a path in the lane formation scenario. The robot
is shown as a black circle, the path taken so far (and planned) by our
robot is black, and the shortest path is green (light gray). The portion of
the robot’s path to its right is its planned path when it is at the position
shown. There are three crowd flows: the top and bottom flows are moving
right, and the middle flow moves left, against the robot. Upper panel: The
robot can observe some of the oncoming flow, and plans a path to avoid
the oncoming crowd. Note that beyond the locally observable features, the
robot’s planned future path takes it back to the middle. Lower panel: The
conclusion of the lane formation scenario, showing that the robot has moved
with the top crowd flow which was also moving right.

Fig. 4, the shortest path clearly moves against the flow. The
planned path moves into a correct flow, but then reverts to the
shortest path outside the sensor range. In the lower panel, we
can see that the robot has continued to move with the correct,
rightward moving flow, as it has obtained additional dynamic
feature information as it moves forward. Our learned cost
function planner smoothly reverts to following the shortest
path in the absence of crowd flows. Note that the system
was not trained on the lane formation scenario, yet exhibits
natural, efficient behavior.

These properties of the algorithm can be seen in an
accompanying video. Longer videos can be found at
http://www.cs.washington.edu/robotics/crowd.

VI. CONCLUSION

We showed how to extend inverse reinforcement learning
to deal with dynamic and partially observed features. The
resulting system is able to learn to imitate human pedestrian
behavior in crowded environments. With only a local sensor
model, we use Gaussian processes to extend local informa-
tion beyond the sensor range in a principled manner.

Our evaluation was performed within a realistic crowd
simulator, and produced natural paths that integrated with
existing crowd flows. We conjecture that our work produces
more socially acceptable motion that will allow robots to
perform tasks seamlessly in crowded environments.

In future work we hope to learn weights based on real
world crowds, and implement the system on an actual robot.
In a scenario with multiple robots distributed throughout the
environment, the Gaussian process model will allow their
local sensor readings to be combined across the map to allow

more accurate density and flow information, enabling better
path planning for each robot individually.

ACKNOWLEDGEMENTS

This research has been supported by ONR MURI grant
N00014-09-1-1052, by the NSF under grant numbers IIS-
0705898 and IIS-0812671, and by Toyota InfoTechnology
Center USA.

REFERENCES

[1] P. Abbeel, D. Dolgov, A. Ng, and S. Thrun. Apprenticeship learning
for motion planning with application to parking lot navigation. In
Proc. of the IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2008.

[2] P. Abbeel and A. Ng. Apprenticeship learning via inverse reinforce-
ment learning. In Proc. of the International Conference on Machine
Learning, 2004.

[3] W. Burgard, A. B. Cremers, D. Fox, D. Hähnel, G. Lakemeyer,
D. Schulz, W. Steiner, and S. Thrun. Experiences with an interactive
museum tour-guide robot. Artificial Intelligence, 114(1-2):3–55, 1999.

[4] N. Cressie. Statistics for spatial data, revised edition. Wiley, 1993.
[5] B. Ferris, D. Hähnel, and D. Fox. Gaussian processes for signal

strength-based location estimation. In Proc. of Robotics: Science and
Systems (RSS), 2006.

[6] Willow Garage. Robot operating system (ros).
http://www.willowgarage.com/pages/software/ros-platform.

[7] R. Kirby, J. Forlizzi, and R. Simmons. Natural person-following
behavior for social robots. In Proc. of Human-Robot Interaction, 2007.

[8] J. Kivinen and M. K. Warmuth. Exponentiated gradient versus gradient
exponentiated gradient versus gradient descent for linear predictors.
Information and Computation, 1997.

[9] J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields:
Probabilistic models for segmenting and labeling sequence data. In
Proc. of the International Conference on Machine Learning, 2001.

[10] K.H. Lee, M. G. Choi, Q. Hong, and J. Lee. Group behavior from
video: A data-driven approach to crowd simulation. In Proceedings
of the Eurographics Symposium on Computer Animation, 2007.

[11] A. Lerner, Y. Chrysanthou, and D. Lischinski. Crowds by example.
In Eurographics, 2007.

[12] M. Michalowski, S. Sabanovic, C. DiSalvo, D. Busquets, L. Hiatt,
N. Melchior, and R. Simmons. Socially distributed perception:
GRACE plays social tag at AAAI-05. Autonomous Robots, 22, 2007.

[13] J. Mueller, C. Stachniss, K. Arras, and W. Burgard. Socially inspired
motion planning for mobile robots in populated environments. In
Proc. of International Conference on Cognitive Systems, 2008.

[14] A. Ng and S. Russell. Algorithms for inverse reinforcement learning.
In Proc. of the International Conference on Machine Learning, 2000.

[15] E. Prassler, J. Scholz, and P. Fiorini. A robotic wheelchair for crowded
public environments. IEEE Robotics & Automation Mag., 7(1), 2001.

[16] C.E. Rasmussen and C.K.I. Williams. Gaussian processes for machine
learning. The MIT Press, 2005.

[17] N. Ratliff, J. Bagnell, and M. Zinkevich. Maximum margin planning.
In Proc. of the International Conference on Machine Learning, 2006.

[18] R. Siegwart, K. Arras, S. Bouabdallah, D. Burnier, G. Froide-
vaux, X. Greppin, B. Jensen, A. Lorotte, L. Mayor, M. Meisser,
R. Philippsen, R. Piguet, G. Ramel, G. Terrien, and N. Tomatis. Robox
at expo.02: A large-scale installation of personal robots. Robotics and
Autonomous Systems, 42, 2003.

[19] R. Simmons et.al. GRACE: An autonomous robot for the AAAI robot
challenge. AAAI Magazine, 24(2), 2003.

[20] A. Treuille, S. Cooper, and Z. Popović. Continuum crowds. ACM
Transactions on Graphics (Proc. of SIGGRAPH), 25(3), 2006.

[21] J. van den Berg, S. Patil, J. Sewall, D. Manocha, and M. Lin.
Interactive navigation of individual agents in crowded environments.
In Proc. of ymposium on Interactive 3D Graphics and Games, 2008.

[22] B. Ziebart, A. Maas, J. Bagnell, and A. Dey. Maximum entropy
inverse reinforcement learning. In Proc. of the National Conference
on Artificial Intelligence (AAAI), 2008.

[23] B. Ziebart, A. Maas, J. Bagnell, and A. Dey. Navigate like a cabbie:
Probabilistic reasoning from observed context-aware behavior. In
International Conference on Ubiquitous Computing (UbiComp), 2008.


