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Abstract— Robotic manipulators on non-inertial platforms,
such as ships, have to endure large inertial forces due to the
non-inertial motion of the platform. When the non-inertial
platform’s motion is known, motion planning and control
algorithms can eliminate these perturbations—in fact, in some
situations the motion planning algorithms can even leverage the
inertial forces to more cheaply move to a target point. However,
for many non-inertial platforms, the motion is unknown.

In this paper we investigate how prediction errors and the
choice of the prediction horizon affect the motion planning
and control of robots mounted on a non-inertial base with a
particular focus on seaborne platforms. We study the following
three aspects: (i) We study prediction of ship motion and
how prediction errors affect the motion planning and control
of the manipulator. (ii) We evaluate the relationship between
prediction accuracy and control. In particular, we study what
prediction horizon length is useful for motion planning and
control. We also consider how uncertainties in the ship motion
predictions map to uncertainties in the future state of the robot
and how to include the variance in the cost function to increase
the optimal horizon length. (iii) Finally, we study a receding
horizon approach, which re-solves the optimal control problem
on-line over a horizon as determined to be meaningful from (ii).
Several simulations are presented and, to our knowledge, for
the first time experiments of ship-manipulator systems based
on real ship motion data are presented.

I. INTRODUCTION

Ships and oil platforms are expected to become increas-

ingly unmanned in the future and hence the need for au-

tonomously operating robots for surveillance, maintenance,

and operation will continue to increase over time [1], [2].

The demand for unmanned operation becomes even higher

in harsh environments such as high sea state (Figure 1), when

it can be dangerous for human operators to be exposed.

High sea environments are not only dangerous for human

operators, they also pose significant challenges for robotic

control: Large inertial forces will influence the manipulator

and, when not anticipated and accounted for, can make

the operation inaccurate, extremely energy demanding, and

sometimes even impossible due to torque limits. The inertial

forces thus need to be taken into account in both the path

planning and control of the robot.

In From et al. [3] the authors solve the problem of optimal

motion planning for a robot mounted on a ship under the

assumption the base motion is known for all times. The

approach includes the ship motion in the trajectory planning

problem and an optimal trajectory in terms of actuator

torques is found. However, in most practical situations the

Fig. 1. A ship in high sea. The wave forces can result in very high
accelerations in the ship motion.

forces acting on the ship due to the interaction with the waves

and the wind are very complex and one cannot expect to

know the base motion for all times.

The extent to which we can obtain accurate ship motion

predictions thus directly determines how well we can com-

pensate for or take advantage of the inertial forces. However,

the wave-ship system is not deterministic, and accurately

predicting the ship motion is a challenging problem. The

prediction accuracy depends on the sea state, the ship, the

ship and wave models available, and on the methods used to

predict the ship motion.

The accuracy of the ship motion prediction not only

directly determines how optimal a solution we can achieve,

it also affects the computational requirements. In a receding

horizon setting, where the optimal control inputs sequence

is re-computed at regular intervals, the computational burden

will increase for an inaccurate model: For an inaccurate

model the initialization point, taken from the previous so-

lution, is further away from the optimal solution. In addition

to affecting the choice of horizon the modeling error can thus

directly affect the frequency for which the optimal control

or optimal trajectory can be recalculated.

A good understanding of the complete system—including

the robot, the ship and waves, and the uncertainties—is

essential in deciding on what measuring equipment and



algorithms are required to obtain an optimal solution. For

example, cameras could be used to obtain information about

the size and the direction of the next wave, which can reduce

the prediction errors and improve performance. The choice

of equipment and algorithms will directly affect the horizon

over which predictions are accurate and thus also directly

influence control performance.
In this paper we investigate how well we can compensate

for the inertial forces using measurements of the ship motion

only. An important contribution of this paper is that we

use real data, i.e., measurements taken from a full scale

ship. Much of the literature on ship motion prediction use

computer generated data for comparison, which leads to

unrealistically small errors in the predictions.
Stochastic uncertainty is present in a wide variety of sys-

tems, ranging from mechanical systems and process control

to finance. In general, receding horizon control is a well

suited control scheme to deal with uncertainties, but most

approaches do not use information about the probability

distribution governing the uncertainty and they only assume

that the uncertainty is bounded. Thus, the information about

the probabilistic distribution is ignored and the worst-case

representation of the disturbances or constraints often leads

to a conservative solution.
In this paper we present a new motion planning algorithm

that also minimizes the variance of the controlled state.

First, the use of real ship motion measurements allows us to

calculate the variance of the predictions of the forced state.

We find that the variance is different for roll, pitch and yaw.

Second, we illustrate how we can use the Extended Kalman

filter to find how the variance in the forced state maps to the

variance of the controlled state, i.e., how the uncertainties in

the ship motion predictions map to uncertainties in the robot

state. Finally we show how we can choose a robot trajectory

for which the variance of the controlled state (the robot)

is minimized, assuming the variance of the forced state is

known. We find that augmenting the cost function to also

include the variance allows us to choose a longer horizon

than when the variance is not included.

II. RELATED RESEARCH

Research on several related topics can be found in the

literature. Love et al. [1] addressed the impact of wave

generated disturbances on the tracking control of a manip-

ulator mounted on a ship based on the classical Lagrangian

approach. They used repetitive learning control and this

resulted in performance improvement for purely periodic

motions, but they did not present a formal derivation of the

dynamics equations. Kitarovic et al. [2] and Oh et al. [4]

addressed the use of cable robots for loading and unloading

cargo between two ships. In the Ampelmann project [5], a

Stewart platform is mounted on a ship and is used to com-

pensate for the motion of the ship by keeping the platform

still with respect to the world frame. Lebans et al. [6] give

a cursory description of a telerobotic shipboard handling

system, and Kosuge et al. [7], [8] address the control of

robots floating on the water utilizing vehicle restoring forces.

Other related research areas are macro/micro manipulators

[9], [10], underwater vehicle/manipulator systems [11] and
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Fig. 2. Model setup for a four-link robot attached to a non-inertial base
with coordinate frame Ψb. Frame Ψ0 denotes the inertial reference frame.

spacecraft/manipulator systems [12]. Most previous work

deals with robots mounted on a free-floating base. There is,

however, an important difference between modeling a robot

on a forced and a free-floating base. A forced base motion

will add inertial forces to the dynamic equations that do not

arise in the free-floating case, such as spacecraft/manipulator

systems and manipulators on small AUVs.
There are some papers in the literature considering the

prediction of ship motion. Yang et al. [13], [14] discuss

the problem of landing a helicopter on a ship in high sea

and predict the ship motion by fitting the ship model to

the measured data using recursive least squares. Khan et al.

[15] use artificial neural networks to solve the same problem.

The Auto-Regressive fitting model is easy to implement but

accurate predictions can only be obtained for a short horizon.

If the principal frequencies are known the ship motion can

be written as a superposition of N sinusoidal waves with

different frequencies. In Chung et al. [16] the sea excitation

is extrapolated using this approach and the ship motion is

predicted using the ship model.

III. SHIP-MANIPULATOR MODELING

In From et al. [3] the classical dynamics equations for

a serial manipulator arm with 1-DoF joints were extended

to include the forced 6-DoF motion of the base. For more

details on how to derive the dynamics see From et al. [3] or

Duindam et al. [17], [18]. We consider the setup of Figure 2

describing a general n-link robot manipulator arm attached

to a moving base. We choose an inertial coordinate frame

Ψ0, a frame Ψb rigidly attached to the moving base, and n

frames Ψi (not shown) attached to each link i at the center of

mass. Finally, we choose a vector q ∈ R
n that describes the

configuration of the n joints. Using standard notation [19],

we can describe the pose of each frame Ψi relative to Ψ0 as a

homogeneous transformation matrix g0i ∈ SE(3). This pose

can also be described using the vector of joint coordinates q

as

g0i = g0bgbi(q). (1)

The base pose g0b and the joint positions q thus fully

determine the configuration of the robot.



In a similar way, the spatial velocity of each link can be

expressed using twists [19]:

V 0

0i =

[
v0

0i

ω0

0i

]

= V 0

0b + V 0

bi = Adg0b

(
V b

0b + Ji(q)q̇
)

(2)

where v0

0i and ω0

0i are the linear and angular velocities,

respectively, of link i relative to the inertial frame, Ji(q) ∈
R

6×n is the geometric Jacobian of link i relative to Ψb, the

adjoint is defined as Adg :=
[

R p̂R
0 R

]
∈ R

6×6, and p̂ ∈ R
3×3

is the skew symmetric matrix such that p̂x = p × x for all

p, x ∈ R
3. The velocity state is thus fully determined given

the twist V b
0b of the base and the joint velocities q̇.

We can write the dynamic equations in block-form as
[
MV V MT

qV

MqV Mqq

] [

V̇ b
0b

q̈

]

+

[
C̄V V C̄V q

C̄qV C̄qq

] [
V b

0b

q̇

]

=

[
F b

b

τ

]

(3)

with F b
b the external wrench on the base link, expressed in

coordinates Ψb (such that it is collocated with the twist V b
0b).

We are interested in the effects that the pose g0b, the ve-

locity V b
0b, and the acceleration V̇ b

0b have on the manipulator

dynamics. We can see this by rewriting the dynamics as

Mqq q̈ + C̄qq q̇ + MqV V̇ b
0b + C̄qV V b

0b
︸ ︷︷ ︸

inertial forces

= τ. (4)

Finally, the way the gravitational forces translate into joint

torques depends on the configuration of the base and need to

be added to the right hand side of (4). The torque associated

with link i is given by

τ i
g = Ji(q)AdT

g0i
(Q)F i

g(Q). (5)

Note that both R0i and Adg0i
depend on the base configu-

ration with respect to the inertial frame. F i
g is given by

F i
g =

[
fg

r̂i
gfg

]

= −mig

[
R0iez

r̂i
gR0iez

]

(6)

where ez =
[
0 0 1

]T

and ri
g is the center of mass of link

i expressed in frame Ψi.

IV. SHIP MOTION PREDICTION

Due to the stochastic nature of the forces that act on

ships, ship motion prediction is a very difficult problem.

In this section we present two simple and computationally

efficient methods for predicting the future motion of the

ship: the Auto-Regressive (AR) predictor and a predictor

using a superposition of sinusoidal waves representation. The

Auto-Regressive (AR) predictor is an all-pole model (i.e., no

inputs) and gives us a model of the output directly without

the need for information about the forces that cause the

motion. We write

y(t) = −a1y(t − 1) − a2y(t − 2) − · · · − any(t − n). (7)

and define

φ(t − 1) =
[
−y(t − 1) −y(t − 2) . . . −y(t − n)

]T

θ =
[
a1 a2 . . . an

]T

(8)
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Fig. 3. A typical example of true and predicted motion (AR) where a
new prediction is done every 0.5s. This clearly shows the need for re-
computation of the predicted motion at short time intervals. In this case,
the angular acceleration around the x-axis (roll) is shown.

Collecting N samples and stacking φ in Φ and y in Y we

find the optimal parameters θ in the least squares sense by

θ = (ΦTΦ)−1ΦTY. (9)

Alternatively we can fit the superposition of several sines

to the measurements in the least squares sense. Following

the approach in [16] we write

ξ(t) =

N∑

i=1

Ai sin (ωit + bi) (10)

where Ai is the amplitude of the sines, ωi is the frequency

and bi is the phase. Assuming the frequencies are found from

the peaks in the frequency spectrum, the problem amounts

to finding Ai and bi. We can write

ξ(t) =

N∑

i=1

a2i−1 sin (ωit) + a2i cos (ωit) (11)

where a2i−1 = Ai cos(bi) and a2i = Ai sin(bi) to handle

phase shifts. The parameters

θ =
[
a1 a2 . . . a2N

]T

(12)

representing the best fit in the least squares sense is then

found from (9) with

φ(t) =
[
sin (ω1t) cos (ω1t) . . . sin (ωN t) cos (ωN t)

]T

A. Empirical Data

The need for empirical data is of utmost importance when

verifying the performance of prediction algorithms. Most

publications on the topic of ship motion prediction use

computer generated data such as a combination of sines, a

wave model or a sine with added noise. This will not result

in a good performance indicator because of the stochastic



nature of the waves. In this work we use measurements

from a real full-scale ship. This lets us compare the different

prediction algorithms on real data, and most importantly

gives us valuable information about the accuracy of the

prediction for different prediction horizons. The ship used to

collect the measurements was the RS 113 “Erik Bye” which

is a 20.4 meter long Emmy Dyvi class ship and weighs 96

tons. The wave height during the experiments was about 1

meter. The ship is owned by Redningsselskapet AS, Norway.
The most important information when including the future

motion of the ship in a model predictive control approach is

to have as accurate predictions as possible of the velocity

and the acceleration entries of the state. If gravity plays

an important role, the orientation of the ship should also

be included. Figure 3 shows the true and predicted angular

acceleration (roll) of the ship. We see that the predicted

acceleration needs to be re-computed at short time intervals

to maintain a low prediction error. In general we get very

good results when the predictions are computed every 0.5 or

1.0 seconds. For predictions up to 3 seconds the predictions

are also reasonable and no large errors occur. If the prediction

horizon is longer than 3-5 seconds we find that in some cases

the predictions are out of phase which leads to large errors.
To get a more structured formulation of how the error

changes with the prediction horizon we look at how the

standard deviation evolves over time. This is important as

it allows us to include uncertainty in the cost function and

minimize this. Figure 4 shows the standard deviation for

the six degrees of freedom of the velocity state denoted

ν =
[
u v w p q r

]T

. We see that the AR predictions

are more accurate than the superposition of sines, except for

horizons of 0.2 seconds or less. We thus choose the AR

method to predict the ship motions to be used in the motion

planning and control presented in the next sections.

V. MOTION PLANNING AND CONTROL

In this section we discuss the motion planning problem,

i.e., to take the manipulator from an initial configuration

to a desired end configuration using as little torque as

possible. By planning the motion so that the inertial forces

contribute to the motion, and don’t work against it, we will,

in addition to save energy, reduce the strain and tension on

the manipulator. This allows for more accurate trajectory

tracking and reduces the wear and tear on the manipulator.

A. Motion Planning

Consider the control law

τ = τff + τPD (13)

where

τff = Mqq q̈d + C̄qq q̇d
︸ ︷︷ ︸

tracking terms

+ MqV V̇ b
0b + C̄qV V b

0b
︸ ︷︷ ︸

compensation for inertial forces

−
n∑

n=1

(Ji AdT

g0i
F i

g)

︸ ︷︷ ︸

gravity compensation

(14)

τPD = KP (qd − q) + KD(q̇d − q̇)
︸ ︷︷ ︸

PD-controller

(15)
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This is the standard augmented PD control law which in our

case also compensates for the inertial forces. Based on the

predictions of V b
0b and V̇ b

0b for a given horizon this control

law tries to cancel these disturbances regardless of whether

they contribute to the desired motion or not.
For trajectory tracking this is in general a very energy

demanding solution. When large inertial forces are present,

simply canceling these terms as in Equation (14) may require

excessive joint torques. Thus, instead of regarding these

terms as disturbances, we can include the prediction of the

ship motion in the motion planning. The planner can then

use this information to calculate the path that requires the

least actuator torque for the given base motion. For example,

consider a manipulator which is required to move from the

left to the right on the ship. If we choose to start the trajectory

at a time when the inertial forces contribute to the desired

motion we can get an almost free ride from one side to

the other. If we simply choose to cancel these disturbances,

for example by Equation (14), we might end up following

a trajectory for which the inertial forces work against the

desired motion for the entire interval. One intuitive situation

where this can occur is when the manipulator moves uphill

instead of downhill for the entire motion and thus not taking

advantage of the gravitational forces.
We follow the approach presented in From et al. [3] and

solve the motion planning problem by numerically minimiz-

ing an objective function representing the joint torques

P = min
t0,t1

∫ T1

t=T0

τTDτ dt (16)

where T0 ≤ t0 < t1 ≤ T1 and D is a positive definite matrix

that defines a metric in τ -space. In From et al. [3] this was
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Fig. 5. ABB robot mounted on a gantry crane. The first 5 joints (the 3 of
the gantry crane and the first 2 of the robot) are used to generate the ship
motion and the last four joints of the robot are used for optimal motion
planning of a 4-DoF robot. Links 2 and 3 of the robot are hidden in the
wrist. Courtesy ABB Strategic R&D for Oil, Gas and Petrochemicals.

solved assuming the base motion was known. We now use

realistic predictions of the base motion in the motion planner.

These predictions will become less accurate as the horizon

increases and we investigate how the choice of prediction

horizon affects the performance of the motion planner.

From Section IV we see that the accuracy of the predic-

tions is different for the different axes. For the AR predictor

we get that the predictions of the acceleration about the y-

axis is less accurate than about the x- and z-axes. Also, the

linear acceleration in the direction of the x-axis is far more

accurate than the y- and z-axes.

We now present a modified cost function that minimizes

also the expected variance on the output assuming we know

how the variance evolves with time for different degrees of

freedom, i.e., the standard deviation shown in Figure 3. In

Cannon et al. [20] the control objective of the Stochastic

MPC law is to regulate the expected value and variance of

the output state. In the following we apply the same ideas

and include the covariance matrix in the cost function so that

a trajectory that also minimizes the covariance is chosen. We

will use a cost function similar to the one found in Cannon

et al. [20] given by

P =
N−1∑

j=0

l(k + j|k) + L(k + N |k) (17)

where L(k + N |k) is the cost-to-go and

l(k + j|k) = q̄2(k + j|k) + κ ‖Σq(k + j|k)‖
r

(18)

with

q̄(k + j|k) = E[q(k + j|k)] (19)

denoting the expected value and

Σq =






E[(q1 − q̄1)(q1 − q̄1)] . . . E[(q1 − q̄1)(qn − q̄n)]
...

. . .
...

E[(qn − q̄n)(q1 − q̄1)] . . . E[(qn − q̄n)(qn − q̄n)]






(20)

so that Σq(k + j|k) is the covariance matrix of q(k + j|k)
given the measurements of the robot state q(i) and the ship

state g0b(i) for i = k0 . . . k and ‖·‖r denotes the Euclidean

norm of each row. The relative weighing of the expected

value and the variance can thus be controlled directly through

the parameter κ. Similarly, we add the second part of (18)

to the cost in (16) and get the cost function

P = min
k0,k1

K1∑

k=K0

(
τT(k)Dτ(k) + κ ‖Σq(k|K0)‖

)
. (21)

where ‖Σq‖ denotes the Euclidean norm of the covariance

matrix. The problem is thus to find the start time ki,0 and

the end time ki,1 for the motion of each joint subject to the

restriction K0 ≤ ki,0 < ki,1 ≤ K1. The cost, however, sums

over the entire pre-defined interval (K0,K1), i.e., also when

q̇i(k) = 0. We note that in this case we do not necessarily

have τi(k) = 0 because of the inertial forces.

We will assume that each degree of freedom of the ship

motion has a normal distribution, i.e.,







u̇

v̇
...

ṙ







∼








N (¯̇u, σ2

u̇)
N (¯̇v, σ2

v̇)
...

N (¯̇r, σ2

ṙ)








(22)

where σ2

x = E[(x − x̄)2] is the variance of x. Examples of

the expected value and the variance for the acceleration of

the ship are shown in Figures 3 and 4, respectively. Similar

relations can also be found for the position and velocity of

the ship.

For linear systems the Kalman filter gives us the expected

state and the error covariance. For non-linear systems we

use the Extended Kalman filter i.e., we linearize around the

mean value, and find the expected state of the robot and the

covariance matrix used in (18). This allows us to include

both the expected state and the covariance at time (k + j)
given the measurements available at time k also for non-

linear systems. This is then included in the cost function

(18) and the optimal solution is found by minimizing the

weighed cost of the expected value and the covariance.



3 5 7 9
 

 

3 5 7 9

3 5 7 9

3 5 7 9

1

1

1

1

1

1

1

1

2

2

2

2

4

4

4

4

6

6

6

6

8

8

8

8

10

10

10

10

0

0

0

0

0

0

0

0

0.5

0.5

0.5

0.5

-0.5

-0.5

-0.5

-0.5

Jo
in

t
1

Jo
in

t
2

Jo
in

t
3

Jo
in

t
4

Time [s]

Time [s]

Time [s]

Time [s]

(a) Joint Velocities.

3 5 7 9
 

 

3 5 7 9

3 5 7 9

3 5 7 9

1

1

1

1

1

1

1

1

2

2

2

2

4

4

4

4

6

6

6

6

8

8

8

8

10

10

10

10

0

0

0

0

0

0

0

0

0.5

0.5

0.5

0.5

-0.5

-0.5

-0.5

-0.5

Jo
in

t
1

Jo
in

t
2

Jo
in

t
3

Jo
in

t
4

Time [s]

Time [s]

Time [s]

Time [s]

(b) Torques times velocities.

Fig. 6. The joint velocities and the torques times velocity for a simple trajectory are shown for all joints. Note the mismatch between the torques and
the velocities for joint 1. This is due to the large amount of torque needed to compensate for the inertial motion.

VI. EMPIRICAL STUDIES

In this section we present the simulation results and the

experimental results from the lab. Due to the stochastic

nature of the disturbances, simulations are important to

be able to perform a sufficient number of runs and get

statistically meaningful results. We also run some of the

simulations on a ship-manipulator system in the lab to verify

the results and the computational feasibility of the approach.

A. Simulation and Experimental Setup

Both the simulations and experiments were performed

using true motion data from the full scale ship “Erik Bye”

and predictions from the AR model as presented in Section

IV. All the data sets are picked from one long sampling and

are thus collected during a short period of time and in a sea

state for which the dominant components of the motion were

in the xz-plane, i.e., the pitch is far bigger than the roll, and

the sway is almost zero. In other words, all the data sets are

measurements of the ship moving with the same velocity, in

the same sea state and with the same attack angle on the

waves.

For the experimental setup we used a 9-DoF robot (3-DoF

gantry crane and 6-DoF industrial manipulator, see Figure 5)

where we used the first 5-DoF to generate the ship motion.

This allowed us to generate the surge, sway and heave motion

with the gantry crane and the roll and pitch motion with

the first two joints of the manipulator. The yaw motion is

very small and can be neglected. The last four links of the

manipulator can then be considered a standard manipulator

for which we were to choose the optimal control and motion

planning. As the motion of the “base”, i.e., link 2 of the

manipulator, was set to exactly the same as the measurements

taken from the full scale ship this setup allows us to perform

very realistic experiments.

B. Motivation

We start by running an experiment where we let all the

joints follow a simple trajectory in joint space when the base

moves exactly like the motion of the ship. The trajectory

chosen takes each joint from the initial position qi(8) = 0 to

a target position qi(10) = π
2

in 2 seconds. The motion starts

after 8 seconds so the joint torques of each joint when the

robot does not move (but the base does) is also obtained. In

each joint there is a high-gain independent joint controller

to guarantee that the desired trajectory is followed.

The first link is very heavy, while the last three are lighter

links (about 10% of the weight of link 1). Figure 6(a) shows

the velocities and Figure 6(b) shows torque times velocity

for this simple trajectory. Note that for link 1 more torque

is used to compensate for the inertial forces than to follow

the desired trajectory. We see that the torque required to

compensate for the inertial forces, even when the joint does

not move, is substantial. This is due to the large inertia of

link 1, compared to links 2, 3 and 4. This experiment clearly

illustrates that for joints that need to move links with large

inertia, the inertial forces due to the moving base need to be

compensated for and should be taken into consideration in

the motion planning of the manipulator.
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Fig. 7. Optimal motion trajectory for a 4-DoF manipulator from the experimental setup. Three different trajectories are shown: a baseline trajectory
with maximum motion duration (dotted, red line), an optimized trajectory taking the correct base motion into account (dashed, blue lines), and an and an
optimized trajectory taking the predicted base motion into account (full, black lines).

C. Motion Planning in the Presence of Uncertainties

In this section we show how we can exploit the inertial

forces and choose a trajectory that minimizes the wear and

tear on the manipulator. We follow the approach presented

in From et al. [3] and solve the motion planning problem by

numerically minimizing an objective function (16). We let D

be a positive definite matrix that defines a metric in τ -space.

For a given interval (T0, T1) = (0, 10), the optimization

problem is then to find the start and the end time for each

joint with the restriction that T0 ≤ ti,0 < ti,1 ≤ T1 for

all i. The shape, but not the starting time or length, of the

trajectory is thus assumed fixed. By fixing the shape, we find

a sub-optimal solution that can be solved efficiently and in

real time. Finding the optimal solution over all trajectories

is a huge optimization problem and computationally too

demanding to be solved in real time. The start and end

configurations are chosen as

q(T0) =
[
0 0 0 0

]T

,

q(T1) =
[

π
2

π
2

π
2

π
2

]T

.

The motion planning problem thus amounts to finding the

eight parameters (one start and end time for each joint)

that minimize the total squared required torque integrated

over a fixed time interval while starting and ending the

motion in the required configurations. We choose D =
10−6 ·diag

[
10 2 2 5

]
reflecting the masses of the joints.

We also compute the optimal trajectory minimizing the

cost function (21) which also includes the covariance matrix.

We choose κ = 10 to enhance the effects of adding

the covariance matrix and let ‖·‖ denote Euclidean norm

(spectral norm) of the covariant matrix.

We now discuss how to choose the horizon and the

frequency at which the problem is re-solved in a receding

horizon setting when only predictions of the base motions

are known. In the previous section we found that the predic-

tions are very accurate for about 0.5 seconds and relatively

accurate for a horizon of about 3 seconds. When it comes

to motion planning, however, we find that a longer horizon

should be chosen. The reason for this is that we search for

the time interval for which the inertial forces contribute to

the motion as much as possible. We thus want to choose

the horizon length as long as possible, but at the same time

avoid using predictions that are not accurate and may lead

to large errors.

First we run several simulations to guarantee statistically

meaningful results using the two cost functions described.

Table I shows the optimal horizon, the total cost and the

maximum torques for i) a nominal trajectory which starts at

ti,0 = T0 and ends at ti,1 = T1 for all joints, ii) the cost

function (16) minimizing the torques only, and iii) the cost

function (21) minimizing the torques and variance. In Table

I we show the average values of 200 simulations and we

show the values of the cost function based on torque only

for both approaches in order to be able to compare the two

values.

We note that the optimal horizon increases from 4 to 6

seconds when the variance is included in the cost function.



We also note that the cost decreases somewhat and, more

importantly, the maximum torque decreases substantially.

This is a great advantage and will reduce the wear and tear

on the manipulator.
Finally we let a real robot in the lab follow the same

trajectory. This empirical study is important in order to

verify the simulation results. Figure 7 shows one example

of the optimal trajectories for the two cost functions for the

experimental set-up. Both trajectories are calculated in real

time every 2 seconds with horizon lengths of 4 and 6 seconds,

respectively. We note that adding the covariance to the cost

function results in a completely different trajectory.
We do the empirical studies with 5 different base motions.

The base motions for both the simulations and the experi-

ments are taken from the same data set so the results can be

compared directly. We find that the value of the cost function

is about the same for the two cost functions. Similarly to

the simulations, we find that the value of the maximum

torque is reduced with about 30%. The experimental results

thus support the tendencies found in the simulations and we

conclude that adding the covariance to the cost function has

a positive effect on the maximum torque.
Most importantly we see that adding information about the

predicted state of the ship—even though these predictions are

accurate only to a certain extent—can substantially reduce

the torque needed to follow the given trajectory. Reducing

both the energy used and the maximum torques with about

40-60% will drastically reduce the strain and tension on the

manipulator, which is what we wanted in the first place.

Cost function Horizon [s] Cost Maximum Torque [Nm]
Nominal 10.8 565
Torque 4 6.3 343
Torque and variance 6 6.1 230

TABLE I

OPTIMAL HORIZON AND THE CORRESPONDING COST AND MAXIMUM

TORQUES FOR THE TWO COST FUNCTIONS BASED ON 200 SIMULATIONS.

VII. CONCLUSIONS

In this paper we study the effects that ship motion pre-

diction accuracy have on the motion planning and control

of robots mounted on ships. The main difference from

conventional motion planning is that large inertial forces

enter the robot dynamics due to the motion of the base. This

paper presents the first detailed study of how these inertial

forces affect the dynamics of the robot and we find that they

do so to such an extent that they cannot be ignored. We

have put great effort in making the experiments as realistic

as possible. To this end we have collected ship motion data

from a full scale ship and performed several experiments

with a robot mounted on a forced base. These experiments

show that if the predicted inertial forces are included in the

motion planner in a receding horizon setting, we can utilize

these forces to more cheaply move from an initial to a target

configuration.
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