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Abstract— Generating accurate environment representations
can significantly improve the autonomy of mobile robots. In this
article we present a novel probabilistic technique for solving
the full SLAM problem by jointly solving the data registration
problem and the accurate reconstruction of the underlying
geometry. The key idea of this paper is to incorporate spatial
correlation models as prior knowledge on the map we seek to
construct. We formulate the mapping problem as a maximum a-
posteriori estimation comprising common probabilistic motion
and sensor models as well as two spatial correlation models
to guide the optimization. Instead of discarding data at an
early stage, our algorithm makes use of all data available in
the optimization process. When applied to SLAM, our method
generates maps that closely resemble the real environment. We
compare our approach to state-of-the-art algorithms, using both
real and synthetic data sets.

I. I NTRODUCTION

A frequent issue in robot navigation is the concurrent
exploration of metric maps while maintaining an accurate
position estimate. If the robot were to have an a priori
map, then localization would be a relatively easy task.
Alternatively, if the robot were to have a precise, externally
referenced position estimate, then mapping would simplify
tremendously. However, problems in which the robot has no a
priori map and no external position reference are particularly
challenging. Such scenarios may arise for service robots
inside and outside of buildings, AUVs, mining applications,
or planetary surfaces. This problem has been referred to
as either concurrent localization and mapping (CLM) or
simultaneous localization and mapping (SLAM).

In this work we want to address the problem of recon-
structing a map based on range measurements collected by a
mobile platform. In recent years, building maps of physical
environments with mobile robots has been a central problem
in the robotics community. Research over the last decade
has led to impressive results. Several successful algorithms
emerged including Relaxation [1], SEIF [2], FastSLAM [3],
MLR [4], TJTF [5], and Stochastic Gradient Descent [6].
Nearly all state-of-the-art methods are probabilistic andmost
of them are robust to noise and small variations of the
environment. Comprehensive surveys can be found in [7]
and more recently in [8].

A key limitation of almost all SLAM algorithms lies in
the necessity to select appropriate landmarks. By reducing
the sensor data to a representation by landmarks, a lot of the

Fig. 1. The map of building 079 in Freiburg optimized with landmark-based
SLAM (left) and by our algorithm using spatial correlation modells (right).
Our algorithm achieves a significantly more accurate map reconstruction.

originally retrieved information is usually discarded. Another
critical issue, which arises from using discrete landmarksin
SLAM, is the problem of data association. Before fusing
data into the map, new measurements are associated with
existing map landmarks. This step has been proven crucial
in practical SLAM implementations.

Due to the intrinsic limitations of sensor systems, spa-
tial sensor interpretation is fundamentally an undercon-
strained problem. However, typical environments where cur-
rent robots operate have some sort of structure hence mea-
surements of this structure will be correlated. We believe
that incorporating spatial correlation models as priors on
the environment enables a robot to recover better world
models. Creating an exact probabilistic model of all potential
environments is not feasible and probably not even well
defined; but in most cases, making basic assumptions is
reasonable. For example, assuming the existence of locally
smooth manifolds instead of randomly distributed surfaces
is a reasonable model. To our knowledge, no algorithm
for SLAM incorporates such knowledge in a probabilistic
formulation.

We propose a novel formulation of the SLAM problem
which incorporates spatial correlation models and does not



rely on the notion of landmarks. We show that this formula-
tion is superior in cases where no salient landmark definition
is feasible. Empirically we find that our formulation produces
maps which closely resemble the environment.

II. RELATED WORK

The topic of mappinig with mobile robots has been ex-
tensively studied. Despite significant progress in this area,
it still poses great challenges. At present, we have robust
methods for mapping environments that are static, structured,
and of limited size. With the success of small-scale indoor
and outdoor mapping, researchers are extending solutions to
large scale environments [9], [10], [11] and 6 DoF poses
[12]. To compare the capabilities of mapping algorithms,
authors typically present generated maps, loop closures,
and convergence behavior. Only recently Wulf et al. [13]
presented a method to create ground truth pose data used
to evaluate outdoor SLAM algorithms. Performance metrics
demonstrating the accuracy of maps are practically non-
existent.

Early work in SLAM assumed that a map used for mobile
robots could be modeled as a discrete set of landmarks.
Different kinds of representations or maps have been pro-
posed in robotics and in the artificial intelligence literature,
ranging from low-level metric maps such as landmark maps
[14] and occupancy grids [15], to topological graphs that
contain high-level qualitative information [16], and even
to multihierarchies of successively higher level abstractions
[17].

Traditionally, SLAM implementations based on Kalman
filter data fusion rely on simple geometric models for
defining landmarks. This limits landmark based algorithms
to environments suited to such models and tends to dis-
card much potentially useful data. Only more recently, the
work in [18] showed how to define landmarks composed
of raw sensed data. A key component of our approach is
recognizing that the typical landmark SLAM model assumes
unstructured environments, i. e. environments with randomly
independently distributed landmarks.

The occupancy grid framework, as proposed in [15] is
used in many practical SLAM implementations [19], [20]. It
employs a multidimensional (typically 2D or 3D) tessellation
of space into cells, where each cell stores a probabilistic
estimate of its occupancy state. For each grid cell, sensor
measurements are integrated using Bayes rule to diminish the
effect of sensor noise. This allows a variety of robotic tasks
to be addressed through operations performed directly on the
occupancy grid representation. The limited resolution of grid
maps is the source for several problems. As pointed out in
[21], a systematic error is introduced since the resolutionof
sensors typically used for perception varies with distance.
Generally, the occupancy grid is modeled as a spatially
uncorrelated random field. The individual cell states can be
estimated as independent random variables. Again, a random
structure is assumed for this model.

The assumption of line-based environments [22] and or-
thogonality as a geometrical constraints [23] have already

been used by other researchers. Those approaches require
features to be reliably extracted from the data as a prepro-
cessing step which limits the performance of the subsequent
SLAM algorithm.

From the discussion above we can identify some limita-
tions of current SLAM approaches:

1) While much effort in robotic mapping is spent on large
scale environments, little attention is put on the true
accuracy of the resulting map.

2) Most map representations used in current SLAM ap-
proaches assume a random structure on the map or the
features in the map. In fact, this is rarely the case, as all
man-made environments are highly structured. In par-
ticular, the insides of buildings, a common workspace
for mobile robots, are constructed with a well known
methodology.

3) Information included in the sensor data is discarded at
an early stage of processing: landmark maps discard
much useful data while occupancy grid maps have
problems with the inherent limited resolution.

These limitations motivate our research.

III. F ORMULATION OF THE SLAM PROBLEM

The following notation is adopted for a mathematical
formulation of SLAM:

• xt: A vector describing the position and orientation of
the robot at a timet.

• ut: The control vector that was applied at timet − 1
and carries information about the change of the robot’s
pose.

• z
i
t: The observations taken by the robot of theith

feature.
• ct: A correspondence vector that contains a list of all

features observed at timet.
• m: A vector of map featuresm = {mi} representing

the environment around the robot.
The goal of SLAM is to simultaneously estimate both the

robot’s pose and a map of its environment. In probabilistic
SLAM this is often posed as Bayesian filtering formulation
[7] in which one seeks to calculate the posterior over the
robot’s posex1:t along with the mapm:

p (x1:t,m|u1:t, z1:t, c1:t) . (1)

Thrun et al. have shown in [11] that a closed form expression
of this full SLAMposterior over all quantities can be obtained
by recursively applying the Bayes rule and a subsequent
induction overt:

p (x1:t,m|u1:t, z1:t, c1:t) = (2)

η p (x0) p (m)
∏

t

[

p (xt|xt−1,ut)
∏

i

p
(
z

i
t|xt,m, ct

)

]

Here p (xt|xt−1,ut) is known as themotion model, which
describes state transitions of the robot’s pose in terms of
a probability distribution. The state transitions are assumed
to follow a Markov process and are independent of both
the observations and the map. The termp

(
z

i
t|xt,m, ct

)



Fig. 2. The left figure shows the structure of traditional landmark based SLAM algorithms. Each observationz
i
t

is associated with a map featuremi. The
right figure shows our approach which incorporates correlations between features into a probabilistic estimate. Such correlations are modeled as locally
supportedmap priors.

denotes anobservation model, which models an observation
z

i
t from a known pose and a known map as a probability

distribution. Both models have been studied well for a variety
of robots and sensors. The two prior termsp (x0) andp (m)
characterize priors of the first robot pose and of the map
respectively. Usuallyp (x0) is used to anchor the initial pose
to a fixed location. The map priorp (m) is typically assumed
to be unknown and subsumed into the normalizerη. Finding
the most probable solution to the full SLAM problem is the
process of finding the set of posesx̂1:t and the mapm̂ that
maximizes the posterior probability of Eq. (2):

x̂1:t, m̂ = argmax
x1:t,m

p (x1:t,m|u1:t, z1:t, c1:t) . (3)

A graphical model of this formulation is presented on the
left side of Fig. 2.

IV. SLAM WITH MAP PRIORS

In this contribution, we introduce prior expectations on
typical environments into SLAM by means of suitable a
priori distributions p(m). First we want to eliminate the
notion of landmarks. In the previous formulation we assumed
that the correspondencesct are known beforehand which
enables us to uniquely assign a landmarkmi to each ob-
served feature. However, in practical SLAM implementations
correspondence assignment becomes a demanding task. In
general, correspondence between measurements taken at
different time instances are non-unique and the imposture
thereof is a main source of deteriorated results for many
SLAM implementations. In our formulation, we consider the
measurements directly without extraction of any landmarks.
Instead, we claim there are no existing immediate correspon-
dences between measurements. In fact, this claim is quite
reasonable for a number of situations. For example, a mobile
robot equipped with a lidar, which takes a finite number
of measurements while it is in motion, is very unlikely to
measure the exact same spot twice.

Here are the key modifications to the original SLAM
formulation:

1) Each observationzi
t creates a new feature in the map.

2) We assume no correspondences between observations
and known features.

3) Instead of correspondences, we use correlation models
as a map priorp (m) to guide the estimation of the
robot’s pose and the map.

The new posterior for this formulation is:

p (x1:t,m|u1:t, z1:t) = (4)

η p (x0) p (m)
∏

t

[

p (xt|xt−1,ut)
∏

i

p
(
z

i
t|xt,m

)

]

A graphical model of this new formulation is presented in
the right side of Fig. 2.

Our modifications have some interesting implications.
First, the state space of our optimization problem will be
significantly larger than landmark based approaches because
of the one-to-one correspondence of measurements and map
features. It is important to realize that for the optimization
of Eq. (4) a good map prior is vital. The observation
model, the motion model, as well as the prior of the first
pose considered independently are explained best by the
measurements themselfs. Without any map prior the most
probable solution of Eq. (4) would be the measurement itself.
An optimization Eq. (4) will move points locally to comply
with the map prior model. This is fundamentally different
from ICP-style rigid alignment techniques where only the
robot pose is optimized. The point motion will be constraint
due to the dependence of measurement and pose. In fact,
a movement of a point will create a counter potential for
the point and for the corresponding pose to comply with
the measurement model. In other words, maximizing the
posterior probability Eq. (4) will lead to a set of poses and
map features that best explain the measurements as well as
the prior model.

V. PROBABILISTIC MODELS

The robot’s motion is represented using a common proba-
bilistic motion model where the robot is assumed to perform



Fig. 3. Themanifold modeluses a fixed neighborhoodNε of points to
create a tangent line defined by a pointoi and the normalni. The potential
is then modeled as a Gaussian-type function over the projected distanced
to the tangent line.

a series of a rotation, a translation, and a second rotation [24].
Observations are modeled as a range measurement along a
beam, which originates at the local coordinate system of the
sensor [24]. The prior termp (x0) anchorsthe first pose at its
position (e. g. origin of the global coordinate system) which
is easily expressed by a Gaussian-type distribution using a
very small standard deviation.

VI. SPATIAL CORRELATION MODELS

The probability distributionp (m) in Eq. (4) represents
a prior distribution of all measured scenes. An exact proba-
bilistic model of this distribution is not feasible and probably
not even well defined. Hence we focus on partial models,
which represent properties of the surface structure. In our
approach, we use locally defined spatial correlation models
representing two properties: manifoldnessfM (m) and the
orientationfO (m). The final priorp (m) is defined as:

p (m) =
1

η
fM (m) fO (m) . (5)

In order to make this expression a valid probability density
function, we introduce a constant factorη, which is the
integral over all other factors and, therefore, normalizes
p (m) to be a probability density function. In practice, this
factor can be safely ommited as the normalization does not
have an effect on the optimization of Eq. (4).

A. Manifold Model

The intuition of this correlation model is that map obser-
vations belong to structured surfaces in the robot’s environ-
ment. This means that for a 2D map the most probable sur-
face must be a compact, locally connected, one-dimensional
manifold, possibly with boundary, and embedded inR

2. The
first step towards defining a potential function which captures
this property is to compute a tangent line associated with
each map pointmi. A tangent line is defined by a point
oi and normalni. For each point, we choose a local neigh-
borhoodNε of variable diameter (typicallyε = 10 . . . 50
points). The centeroi is taken to be the centroid ofNε,
and the normalni is determined using principal component
analysis [25]: the eigenvector with the smallest eigenvalue
corresponds to the normalni. The projected distancedi of
the point onto its tangent line is defined by the dot product:

di = (mi − oi) · ni. (6)

Now, we define a Gaussian-type manifold potential function
of the form:

fM (m) =
∏

i

exp

{

−
d2

i

2σM

}

, (7)

whereσM is the variance of tangent line distances. Fig. 3
illustrates the properties of this correlation model. The data
points are drawn to their corresponding tangent lines. Hence
the most probable arrangement of map points regarding this
potential is when all points are located on a one-dimensional
manifold. It should be noted that the manifold potential
is a set of locally supported functions. The size ofNε

defines the region of influence. We allowε to adapt locally
which makes less stringent the requirement that the data is
uniformly distributed over the surface. To select and adapt
the neighborhood size, we use a kernel density estimator [26]
and setε proportional to the computed density.

B. Shape Model

The shape model addresses consistency of surface orienta-
tions. If two surface regions (cf. Fig. 4) belong to the same
physical surface, the orientation of edges representing the
same portion should have a consistent orientation. In other
words, we are looking for geometric relations (parallelism,
orthogonality) of adjacent surface regions since we assume
a predominantly rectilinear environment.

Fig. 4. Theshape potentialuses the orientation of adjacent surface regions.
The differences between two corresponding normalsni andn

∗

i
are modeled

as Gaussian-type functions over the normals differences.

A simple approach is to examine the normals of adjacent
surface regions. If the angle is close to one of0◦, 90◦, 180◦,
or 270◦ the shape potential will draw the points towards a
rectilinearity case. Such a potential can be defined as follows:
Let mi andmi−1 be neighbors on the same surface region.
The normal on the surface region is defined by:

ni =
(mi−1 −mi)

⊥

||mi−1 −mi||
=

(
0 −1
1 0

)

︸ ︷︷ ︸

:=M⊥

(mi−1 −mi)

||mi−1 −mi||
. (8)

Now, let ni and n
∗

i be the normals on two corresponding
surface regionsS andS∗ respectively (cf. Fig. 4). Then the
shape potential for the0◦ case has the form of a quadratic
normal distribution:

f0◦ (m) = exp

{

−
1

2
(n∗

i − ni)
T

ΩO (n∗

i − ni)

}

(9)



HereΩO corresponds to a covariance matrix for the orienta-
tion of adjacent surface regions. In a similar way, we define
individual functions for the90◦, the180◦, and the270◦ case.
We also allow for a small margin of10◦ within we assign
paired regions to the categories. All other cases that do not
fall into one of the geometric relations will not contributeto
the shape potential.

VII. I MPLEMENTATION

In Eq. (4) we defined a novel probabilistic model for
the full SLAM problem; and in the previous sections, we
discussed the different components of this model. All map
features and robot poses are calculated simultaneously from
the maximum a-posteriori solution (MAP)of Eq. (4). Now
we want to focus on a practical implementation to calculate
this solution.

Since maxima of Eq. (4) are unaffected by monotone
transformations, we can take the negative logarithm of this
expression to turn it into a sum and optimize this expression
instead:

x̂1:t, m̂ = argmin
x1:t,m

p (x1:t,m|u1:t, z1:t)

= argmin
x1:t,m

− log η − log p (x0)− log p (m)

−
∑

t

log p (xt|xt−1,ut)

−
∑

t

∑

i

log p
(
z

i
t|xt,mi

)

= argmin
x1:t,m

E (x0:t,m) (10)

Finding the most probable solution reduces now to finding
the global minimum of the functionE (x0:t,m), which is
a sum of log-likelihoods. The term− log η is a constant
normalization factor and is not relevant for minimizing
E (x0:t,m).

Our algorithm consists of three main steps: first we use
the motion modeland theobservation modelto calculate
an initial estimate forx1:t and m1:i respectively. Next, an
initialization is performed to improve this estimate. Finally,
we use a non-linear conjugate gradient variant to find the
parameters which minimizeE (x0:t,m). An outline if this
algorithm is presented in Alg. 1.

A. Initialization

Unfortunately, the objective functionE (x0:t,m) is highly
non-linear and thus finding the global minimum is known
to be difficult. For this reason, we use a scan alignment
algorithm prior to the optimization. In particular, we use the
well known iterative-closest-point(ICP) algorithm [27] to
create an initial alignment and, therefore, a better starting
point for our optimization. Our experiments show that this
starting point is usually sufficiently close to the global
minimum of E that the following optimization procedure
will converge into the correct solution. The details of the
ICP algorithm are omitted for brevity, but can be found in
contemporary texts [28].

Algorithm 1 Calculatex̂1:t, m̂

1: for all controlsut do
2: xt ← motionmodel(ut,xt−1)
3: for all observationszi

t do
4: mi ← observationmodel

(
xt, z

i
t

)

5: end for
6: end for
7: x1:t,m← iterative closestpoint(x1:t,m)
8: repeat
9: create prior modelp (m)

10: fix state variablesx1:t

11: m← conjugategradient iteration(x1:t,m)
12: fix state variablesm1:i

13: x1:t ← conjugategradient iteration(x1:t,m)
14: until convergence

B. Optimizing Using Conjugate Gradient

The most probable path and the most probable map
results from finding the global minimum of the function
E (x1:t,m). The minimization itself is a high dimensional
and sparse optimization problem. Therefore, theNonlinear
Conjugate Gradient Method(CG) is used to find a good
solution. A detailed description of this a method can be found
in [29]. In our implementation we use a modified version of
CG which addresses the structure of our state space. Each
CG iteration consists of two sub-optimization steps. First,
we fix all pose state variables and optimize the map feature
positions. Next, the map features are fixed and the positions
are optimized. By splitting the optimization in two steps, we
loose the optimality of our solution; however, in practice,
this scheme lead to a better convergence than optimizing all
state variables simultaneously. Each sub-optimization step
employs a standard Newton-Raphson line search and the
Fletcher-Reeves formulation to linearly combine the negative
gradient of the functionE (x0:t,m) with previous such
gradients. A detailed outline of this procedure is presented
in Alg. 1. The derivation of the gradients ofE (x1:t,m) is
presented in the appendix.

VIII. E XPERIMENTAL RESULTS

A. Synthetic Data

To study the properties of our approach, we use synthetic
data created in a simulated environment [30]. The dataset
consists of 16 simulated 360◦ scans with 720 measurements
in each scan. The ground truth of the whole set and of
two details are presented on the left side of Fig. 5. This
ground truth was then distorted by adding Gaussian noise to
the measurements (range and bearing) and to the odometry
in order to create a realistic input for all algorithms. For
a comparison, we use a variant of the ICP algorithm [27],
which incrementally registers all scans and the state-of-the-
art Stochastic Gradient Descent (SG)optimizer by Olson et.
al [6]. The thickness of walls is a general indication of the
error distribution—a divergence of the robot pose typically
results in map distortions like bend/double walls while noise



Fig. 5. Evaluation of our algorithm on a synthetic dataset. The first row shows the full dataset, whereas the second and third row depicts magnified
details. The ICP algorithm [27] yields a good pairwise alignment but results in an inconsistent map (middle). Olson’s Stochastic Gradient Descent [6]
algorithm produces a consistent map on the first glance, but the details reveal fuzzy surfaces (first detail) and small pose error residuals (second detail).
Our algorithm creates a globally consistent map and is able toeliminated measurement errors almost completely (right).

Fig. 6. A comparison of our algorithm to sequential registration with the ICP algorithm (Besl et al. [27]) and Stochastic Gradient Descent (Olson et al.
[6]) on the fr079 dataset. The right side shows the full dataset and on the left side we present magnifications of two details.



Fig. 7. Absolute pose and map feature errors for the syntheticdataset.

of the range sensor has a fixed mean and makes walls appear
fuzzy and blurred (see Fig. 5). We also assess the algorithm
performance by comparing the reconstructed trajectory and
the reconstructed map with the available ground truth (see
Fig. 7). On the one hand, ICP is able to align groups of scans
correctly, but it fails to create a globally consistent map.
This behavior is expected since ICP is a pairwise alignment
algorithm. On the other hand, SG produces a consistent map,
although some residual pose errors remain. Both ICP and SG
adjust robot poses only and therefore feature measurement
errors are not corrected. In contrast, our algorithm creates a
globally consistent map and is able to eliminate measurement
errors. Fig. 7 shows the absolute robot pose and map feature
errors and the following table presents the corresponding first
and second moments:

Pose error (m) Map error (m)
Algorithm mean var mean var
ICP 0.597 0.199 0.702 0.238
SG 0.088 0.115 0.115 0.005
Our algorithm 0.035 0.048 0.047 0.002

B. Real Data

In the second experiment we use data gathered by a real
robot. Here, we use the fr079 data set which is publicly
available at the Robotics Data Set Repository (Radish) [31].
It consists of 4791 scans from a Sick LMS lidar with
odometry pose estimate for each scan. For a comparison
we again use Olson’s Stochastic Gradient optimizer [6]. The
reconstruction of the full map is presented on the right side
of Fig. 6. Both SG and our algorithm result in a similar
map. One may notice that the walls appear thinner in the
map reconstructed by our algorithm, which quantitavely
shows our algorithm provides a sensible estimation of the
robot path. The details on the left side of Fig. 6 reveal a
significantly better registration of the data. Our algorithm
performs very well on straight walls since those features are
represented best by our correlation models. Some outliers

and smoothed corners are produced on sharp features since
our models are not well defined at corners.

IX. CONCLUSION

This paper has presented a novel approach for probabilistic
mapping. We used a map representation which stores all
observations as unique features in this map. Instead of assum-
ing correspondences between observations, we incorporated
two spatial correlation models as map priors to guide the
optimization. With this approach, we formulated the full
SLAM problem as a maximum a-posteriori estimation prob-
lem which we optimized using a nonlinear conjugate gradient
method. Finally, we demonstrated a practical algorithm that
has been evaluated on synthetic data and on a large dataset
available to the public.

In this particular research, we focused on using correlation
models to guide the optimization. This is fundamentally
different from the notion of landmarks and landmark corre-
spondences used in traditional SLAM implementations. The
next logical step is a combination of correlation models with
landmark correspondences and will be subject of our further
research.

A potential drawback of our approach is that the optimiza-
tion may get stuck in a local minimum, which is a universal
problem of non-convex optimizations. A sufficient initial-
ization, as presented earlier, usually leads to good results.
However, it remains unclear whether this is a substantial
shortcoming of our approach.

This paper focused on mapping in planar environments
with 2D maps and 3 DoF poses to be estimated. Nevertheless,
we believe that a similar approach is feasible for 3D maps
and 6 DoF poses.
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APPENDIX: LOG-POSTERIORGRADIENTS

For notational brevity we write:

Θ(m) = const. − log p (m) . (11)

The gradients for the log-prior model can be derived by
calculating the partial derivatives ofΘ(m) with respect to
mi:

∂ΘM (m)

∂mi

=
1

σM

· (mi − oi) , (12)

∂ΘO (m)

∂mi

= −ΩO (n∗

i − ni)
∂ni

∂mi

, (13)

with the derivative of a normal with respect tomi:

∂ni

∂mi

= M⊥

[

I

‖mi−1 −mi‖2
−

(mi−1 −mi) (mi−1 −mi)
T

‖mi−1 −mi‖
3

2

]

.
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