
Simulation-Based LQR-Trees with Input and State Constraints

Philipp Reist and Russ Tedrake

Abstract— We present an algorithm that probabilistically
covers a bounded region of the state space of a nonlinear system
with a sparse tree of feedback stabilized trajectories leading
to a goal state. The generated tree serves as a lookup table
control policy to get any reachable initial condition within that
region to the goal. The approach combines motion planning
with reasoning about the set of states around a trajectory for
which the feedback policy of the trajectory is able to stabilize
the system. The key idea is to use a random sample from the
bounded region for both motion planning and approximation
of the stabilizable sets by falsification; this keeps the number of
samples and simulations needed to generate covering policies
reasonably low. We simulate the nonlinear system to falsify
the stabilizable sets, which allows enforcing input and state
constraints. Compared to the algebraic verification using sums
of squares optimization in our previous work, the simulation-
based approximation of the stabilizable set is less exact, but
considerably easier to implement and can be applied to a
broader range of nonlinear systems. We show simulation results
obtained with model systems and study the performance and
robustness of the generated policies.

I. INTRODUCTION

The class of algorithms proposed here and in previous
work [1] aims at generating control policies for complicated
nonlinear systems (e.g. robotic balancing tasks, walking and
flying robots, etc.) when a linear controller is insufficient or
the number of states prohibits the application of methods
based on dynamic programming. We propose an algorithm
that generates a lookup table control policy to stabilize
any reachable initial condition within a bounded region of
the state space of a nonlinear dynamic system to a goal
state. This policy consists of a tree of feedback stabilized
trajectories leading to the goal state.

The algorithm generates the tree using a randomized feed-
back motion planning approach that explores the bounded
region using sampling and simulation, adding trajectories to
the tree where needed. Simultaneously, it approximates the
set of states around a given trajectory that can be stabilized to
the goal using the feedback policy along the trajectory. One
may think of this set as a volume around a trajectory in state
space in which any initial condition can be brought to the
goal. We call this volume the ‘funnel’ of a trajectory, inspired
by [2] and [3]. Creating a policy that stabilizes any initial
condition within the bounded region to the goal is equivalent
to covering the region with funnels of trajectories leading
to the goal. Estimating the funnels allows the algorithm
to efficiently sample the bounded region and to only add
trajectories where needed, resulting in a sparse representation
of the policy.

P. Reist and R. Tedrake are with CSAIL at MIT, Cambridge MA, USA.

The algorithm is based on the algorithm presented in [1],
which also generates a covering tree of trajectories leading to
a goal state by reasoning about the funnels of trajectories. In
[1], the funnels are verified using an algebraic method, using
a sums of squares (SoS) optimization [4]. The formal method
is more exact and provides proper stability guarantees in con-
trast to the sample-based, non-conservative approximation
which only provides probabilistic stability guarantees. How-
ever, the simulation-based approach is considerably easier to
implement than the formal approach, where many subtleties
have to be accounted for. It is straightforward to enforce input
constraints and check state constraints in simulation and the
approach could also handle hybrid nonlinear systems (e.g.
juggling or walking robots with discrete impact events).

In the following, we first review related work. Next, we
present the key concepts and a description of the algorithm.
Finally, we show the performance of the algorithm in simu-
lation on two model underactuated systems.

A. Related Work

The algorithm is inspired by randomized motion planning,
i.e. RRTs [5]. Randomized motion planning demonstrated
that it can find feasible trajectories for nonlinear systems in
nonconvex, high-dimensional search problems.

The approach is similar to the work of Atkeson [6], who
uses trajectories as a sparse representation of the global value
function of a system. The authors propose building a library
of trajectories leading to a goal state and approximating
the global value function with quadratic models along these
trajectories. Trajectories are added based on how well two
adjacent trajectories agree on the value function in between
them. The resulting policy is not time based like in our
approach, but transformed to a state dependent policy using
a nearest neighbor lookup. The policy of the closest state in
the trajectory library is executed, where the closeness is mea-
sured using a weighted Euclidean norm [7]. In contrast, the
proposed algorithm aims not at producing globally optimal
trajectories or estimating the global value function; we are
more interested in designing a scalable algorithm that yields
feasible policies.

As Atkeson points out, an advantage of using trajectories
to represent a policy is that one avoids the problems that
a discretization of state space generates. It is remarkable
that the proposed algorithm generated policies for the cart-
pole (4 states) swing-up with trees of between 20000 and
200000 nodes. The equivalent resolution of a state space
discretization would be between 12 and 21 grid points per
dimension, which is quite poor.

II. KEY CONCEPTS

A. Stabilizing the Goal State and Verification of the Basin
of Attraction

In the following examples, we use goal states xG which
must be stabilizable. We stabilize a goal state using a linear
time-invariant linear quadratic regulator (TILQR) and derive
a formal verification of an approximated basin of attraction
of the closed-loop nonlinear system at the goal state. The
verification produces a description of the set of states around
the goal for which the closed-loop nonlinear system is
asymptotically stable. It would be costly to approximate
this set using simulation as the time horizon to check for
convergence approaches infinity. The formally derived basin
allows us to simulate for a finite time to test for asymptotic
convergence; we just have to check if the simulation ends
up in the approximated basin.

We consider sampled-data feedback control of continuous-
time dynamical systems and derive the controllers and ap-
proximated goal state basin of attraction in discrete-time.
This is another point where the presented algorithm differs
from [1], where controllers and funnels are derived in
continuous-time.

1) TILQR: We derive the goal state controller as presented
in [8]. Consider continuous-time, nonlinear system dynamics

ẋ = f (x,u) , (1)

where f is smoothly differentiable, x ∈ Rn is the state of the
system and u ∈ Rm is the input to the system. We define

x̄ := x− xG, ū := u− uG, (2)

where xG, uG are the nominal state and input of the system
at the goal such that f (xG,uG) = 0. We linearize and
discretize the system (1) around the goal to obtain the
discrete-time, time-invariant linear system dynamics

x̄k+1 = Ax̄k + Būk, (3)

where x̄k = x̄ (t = k · ts) and ts is the sample time. The
system (3) must be stabilizable. The cost-to-go function to
be minimized is

J (x̄0) =
∞∑

n=0

[
x̄T

nQx̄n + ūT
nRūn

]
(4)

Q = QT ≥ 0, R = RT > 0, (5)

where x̄0 is an initial state deviation and Q, R are penalty
matrices on the state and input deviations. The optimal cost-
to-go for a linear system is given by

J∗ (x̄k) = x̄T
k SGx̄k, (6)

where SG ≥ 0 is the unique stabilizing solution to the
discrete algebraic Riccati equation

0 = Q− SG + AT
(
SG (7)

− SGB
(
R + BTSGB

)−1
BTSG

)
A.

The optimal feedback policy is given by

ū∗k = −
(
R + BTSGB

)−1
BTSGAx̄k = −KGx̄k. (8)

Both SG and KG are obtained using the Matlab dlqr
command.

2) Verification of Goal State Basin of Attraction: In the
following, we derive the verification of the approximated
basin of attraction of the nonlinear closed-loop system at the
goal state. We verify the set of states around the goal state
for which the TILQR feedback policy achieves asymptotic
stability of the nonlinear system. The presented derivation is
analogous to [1], in a discrete-time setting.

Consider discrete-time, nonlinear closed-loop system dy-
namics of the form

x̄k+1 = f (x̄k)
x̄k = xk − xG, (9)

where xG is an equilibrium of the system, i.e. f (0) = 0.
We define the basin as the largest set of states for which the
optimal cost-to-go (6) decreases with every step

J∗ (f (x̄k))− J∗ (x̄k) < 0, (10)

which represents a discrete-time formulation of a Lyapunov
function. Every state within the goal basin should always
take a step towards the goal, reducing it’s cost-to-go and
eventually reaching xG, implying asymptotic stability. We
require this to hold over the hyper-elliptical domain B(ρG)
defined as

B(ρG) :=
{
x̄|x̄TSGx̄ ≤ ρG

}
, (11)

where SG is the TILQR optimal cost-to-go matrix. We now
search for the largest ρG for which (10) holds, i.e. we are
looking for the largest B(ρG) completely contained in the
basin of attraction of the nonlinear closed-loop system. To
test whether (10) holds for a given ρG, we formulate the
following sums of squares SoS [4] feasibility program:

find h(x̄k)
subject to J∗ (f (x̄k))− J∗ (x̄k) (12)

+ h(x̄k)
(
ρG − x̄T

k SGx̄k

)
< ε ‖x̄k‖22 ,

h(x̄k) ≥ 0,

where h(x̄k) is a polynomial of sufficiently large order and
ε is a margin by which the left hand side of (12) needs to be
a negative definite function of x̄k. If the program is feasible,
(10) holds within the hyper-ellipsis defined by B(ρG).

In order to execute the program, (12) has to be a poly-
nomial expression. All summands in (12) except J∗ (f (x̄k))
are already polynomials. To make the whole expression poly-
nomial, we approximate J∗ (f (x̄k)) using a Taylor series
expansion

Ĵ∗ (f (x̄k)) = J∗ (f (x̄k = 0)) +
∂J∗ (f (x))

∂x

∣∣∣∣
x=0

x̄k + . . .

(13)
to sufficiently high order, omitting the higher order terms.
We now perform a binary search on ρG to find the maximal

ρG that results in a feasible SoS program. Since this step
does not take input constraints into account, we check if any
of the states in B(ρG) violate the input constraints when
applying (8) and reduce ρG if necessary.

The verification derived here is not straightforward to
implement. A Matlab toolbox of the LQR-Tree algorithm
using formal funnel verification may be used for this step
and is made available at [9].

B. Stabilizing a Trajectory and Funnel Approximation

1) TVLQR: The sampled trajectories in the tree are sta-
bilized using linear time-varying linear quadratic regulator
(TVLQR) feedback policies. The derivation is analogous to
the TILQR. Consider a sampled nominal trajectory of the
system (1)

x0k,u0k, k = 0, 1, ..., N, (14)

where N + 1 is the number of elements. We linearize and
discretize the system around this trajectory to obtain the
discrete-time, time-varying linear system dynamics

x̄k+1 = Akx̄k + Bkūk, (15)

where
x̄k := xk − x0k, ūk := uk − u0k. (16)

The cost-to-go to be minimized is

J (x̄k) = x̄T
NQN x̄N +

N−1∑
n=k

[
x̄T

nQx̄n + ūT
nRūn

]
(17)

QN = QT
N ≥ 0, Q = QT ≥ 0, R = RT > 0, (18)

where QN , Q and R are penalty matrices on the final state
deviation and state and input deviation from the nominal
trajectory, respectively. The optimal cost-to-go is given by

J∗k (x̄k) = x̄T
k Skx̄k, (19)

where Sk ≥ 0 is given by the dynamic programming update

Sk =Q + AT
k

(
Sk+1 (20)

− Sk+1Bk

(
R + BT

k Sk+1Bk

)−1
BT

k Sk+1

)
Ak,

with the boundary condition SN = QN . The optimal input
is given by

ū∗k = −
(
R + BT

k Sk+1Bk

)−1
BT

k Sk+1Akx̄k

= −Kkx̄k, (21)

where Kk ∈ Rm×n is the time-varying compensator matrix.
2) Simulation-Based Funnel Approximation: The funnel

of a trajectory is the set of states around the trajectory
which the TVLQR policy can get to the approximated goal
basin without violating state and input constraints. After
calculating the TVLQR policy for a trajectory, each nominal
state x0k of the trajectory has an associated optimal cost-to-
go matrix Sk and compensator matrix Kk. The matrix Sk

together with the funnel parameter φk ∈ R describes a hyper-
ellipsis around the nominal state x0k. A state x is inside this
ellipsis if

(x− x0k)TSk(x− x0k) < φk. (22)

x
G

x
N

f
N-1

x
S

x
N-1

f
0

+

f
0

-

x
00 x

0N-1

f
1

+

B(ρ
G

)
f

1

-

Fig. 1. Adjusting the funnel after a failed simulation. The simulated
trajectory (solid black) failed to reach the goal basin B(ρN) using the
policy starting at node q : x00, φ0. However, the funnel described by
the darker grey ellipses defined by φ−0,1 around the first two nodes of the
policy’s nominal trajectory (dashed line) predicted a successful simulation.
Therefore, we adjust φ−0,1 to φ+

0,1 according to (25), resulting in the light
grey ellipses. The simulated state at time index N − 1 was not inside the
ellipsis of node N − 1 and thus φN−1 remains unchanged.

The union of the ellipses around all nominal states in a
trajectory is the approximated funnel of the trajectory. We
also use an ellipsis to describe the approximated goal basin
B (ρG). But there is an important difference between the
two parameters ρG and φk: ρG is fixed while the φk of a
trajectory may change in an iteration of the algorithm. This is
due to the fact that we approximate the funnel of a trajectory
by falsification. In the following, we explain this important
mechanism of the algorithm.

Consider a random sample xS from the bounded region
R to be covered. Assume that xS happens to be inside the
currently estimated ellipsis of node q of a trajectory in the
tree. Node q is the starting point of a nominal trajectory and
TVLQR feedback policy

uk = u0k −Kk (xk − x0k) , k = 0, 1, ..., N, (23)

where u00 = u0q , x00 = x0q , K0 = Kq and N + 1 is the
number of nodes of the nominal trajectory. The trajectory
ends up at the goal state, thus x0N = xG. We simulate
the nonlinear system using xS as initial condition and apply
the feedback policy (23) for t ∈ [0, N · ts]. The simulation
generates a sampled trajectory of the system with states
xS ,x1, ...,xN . After the simulation, we check if the system
reaches the approximated basin of the goal state B (ρG):

(xN − xG)T SG (xN − xG) ≤ ρG. (24)

The input constraints are enforced using a saturation on the
input; we then only have to check whether the trajectory
xS ,x1, ...,xN violates any state constraints.

If the system reaches the goal basin and does not violate
any state constraints, the simulation is successful. If the sim-
ulation fails, we adjust the funnel of the nominal trajectory
starting at q setting

φk = x̄T
k Skx̄k, k = 0, 1, ..., N − 1 (25)

where x̄k = xk − x0k and xk are the states generated in
the simulation. We only adjust φk if φk > x̄T

k Skx̄k. We
only shrink the funnels and never expand them. A single
simulation may shrink many ellipses φk of the nominal
trajectory. This is illustrated in Fig. 1.

III. THE ALGORITHM

We now combine the key concepts and present the LQR-
tree generating algorithm. A pseudocode overview is given
in Algorithm 1.

Consider a tree that already consists of a few trajectories.
Each node i in the tree corresponds to a node of a trajectory
and consists of 6 elements:

1) x0i: Nominal state.
2) u0i: Nominal input.
3) Si: TVLQR cost-to-go matrix.
4) Ki: TVLQR compensator matrix.
5) φi: Funnel parameter.
6) pi: Pointer to parent node (next node in trajectory if

time index advances by 1).

For the goal node xG, φ = ρG and p = NULL.
We generate a random sample xS drawn uniformly from

the bounded region R. The random sample serves as an
initial condition for simulating the nonlinear system as de-
scribed in Section II-B.2. We build the array Γ to determine
the simulation priority of the nodes. It’s elements are defined
as

Γi (xS) := φi − (xS − x0i)
T Si (xS − x0i) , i = 1, . . . , |T|

(26)
where |T| is the total number of nodes in the tree. The Γi

represent a measure of how ‘far’ the sample lies within the
local elliptical description of the funnel of node i. Any node
with a positive Γi claims to be able to get the sample to the
goal basin B(ρG) when the node’s policy is applied.

We simulate the sample if any element of Γ is positive.
Only simulating the sample with policies of nodes with Γi >
0 speeds up the simulation step as many nodes that are likely
to fail are ignored. If there are no nodes with Γi > 0, we
proceed to the motion planning step, see Section III-A. We
sort Γ in descending order and start simulating the sample
using the policy of node q with the largest Γq in Γ, i.e. the
first element of Γ.

If the policy of node q results in a successful simulation,
we continue with the next node in Γ. After a fixed number
(we use 10) of successful simulations, we proceed to the
next random sample to test; it would be sufficient to proceed
after the first success, however, we set the threshold higher
to efficiently sample more funnels with a single sample.

If the policy of node q fails, we adjust the funnel according
to Section II-B.2. When a new trajectory is added to the tree,
we set it’s φi → ∞ such that the trajectory’s funnel covers
the whole region R. With more and more random samples
falsifying the funnel of the trajectory, it approximates the
true funnel in a non-conservative way. Using Γ to determine
the simulation priority results in an efficient shrinking of the

Algorithm 1 Simulation-Based LQR-Trees
1: [A, B]⇐ linearization around xG, uG and discretization
2: [KG, SG]⇐ dlqr(A, B, Q, R)
3: ρG ⇐ Approximated basin of xG

4: T(1)⇐ {xG,uG, SG, KG, ρG, NULL}
5: for j = 1 to maxIter do
6: xSample⇐ random sample
7: Γ⇐ build simulation priority array
8: for i = 1 to |Γ > 0| do
9: xSim⇐ simTree(T, i, xSample)

10: if isInGoalBasin and constraintsOK then
11: continue; break if enough successes
12: else
13: T⇐ adjustFunnel(T, i, xSim)
14: end if
15: end for
16: if noSimSuccessful then
17: [iNear]⇐ distanceMetric(T, xSample)
18: [T, foundTraj]⇐ growTree(T, iNear, xSample)
19: if foundTraj then
20: Reset success counter
21: end if
22: else
23: Increment success counter; terminate if converged
24: end if
25: end for

φi as the value of Γi is a measure of how likely it is that
the respective φi needs more shrinking.

If the sample xS cannot be brought to the goal using the
policies of the existing tree, we add a trajectory to the tree
connecting the sample to the tree according to Section III-A.

The goal basin determining the success of a simulation
does not need to be an approximated basin. For example, the
goal state may not be stabilizable and the verification step
is inapplicable. In this case, the user may provide a ρG and
the algorithm generates a policy stabilizing initial conditions
from the region R to the user defined goal region.

A single random sample is used to both shrink the funnels
of existing trajectories and to determine whether the tree
needs to be extended using motion planning. It is remarkable
that this simulation-based mechanism achieves the same
probabilistic coverage guarantees as the formal method [10].
The coverage mechanism for the two approaches remains the
same.

A. Growing the Tree

If a random sample xS never reaches B(ρN) using the
existing policies in the tree, we need to extend the tree.
We find the closest node inear to xS in the tree using
a distance metric and use motion planning to generate a
trajectory connecting the sample to inear. In the current
implementation, we use the distance metric described in [1]
and [11]. It is based on a linearization of the system dynamics
around the sample point and calculating the optimal control

cost-to-go from the nodes in the tree. Based on this cost, we
choose the closest node to connect to.

The distance metric not only provides the closest node, but
also an initial guess of the input û∗ to the system to reach
the sample from the closest node. We further refine the open-
loop trajectory given by û∗ with a direct collocation [12]
implementation using SNOPT [13]. Direct collocation can
handle both input and state constraints. If motion planning
fails, we discard the sample as (temporarily) unreachable.
As the tree grows, we expect that sample to be included in
a funnel of the tree, if it is reachable.

After finding the connecting trajectory, we stabilize it
using the discrete TVLQR controller derived in Section II-
B.1, setting QN to Sinear . This generates a Kj ,Sj for every
node in the new trajectory and we add the new nodes to
the tree, setting φj → ∞, so that the funnel of the added
trajectory covers the whole region R.

B. Algorithm Termination Criteria

We terminate the algorithm after we encountered a fixed
number of random samples that either successfully reached
the goal or are unreachable, i.e. motion planning fails.

C. Using the Generated Tree

After termination of the algorithm, we obtain a tree T
that probabilistically covers R. To decide which stabilized
trajectory to apply to a given initial condition xIC , we search
for the node i with

i = argmin
j

(xIC − x0j)T Sj (xIC − x0j)

subject to: Γj (xIC) > 0 (27)

Thus we choose the policy starting at the node with the low-
est cost-to-go for the initial condition whose funnel contains
the initial condition. Since we approximate the funnel of a
trajectory as we generate the tree, we can probabilistically
guarantee that the policy we choose gets the initial condition
to the goal.

IV. SIMULATION EXAMPLES

A. Simple Pendulum

We illustrate the algorithm using a simple, well visu-
alizable system: the damped simple pendulum with input
constraints. The parameters are mass m = 1.0 kg, length
l = 0.5 m, gravity g = 9.8 m/s2 and damping term
b = 0.1 kgm2/s. The torque applied at the pivot point is
constrained to ±3 Nm, requiring at least a single pump to
swing up. The states are defined as the angle x1 := θ and
the angular velocity x2 := θ̇. The pendulum is upright at
rest when x1 = π, x2 = 0, which is the goal state. We
set the cost matrices for the goal state LQR controller to
Q = diag(10, 1) and R = 15.

The evolution of the tree is illustrated in snapshots in
Fig. 2. Note that wrapping of the coordinate system was
not taken into account. The algorithm takes about half an
hour to converge, with no attempts made to optimize run
time. A large part of this time is due to the high threshold of

�1 0 1 2 3 4
−20

−15

−10

−5

0

5

10

15

20

dq
/d

t��
(r

ad
/s

)

q��(rad)

(a) Iteration 2, 1 trajectory, |T| = 41. The final basin is plotted.
The black cross is the goal state. The state space shown represents
the subspace R. Note that the funnel of the first added trajectory is
not plotted, as it would cover the whole subspace.

�1 0 1 2 3 4
−20

−15

−10

−5

0

5

10

15

20

dq
/d

t��
(r

ad
/s

)

q��(rad)

(b) Iteration 28, 2 trajectories, |T| = 81. The funnel of the first
trajectory was shrunken by unsuccessful simulations.

�1 0 1 2 3 4
−20

−15

−10

−5

0

5

10

15

20

dq
/d

t��
(r

ad
/s

)

q��(rad)

(c) Iteration 6086, 12 trajectories, |T| = 477. 5000 consecutive
random initial conditions were successfully brought to the goal state.

Fig. 2. Tree evolution phase plots for simple pendulum

5000 consecutive successful simulations before the algorithm
terminates. The average time for a random sample to be
simulated for the whole tree was 0.27 s and stays almost
constant over all iterations. Major spikes in time to simulate
a sample can be observed after the tree has been grown and
many funnels are adjusted.

B. Cart-Pole

mC

mP

l

u

Fig. 3. The cart-pole

We show the state constraint capability with the cart-
pole, see Fig. 3. It consists of an actuated cart with an
undamped simple pendulum attached. The parameters are:
mC = 1.0 kg, mP = 1.0 kg, l = 0.5 m, g = 9.8 m/s2 with
the input u constrained to ±30 N. The states are defined as
cart position x1 := x, pendulum angle x2 := θ, cart velocity
x3 := ẋ and angular velocity x4 := θ̇. The goal state is
x1 = 0, x2 = π, x3 = 0 and x4 = 0, where the cart is
at rest and the pendulum is pointing up. The position x is
constrained to ±0.45 m, which is given by a limited rail
the cart can move on, a constraint often found in laboratory
setups of this system. We chose Q = diag(50, 5, 40, 4) and
R = 1.

Note that we chose the region R to be smaller in hori-
zontal position x than the state constraints. We also set the
constraints for motion planning to be a shrunken version
of the state constraints. This facilitates the algorithm in the
sense that the controller can still take action on trajectories
close to the state constraints without violating the constraints.

The algorithm takes significantly longer for the cart-pole
than for the simple pendulum. It converged after 74375
iterations generating a tree with 11917 nodes and took
about 32 hours on an average PC. We show the resulting
tree in Fig. 4. For convergence, we required that the tree
successfully gets 5000 consecutive random samples to the
goal basin; we ignored unsuccessful samples that failed to
connect to the tree. For this specific run, we had seven
unreachable samples during the final 5000 iterations that
could not be connected to the tree using motion planning.
The large number of iterations needed is partly because of
the doubled dimensionality compared to the pendulum, but a
larger part is due to the increased complexity of adding the
state constraints. Running the algorithm with the exact same
parameters, only omitting the state constraints, it converged
after 5821 iterations, producing a tree of 881 nodes in 2
hours.

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4

−1

0

1

−3 −2 −1 0 1 2 3 4 5 6
−5

0

5

x (m)

dx
/d

t (
m

/s
)

q (rad)

dq
/d

t (
ra

d/
s)

(a) Iteration 14, 5 trajectories (solid red), |T| = 852. The blue overlayed
rectangle represents the subspace R that the algorithm iteratively covers
with stabilized trajectories. The black cross is the goal state. Note that we
do not plot the funnels as the projections from 4D to 2D can be misleading.

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4

−1

0

1

x (m)

dx
/d

t (
m

/s
)

−3 −2 −1 0 1 2 3 4 5 6
−5

0

5

q (rad)

dq
/d

t (
ra

d/
s)

(b) Iteration 74375, 134 trajectories (solid red), |T| = 11917. The
algorithm terminated after 5000 consecutive random initial conditions
successfully reached the goal state.

Fig. 4. Generated tree phase plots for the cart-pole

V. BASIC ROBUSTNESS STUDY

We compared the performance of the generated policy
for different model parameters than what the policy was
designed for. For simplicity, we just introduced a scale factor
that scales the mass of the cart and mass and length of
the pendulum, e.g. mP,sim = κ ·mP , mC,sim = κ ·mC ,
lsim = κ · l. We ran simulations with the scaled parameters
from 10000 random initial conditions uniformly drawn from
the region R the algorithm was designed for. We further
replaced the success criteria of ending up within the final
basin by checking the actual simulated state for convergence
to the goal state. That means we simulated longer than the
nominal time of the executed trajectory’s policy and applied
the goal state controller for the exceeding simulation time.

TABLE I
BASIC ROBUSTNESS STUDY FOR THE CART-POLE

κ % Suc. (A) % Suc. (B) % Suc. (C)
0.8 2.82 13.57 4.31
0.85 4.92 99.63 14.50
0.9 78.48 100.00 46.15
0.95 99.34 100.00 43.40
1.0 99.75 100.00 46.59
1.05 99.27 100.00 63.07
1.1 95.92 99.98 53.06
1.15 83.56 99.80 25.31
1.2 51.10 97.89 14.67

We show the resulting percentages of successful simula-
tions in Table I for the case of the tree generated with state
constraints (A) and the tree without state constraints (B). We
also ran the policy generated without state constraints on the
constrained setup to compare the performance (C). Since we
chose the weights in Q for the cart position and velocity
to be quite large, it could be that the controllers performed
similarly. However, the percentages show that generating the
tree with explicitly taking the state constraints into account
results in a better performance.

VI. DISCUSSION

It is unlikely that a hyper-ellipsis is the best geomet-
rical primitive to describe the funnel around a trajectory.
Simulation-based approximation of the funnel would allow
exploring different primitives that could potentially yield
tighter fits to the real funnel, further improving the sparsity
of the resulting tree. The advantage of the hyper-ellipsis we
propose is that they are simple to reason about geometrically
and are founded on the TVLQR design, thus are dynamically
plausible.

We show a set of simulated trajectories from random initial
conditions for the cart-pole in the video accompanying this
paper. It is interesting that for some initial conditions the
simulation using the tree generated for the unconstrained
problem seems to outperform the tree for the constrained
problem, even without violating the state constraints. This
could be due to effects of the imperfect distance metric and
local minima during the motion planning step. A possible
way to improve the results is to seed the tree with some
carefully designed trajectories from key initial conditions,
e.g. a good swing up trajectory for the cart-pole. However,
the results we show were obtained without seeding. Cur-
rently, we are working on evaluating the performance of the
proposed algorithm on a laboratory setup cart-pole system.

It would be interesting to explore the possibility of using
the physical system instead of a simulation to test a random
sample. This would generate a tree taking all the unmodeled
dynamics of the system into account. Another idea is to use a
hybrid approach, where we first generate a tree in simulation
and then use data of failed initial conditions on the physical
system to extend the tree.

REFERENCES

[1] R. Tedrake, “LQR-trees: Feedback motion planning on sparse random-
ized trees,” in Proceedings of Robotics: Science and Systems, Seattle,
USA, June 2009.

[2] M. Mason, “The mechanics of manipulation,” in Robotics and Automa-
tion. Proceedings. 1985 IEEE International Conference on, vol. 2, Mar
1985, pp. 544–548.

[3] R. R. Burridge, A. A. Rizzi, and D. E. Koditschek, “Sequential Com-
position of Dynamically Dexterous Robot Behaviors,” I. J. Robotic
Res., vol. 18, no. 6, pp. 534–555, 1999.

[4] S. Prajna, A. Papachristodoulou, P. Seiler, and P. A. Parrilo, SOS-
TOOLS: Sum of squares optimization toolbox for MATLAB, 2004.

[5] S. M. LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge
University Press, 2006, available at http://planning.cs.uiuc.edu/.

[6] C. Atkeson, “Using local trajectory optimizers to speed up global
optimization in dynamic programming,” in Advances in Neural Infor-
mation Processing Systems. Morgan Kaufmann, 1994, pp. 663–670.

[7] M. Stolle and C. G. Atkeson, “Policies based on trajectory libraries,”
in Proceedings of the International Conference on Robotics and
Automation (ICRA), 2006.

[8] D. P. Bertsekas, Dynamic Programming and Optimal Control, Vol. I.
Athena Scientific, 2005.

[9] LQR-Tree Matlab Toolbox. [Online]. Available: http://groups.csail.
mit.edu/locomotion/software.html

[10] R. Tedrake, I. R. Manchester, M. M. Tobenkin, and J. W. Roberts,
“LQR-Trees: Feedback motion planning via sums of squares verifica-
tion,” To appear in the International Journal of Robotics Research,
2010.

[11] E. Glassman and R. Tedrake, “A quadratic regulator-based heuristic
for rapidly exploring state space,” Accepted to ICRA, 2010.

[12] J. Betts, Practical Methods for Optimal Control using Nonlinear
Programming. ASME, 2002.

[13] P. E. Gill, W. Murray, and M. A. Saunders, “SNOPT: An SQP
Algorithm for Large-Scale Constrained Optimization,” SIAM Review,
vol. 47, no. 1, pp. 99–131, 2005.

